[NeurIPS] Haoyuan Qin, Chennan Ma, Mian Deng, Zhengzhu Liu, Songzhu Mei, Xinwang Liu, Cheng Wang, Siqi Shen: The Dormant Neuron Phenomenon in Multi-Agent Reinforcement Learning Value Factorization . NeurIPS 2024. (CCF Rank A)
[NeurIPS] Fangdi Wang, Siwei Wang, Jiaqi Jin, jingtao Hu, Suyuan Liu, Xihong Yang, Xinwang Liu, En Zhu: Evaluate then cooperate: Shapley-based View Cooperation Enhancement for Multi-view Clustering . NeurIPS 2024. (CCF Rank A)
[NeurIPS] Yue Liu, Shihao Zhu, Jun Xia, Yingwei Ma, Jian Ma, Wenliang Zhong, Xinwang Liu, Shengju Yu, Kejun Zhang: End-to-end Learnable Clustering for Intent Learning in Recommendation . NeurIPS 2024. (CCF Rank A)
[NeurIPS] Suyuan Liu, Siwei Wang, Ke Liang, Junpu Zhang, Zhibin Dong, Tianrui Liu, En Zhu, Xinwang Liu, Kunlun He: Alleviate Anchor-Shift: Explore Blind Spots with Cross-View Reconstruction for Incomplete Multi-View Clustering . NeurIPS 2024. (CCF Rank A)
[NeurIPS] Ke Liang, Yue Liu,Hao Liu, Lingyuan Meng, Suyuan Liu, Siwei Wang, Sihang, Zhou, Xinwang Liu: Clustering then Propagation: Select Better Anchors for Knowledge Graph Embedding . NeurIPS 2024. (CCF Rank A)
[NDSS] Hao Yu, Chuan Ma, Xinhang Wang, Jun Wang, Tao Xiang, Meng Shen, Xinwang Liu: DShield: Defending against Backdoor Attacks on Graph Neural Networks via Discrepancy Learning. NDSS 2025. (CCF Rank A)
[ACM MM] Ke Liang, Lingyuan Meng, Yue Liu, Meng Liu, Wei Wei, Siwei Wang, Suyuan Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu: Simple Yet Effective: Structure Guided Pre-trained Transformer for Multi-modal Knowledge Graph Reasoning. ACM MM 2024. (CCF Rank A)
[ACM MM] Huimin Ma, Siwei Wang, Shengju Yu, Suyuan Liu, Jun-Jie Huang, Huijun Wu, Xinwang Liu, En Zhu: Automatic and Aligned Anchor Learning Strategy for Multi-View Clustering. ACM MM 2024. (CCF Rank A)
[ACM MM] Dayu Hu, Suyuan Liu, Jun Wang, Junpu Zhang, Siwei Wang, Xingchen Hu, Xinzhong Zhu, Chang Tang, Xinwang Liu: Reliable Attribute-missing Multi-view Clustering with Instance-level and Feature-level Cooperative Imputation. ACM MM 2024. (CCF Rank A)
[ACM MM] Xihong Yang, Erxue Min, Ke Liang, Yue Liu, Siwei Wang, Sihang Zhou, Huijun Wu, Xinwang Liu, En Zhu: GraphLearner: Graph Node Clustering with Fully Learnable Augmentation. ACM MM 2024. (CCF Rank A)
[ACM MM] Qian Qu, Xinhang Wan, Weixuan Liang, Jiyuan Liu, Yu Feng, Huiying Xu, Xinwang Liu, En Zhu: A Lightweight Anchor-Based Incremental Framework for Multi-view Clustering. ACM MM 2024. (CCF Rank A)
[ACM MM] Xiao He, Chang Tang, Xinwang Liu, Chuankun Li, Shan An and Zhenglai Li: Heterogeneous Graph Guided Contrastive Learning for Spatially Resolved Transcriptomics Data. ACM MM 2024. (CCF Rank A)
