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Abstract
As a representative of multiple kernel clustering (MKC),

simple multiple kernel k-means (SimpleMKKM) is recently
put forward to boosting the clustering performance by op-
timally fusing a group of pre-specified kernel matrices. De-
spite achieving significant improvement in a variety of ap-
plications, we find out that SimpleMKKM could indiscrimi-
nately force all sample pairs to be equally aligned with the
same ideal similarity. As a result, it does not sufficiently
take the variation of samples into consideration, leading to
unsatisfying clustering performance. To address these is-
sues, this paper proposes a novel MKC algorithm with a
“local” kernel alignment, which only requires that the sim-
ilarity of a sample to its k-nearest neighbours be aligned
with the ideal similarity matrix. Such an alignment helps
the clustering algorithm to focus on closer sample pairs
that shall stay together and avoids involving unreliable sim-
ilarity evaluation for farther sample pairs. After that, we
theoretically show that the objective of SimpleMKKM is a
special case of this local kernel alignment criterion with
normalizing each base kernel matrix. Based on this obser-
vation, the proposed localized SimpleMKKM can be readily
implemented by existing SimpleMKKM package. Moreover,
we conduct extensive experiments on several widely used
benchmark datasets to evaluate the clustering performance
of localized SimpleMKKM. The experimental results have
demonstrated that our algorithm consistently outperforms
the state-of-the-art ones, verifying the effectiveness of the
proposed local kernel alignment criterion. The code of Lo-
calized SimpleMKKM is publicly available at: https://
github.com/xinwangliu/LocalizedSMKKM .

1. Introduction
Multiple kernel clustering (MKC) provides an elegant

framework to group samples into different clusters by ex-
tracting complementary information from multiple sources
[25, 21, 26, 8, 5, 18, 22, 29, 10, 7, 27, 28]. Given a group of
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pre-defined kernel matrices, MKC integrates the available
multiple kernel information to categorize data items with
similar structures or patterns into the same group, which
has been intensively studied and widely applied into vari-
ous applications [9, 14, 9, 23, 17, 16, 13]. For example, the
work in [11] proposes a multiple kernel k-means clustering
algorithm with a matrix-induced regularization term to re-
duce the redundancy of the selected kernels. A local kernel
alignment variant is then developed by sufficiently consid-
ering the variation among sample, which is experimentally
verified to enhance the clustering performance in [9]. By
assuming an optimal kernel residing in the neighborhood of
the combined kernels, the work in [14] proposes an optimal
neighborhood multiple kernel clustering algorithm, which
improves the clustering performance by enhancing the rep-
resentability of the learned optimal kernel. Differently, late
fusion based multiple kernel clustering strategy seeks to
exploit the complementary information in kernel partition
space to achieve consensus on partition level [23]. Specif-
ically, the pioneering work in [23] proposes to maximally
align the multiple base partitions with the consensus parti-
tion, which enjoys considerable algorithm acceleration and
satisfactory clustering performance. Along this line, an ef-
fective and efficient late fusion based algorithm is proposed
in [12] to handle incomplete multi-view data.

As a representative of MKC, a novel simple multiple ker-
nel k-means (SimpleMKKM) is recently proposed [15]. In-
stead of jointly minimizing the kernel weights and cluster-
ing partition matrix, SimpleMKKM takes a minimization
on kernel weights and maximization on clustering partition
matrix optimization framework, leading to an intractable
min-max optimization. After that, it is equivalently trans-
formed into a minimization problem and a reduced gradient
algorithm is designed to solve the resultant optimization.
This algorithm is validated to be efficient for optimization,
robust against the noisy views, and has attracted intensive
attention of many researchers.

Although the recently proposed SimleMKKM bears the
aforementioned merits, we observe that it strictly aligns the
combined kernel matrix with an “ideal” similarity gener-



ated by the clustering partition matrix in a global way. This
could indiscriminately force all sample pairs to be equally
aligned with the same ideal similarity. As a result, it does
not effectively handle the variation among samples and ig-
nore local structures, which could lead to unsatisfying clus-
tering performance. To address the above issue, we pro-
pose to calculate the kernel alignment in a “local” manner,
which only requires that the generated combined kernel be
aligned with the ideal similarity matrix locally in the k-
nearest neighborhood of each sample. Such an alignment
guides the clustering algorithm to focus on closer sample
pairs that shall stay together and avoid involving unreliable
similarity evaluation for farther sample pairs. By this way,
our proposed algorithm could sufficiently consider the vari-
ation among samples, leading to improved clustering per-
formance. We then derive the objective function of our al-
gorithm based on the minimization-maximization optimiza-
tion framework of SimpleMKKM. After that, we theoreti-
cally show that SimpleMKKM is a special case of our pro-
posed algorithm. Base on this observation, our proposed
local variant can be readily implemented by SimpleMKKM
packages via simply normalizing each base kernel. Com-
prehensive experiments have been conducted on several
benchmark datasets, and the results have well validated the
effectiveness of the proposed localized SimpleMKKM. The
main contributions of this paper are summarized as follows,

• We, for the first time, identify that the recently pro-
posed SimpleMKKM cannot effectively handle the
variation among kernel matrices, and develop a local
kernel alignment criterion to address this issue.

• We theoretically reveal the connection between Sim-
pleMKKM and our proposed algorithm, and point out
that the former is a special case of ours.

• Extensive experiments are conducted on several public
datasets to evaluate the effectiveness of our proposed
algorithm. As indicated, the experimental results have
demonstrated that our algorithm consistently outper-
forms the state-of-the-art competitors, verifying its ef-
fectiveness and efficiency.

2. Related work
In this section, we briefly introduce multiple kernel

k-means (MKKM) [3] and the recently proposed simple
multiple kernel k-means (SimpleMKKM) [15], which are
closely related to our work.