[ACM MM] Fangdi Wang, Siwei Wang, Tianrui Liu, Jiaqi Jin, Zhibin Dong, Xihong Yang, Yu Feng, Xinzhong Zhu, Xinwang Liu, En Zhu: View Gap Matters: Cross-view Topology and Information Decoupling for Multi-view Clustering. ACM MM 2024. (CCF Rank A)
[ACM MM] Jiaxin Zhang, Yiqi Wang, Xihong Yang, Siwei Wang, Yu Feng, Yu Shi, Ruichao Ren, En Zhu, Xinwang Liu: Test-Time Training on Graphs with Large Language Models (LLMs). ACM MM 2024. (CCF Rank A)
[ICML] Xinhang Wan, Jiyuan Liu, Xinwang Liu, Yi Wen, Hao Yu, Siwei Wang, Shengju Yu, Tianjiao Wan, Jun Wang, En Zhu: Decouple then Classify: A Dynamic Multi-view Labeling Strategy with Shared and Specific Information. ICML 2024. (CCF Rank A)
[NeurIPS] Yufeng Zhang, Jialu Pan, Wanwei Liu, Zhenbang Chen, Xinwang Liu, Ji Wang, Kenli Li: On the Properties of Kullback-Leibler Divergence Between Multivariate Gaussian Distributions . NeurIPS 2023. (CCF Rank A)
[ACM MM] Yue Liu, Ke Liang, Jun Xia, Xihong Yang, Sihang Zhou, Meng Liu, Xinwang Liu, and Stan Z. Li: Reinforcement Graph Clustering with Unknown Cluster Number. ACM MM 2023. (CCF Rank A)
[ACM MM] Jingcan Duan, Pei Zhang, Siwei Wang, Jingtao Hu, Hu Jin, Jiaxin Zhang, Haifang Zhou, Xinwang Liu: Normality Learning-based Graph Anomaly Detection via Multi-Scale Contrastive Learning. ACM MM 2023. (CCF Rank A)
[ACM MM] Xin Zou, Chang Tang, Xiao Zheng, Zhenglai Li, Xiao He, Shan An, and Xinwang Liu: DPNET: Dynamic Poly-attention Network for Trustworthy Multi-modal Classification. ACM MM 2023. (CCF Rank A)
[ACM MM] Yi Wen, Siwei Wang, Ke Liang, Weixuan Liang, Xinhang Wan, Xinwang Liu, Suyuan Liu, Jiyuan Liu, and En Zhu: Scalable Incomplete Multi-View Clustering with Structure Alignment. ACM MM 2023. (CCF Rank A)
[ACM MM] Yi Wen, Suyuan Liu, Xinhang Wan, Siwei Wang, Ke Liang, Xinwang Liu, Xihong Yang, and Pei Zhang: Efficient Multi-View Graph Clustering with Local and Global Structure Preservation. ACM MM 2023. (CCF Rank A)
[ACM MM] Xihong Yang, Cheng Tan, Yue Liu, Ke Liang, Siwei Wang, Sihang Zhou, Jun Xia, Stan Z. Li, Xinwang Liu, En Zhu: CONVERT: Contrastive Graph Clustering with Reliable Augmentation. ACM MM 2023. (CCF Rank A)
[ACM MM] Xihong Yang, Jiaqi Jin, Siwei Wang, Ke Liang, Yue Liu, Yi Wen, Suyuan Liu, Sihang Zhou, Xinwang Liu, En Zhu: DealMVC: Dual Contrastive Calibration for Multi-view Clustering. ACM MM 2023. (CCF Rank A)
[ACM MM] Meng Liu, Ke Liang, Dayu Hu, Hao Yu, Yue Liu, Lingyuan Meng, Wenxuan Tu, Sihang Zhou, Xinwang Liu: TMac: Temporal Multi-Modal Graph Learning for Acoustic Event Classification. ACM MM 2023. (CCF Rank A)
[ICCV] Zhibin Dong, Jiaqi Jin, Siwei Wang, Xinwang Liu, En Zhu: Cross-view Topology Based Consistent and Complementary Information for Deep Multi-view Clustering. ICCV 2023. (CCF Rank A)
[CVPR] Jiaqi Jin, Siwei Wang, Zhibin Dong, Xinwang Liu, En Zhu: Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and Prototype Alignment. CVPR 2023. (CCF Rank A)
[ICML] Weixuan Liang, Xinwang Liu, Yong Liu, Chuan Ma, Yunping Zhao, Zhe Liu, En Zhu: Consistency of Multiple Kernel Clustering. ICML 2023. (CCF Rank A)
[ICML] Yue Liu, Ke Liang, Jun Xia, Sihang Zhou, Xihong Yang, Xinwang Liu, Stan Z. Li: Dink-Net: Neural Clustering on Large Graphs. ICML 2023. (CCF Rank A)
[SIGIR] Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang, Sihang Zhou, Xinwang Liu: Learn from Relational Correlations and Periodic Events for Temporal Knowledge Graph Reasoning. SIGIR 2023. (CCF Rank A)
[AAAI] Xinhang Wan, Xinwang Liu, Jiyuan Liu, Siwei Wang ,Yi Wen, Weixuan Liang, En Zhu, Zhe Liu, Lu Zhou: Auto-weighted Multi-view Clustering for Large-scale Data. AAAI 2023. (CCF Rank A)
[AAAI] Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Zhen Wang, Ke Liang, Wenxuan Tu, Liang Li, Jingcan Duan, Cancan Chen: Hard Sample Aware Network for Contrastive Deep Graph Clustering. AAAI 2023 (CCF Rank A)[PDF][Code]
[AAAI] Pei Zhang, Siwei Wang, Liang Li, Changwang Zhang, Xinwang Liu, En Zhu, Zhe Liu, Lu Zhou, Lei Luo: Let the data choose: Flexible and Diverse Anchor Graph Fusion for Scalable Multi-view Clustering. AAAI 2023. (CCF Rank A)
2022
[NeurIPS] Siwei Wang, Xinwang Liu, Suyuan Liu, Jiaqi Jin, Wenxuan Tu, Xinzhong Zhu, En Zhu: Align then Fusion: Generalized Large-scale Multi-view Clustering with Anchor Matching Correspondences . NeurIPS 2022. (CCF Rank A)
[NeurIPS] Weixuan Liang, Xinwang Liu, Yong Liu, Sihang Zhou, Jun-Jie Huang, Siwei Wang, Jiyuan Liu, Yi Zhang, En Zhu: Stability and Generalization of Kernel Clustering: from Single Kernel to Multiple Kernel. NeurIPS 2022. (CCF Rank A)[PDF]
[NeurIPS] Siqi Shen, Mengwei Qiu, Liu Jun, Weiquan Liu, Yongquan Fu, Xinwang Liu, Cheng Wang: ResQ: A Residual Q Function-based Approach for Multi-Agent Reinforcement Learning Value Factorization. NeurIPS 2022. (CCF Rank A)
[ACM MM] Xinhang Wan, Jiyuan Liu, Weixuan Liang, Xinwang Liu, Yi Wen and En Zhu: Continual Multi-view Clustering. ACM MM 2022. (CCF Rank A)[PDF]
[ACM MM] Yi Zhang, Weixuan Liang, Xinwang Liu, Sisi Dai, Siwei Wang, Liyang Xu and En Zhu: Sample Weighted Multiple Kernel K-means via min-max optimization. ACM MM 2022. (CCF Rank A)[PDF]
[ACM MM] Guang Yu, Siqi Wang, Zhiping Cai, Xinwang Liu and Chengkun Wu: Effective Video Abnormal Event Detection by Learning A Consistency-Aware High-Level Feature Extractor. ACM MM 2022. (CCF Rank A)[PDF]
[ACM MM] Tiejian Zhang, Xinwang Liu, En Zhu, Sihang Zhou, Zhibin Dong: Efficient Anchor Learning-based Multi-view Clustering -- A Late Fusion Method. ACM MM 2022. (CCF Rank A)[PDF]
[ACM MM] Junpu Zhang, Liang Li, Siwei Wang, Jiyuan Liu, Yue Liu, Xinwang Liu and En Zhu: Multiple Kernel Clustering with Dual Noise Minimization. ACM MM 2022. (CCF Rank A)[PDF]
[ACM MM]Chen Zhang, Siwei Wang, Jiyuan Liu, Sihang Zhou, Pei Zhang, Xinwang Liu, En Zhu, Changwang Zhang: Multi-view Clustering via Deep Matrix Factorization and Partition Alignment. ACM MM 2021: 4156–4164. (CCF Rank A)[PDF][Code]
[ACM MM] Jiyuan Liu, Xinwang Liu, Yi Zhang, Pei Zhang, Wenxuan Tu, Siwei Wang, Sihang Zhou, Weixuan Liang, Siqi Wang and Yuexiang Yang: Self-representation Subspace Clustering for Incomplete Multi-view Data. ACM MM 2021: 2726–2734. (CCF Rank A)[PDF][Code]
[ICML]Xinwang Liu, Li Liu, Qing Liao, Chang Tang, Siwei Wang, Wenxuan Tu, Jiyuan Liu, Yi Zhang and En Zhu: One Pass Late Fusion Multi-view Clustering. ICML 2021: 6850-6859. (CCF Rank A)[PDF][Code]
[IJCAI] Chang Tang, Xinwang Liu, En Zhu, Lizhe Wang and Albert Zomaya: Hyperspectral Band Selection via Spatial-Spectral Weighted Region-wise Multiple Graph Fusion-Based Spectral Clustering. IJCAI 2021: 3038-3044. (CCF Rank A)[PDF]
[AAAI] Wenxuan Tu, Sihang Zhou, Xinwang Liu, Xifeng Guo, Zhiping Cai, En Zhu, and Jieren Cheng: Deep Fusion Clustering Network. AAAI 2021: 35(11), 9978-9987. (CCF Rank A)[PDF][Code]
2020
[IJCAI] Jinglin Xu, Xiangsen Zhang, Wenbin Li, Xinwang Liu, and Junwei Han: Joint Multi-view 2D Convolutional Neural Networks for 3D Object Classification. IJCAI 2020: 3202-3208. (CCF Rank A)[PDF]
[AAAI] Sihang Zhou, Xinwang Liu, Jiyuan Liu, Xifeng Guo, Yawei Zhao, En Zhu, Yongping Zhai, Jianping Yin and Wen Gao: Multi-View Spectral Clustering with Optimal Neighborhood Laplacian Matrix. AAAI 2020: 34(04), 6965-6972. (CCF Rank A) [PDF][Code]
[AAAI] Chang Tang, Xinwang Liu, Xinzhong Zhu, En Zhu, Kun Sun, Pichao Wang, Lizhe Wang and Albert Zomaya: MRF: Defocus Blur Detection via Recurrently Refining Multi-scale Residual Features. AAAI 2020: 34(07), 12063-12070. (CCF Rank A)
[AAAI] Chang Tang, Xinwang Liu, Xinzhong Zhu, En Zhu, Zhigang Luo, Wen Gao: CGD: Multi-view Clustering via Cross-view Graph Diffusion. AAAI 2020: 34(04), 5924-5931. (CCF Rank A)
[AAAI] Li Cheng, Yijie Wang, Xinwang Liu and Bin Li: Outlier Detection Ensemble with Embedded Feature Selection. AAAI 2020: 34(04), 3503-3512. (CCF Rank A) [PDF]
[AAAI] Jinglin Xu, Wenbin Li, Xinwang Liu, Dingwen Zhang, Ji Liu, Junwei Han: Embedding Deep Interaction Information for Multi-view Categorization. AAAI 2020: 34(04), 6494-6501. (CCF Rank A)
2019
[NeurIPS] Siqi Wang, Yijie Zeng, Xinwang Liu, En Zhu, Jianping Yin, Chuanfu Xu, and Marius Kloft: Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network. NeurIPS 2019: 5962–5975 (CCF Rank A) [PDF][Code]
[AAAI]Xinwang Liu, Xinzhong Zhu, Miaomiao Li, Chang Tang, En Zhu, Jianping Yin, Wen Gao: Efficient and Effective Incomplete Multi-view Clustering. AAAI 2019: 33(01), 4392-4399.(CCF Rank A) [PDF]
[AAAI] Chang Tang, Xinwang Liu, Xinzhong Zhu, Lizhe Wang: Cross-view Local Structure Preserved Diversity and Consensus Learning for Multi-view Unsupervised Feature Selection. AAAI 2019: 33(01), 5101-5108.(CCF Rank A) [PDF]
[AAAI] Siqi Wang, En Zhu, Xiping Hu, Xinwang Liu, Qiang Liu, Jianping Yin, Fei Wang: Robustness Can Be Cheap: A Highly Efficient Approach to Discover Outliers under High Outlier Ratios. AAAI 2019: 33(01), 5313-5320.(CCF Rank A) [PDF]
[CVPR] Chang Tang, Xinzhong Zhu, Xinwang Liu, Lizhe Wang, Albert Zomaya: DeFusionNET: Defocus Blur Detection via Recurrently Fusing and Refining Multi-scale Deep Features. CVPR 2019: 2700-2709. (CCF Rank A) [PDF]
[IJCAI] Xifeng Guo, Xinwang Liu, En Zhu and Jianping Yin: Affine Equivariant Autoencoder. IJCAI 2019: 2413-2419.(CCF Rank A) [PDF]
[IJCAI] Siwei Wang, Xinwang Liu, Chang Tang, Jiyuan Liu, En Zhu, Jianping Yin, Jiangtao Hu and Jingyuan Xia: Multi-view Clustering via Late Fusion Alignment Maximization. IJCAI 2019: 3778-3784. (CCF Rank A) [PDF][Code]
[IJCAI] Wenzhang Zhuge, Chenping Hou, Xinwang Liu, Hong Tao and Dongyun Yi: Simultaneous Representation Learning and Clustering for Incomplete Multi-view Data. IJCAI 2019: 4482-4488. (CCF Rank A) [PDF]
2018
[IJCAI] Xinzhong Zhu, Xinwang Liu, Miaomiao Li, En Zhu, Li Liu, Zhiping Cai, Jianping Yin, Wen Gao: Localized Incomplete Multiple Kernel k-means. IJCAI 2018: 3271-3277. (CCF Rank A) [PDF]
[AAAI] Pichao Wang, Wanqing Li, Jun Wan, Philip Ogunbona, and Xinwang Liu: Cooperative Training of Deep Aggregation Networks for RGB-D Action Recognition. AAAI 2018: 32(1), 7404-7411. (CCF Rank A) [PDF]
[IJCAI] Yueqing Wang, Xinwang Liu, Yong Dou: Approximate Large-scale Multiple Kernel k-means using Deep Neuron Network. IJCAI 2017: 3006–3012. (CCF Rank A) [PDF]
[IJCAI] Xifeng Guo, Long Gao, Xinwang Liu and Jianping Yin: Improved Deep Embedded Clustering with Local Structure Preservation. IJCAI 2017: 1753-1759. (CCF Rank A) [PDF][Code]
2016
[IJCAI] Miaomiao Li, Xinwang Liu, Lei Wang, Yong Dou and Jianping Yin: Multi-view Clustering via Maximizing Local Kernel Alignment Maximization. IJCAI 2016: 1704-1710. (CCF Rank A)
[AAAI]Xinwang Liu, Yong Dou, Jianping Yin, Lei Wang, En Zhu: Multiple Kernel k-means Clustering with Matrix-induced Regularization. AAAI 2016: 1888-1894. (CCF Rank A) [PDF][Code]