2.1. Multiple Kernel K-means

Given X ∈ Rn×d with n and d the number of samples
and feature dimensions, k-means clustering aims to group
X into k clusters. Let Z ∈ {0, 1}n×k be a clustering as-
signment matrix, where Ziq = 1 if xi belongs to the q-th

cluster, other Ziq = 0. Its objective can be presented as

minZ,{cq}kq=1

1

n

∑n

i=1

∑k

q=1
Ziq‖xi − cq‖2 (1)

in which
∑k
q=1 Ziq = 1, ∀i.

Considering that samples may not well clustered in its
original space, they are usually mapped into a reproduc-
ing kernel Hilbert space (RKHS) [20] H with a feature
map ϕ(·), i.e. φi = ϕ(xi), and clustered by k-means in
that space. Note that the mapping function ϕ(·) is usually
implicitly defined, one can construct a kernel matrix with
Ki,j = φ>i φj . Based on these definition, the objective func-
tion of kernel k-means can be rewritten as

minH∈Rn×k Tr
(
K
(
In −HH>

))
s.t. H>H = Ik, (2)

in which H is termed clustering partition matrix and Ik is
an identity matrix with size k.

It is well known that the performance of kernel k-means
is largely dependent on the choice of kernel matrix. By as-
suming that the optimal kernel Kγ can be expressed as a
combination of pre-specified base kernel matrices, the ob-
jective function in Eq. (2) can be readily extended to multi-
ple kernel k-means, with the objective as follows,

min
γ∈∆,H∈Rn×k

Tr(Kγ(I−HH>)) s.t. H>H = Ik, (3)

where ∆ = {γ ∈ Rm |
∑m
p=1 γp = 1, γp ≥ 0, ∀p} and

Kγ =
∑m
p=1 γ

2
pKp. In literature, a two-step alternate op-

timization with proved convergence is developed to jointly
optimize γ and H in Eq. (3). After obtaining the clustering
partition matrix H, a standard k-means algorithm is applied
to compute the discrete cluster assignments.

2.2. Simple Multiple Kernel K-means

Recently, it is empirically observed in [15] that the
widely used minγ minH paradigm by existing MKKM may
not be able to achieve promising clustering performance in
practical applications, sometimes or even worse than the av-
eraged kernel k-means. This inspires researchers to design
new clustering models. Different from existing minγ minH

paradigm, SimpleMKKM proposes a novel minγ maxH

optimization framework as follows,

min
γ∈∆

max
H∈Rn×k

Tr(KγHH>) s.t. H>H = Ik. (4)

This new minimization-maximization formulation makes
Eq. (4) cannot be solved by the widely used alternate op-
timization. Differently, SimpleMKKM firstly rewrites the
minγ maxH into a minimization w.r.t γ, and proves the
differentiability of the resultant minimization. After that, a
reduced gradient descent optimization is designed to solve
the minimization w.r.t γ.



3. The Proposed Localized SimpleMKKM

3.1. The Proposed Formulation

Let hi (1 ≤ i ≤ n) denote the i-th row of the clus-
tering partition matrix H. As seen from Eq. (4), Sim-
pleMKKM optimizes the alignment between Kγ and HH>

in a global way. That is, it indiscriminately aligns each Kij

with a “ideal” value h>i hj , no regardless of the potential
variation among kernel matrices. This would cause Kij’s
with high variation to be aligned with a same cluster la-
bels. A more reasonable criterion shall get rid of the less
reliable farther global similarity information in high dimen-
sional kernel space and in the mean time concentrate more
on consolidating the high confidence clustering predictions.
To fulfill this goal, we propose to align Kγ with HH> in a
local way.

Let S(i) ∈ {0, 1}n×round(τ×n) (∀i) be a matrix indicat-
ing the round(τ × n)-nearest neighbors of the i-th sample,
where round(·) is a rounding function. We define a local
alignment for the i-th sample as follows,

〈
S(i)>KγS

(i), S(i)>H>HS(i)
〉

F
, (5)

where S(i)>KγS
(i) denotes taking elements from Kγ ac-

cording to the neighborhood of the i-th sample. As seen,
this local alignment only requires that more reliable sam-
ples shall stay together, which makes it better utilize the
variation among kernels for clustering. By taking over the
local alignment in Eq. (5) for each sample, we obtain the
objective function of the proposed localized SimpleMKKM
as follow:

minγ∈∆ maxH∈Rn×k Tr
(
H>

∑n

i=1
(A(i)KγA

(i))H
)

s.t. H>H = Ik,
(6)

where ∆ = {γ ∈ Rm|
∑m
p=1 γp = 1, γp ≥ 0, ∀p},

Kγ =
∑m
p=1 γ

2
pKp and A(i) = S(i)S(i)> is the neigh-

borhood mask matrix of the i-th sample.

In the following, we build the theoretical connection be-
tween the proposed algorithm and SimpleMKKM in Theo-
rem 1.

Theorem 1 The objection of SimpleMKKM is a special
case of Eq. (6).

Proof 1 The objective function in Eq. (6) can be written as∑n

i=1
Tr
(
H>(A(i)KγA

(i))H
)

=
∑n

i=1

〈
A(i) ⊗Kγ ,A

(i) ⊗ (HH>)
〉

F

=
∑n

i=1

〈
A(i) ⊗Kγ ,HH>

〉
F

=
〈(∑n

i=1
A(i)

)
⊗Kγ ,HH>

〉
F

=
∑m

p=1
γ2
p

〈(∑n

i=1
A(i)

)
⊗Kp,HH>

〉
F

=
∑m

p=1
γ2
p

〈
K̃p,HH>

〉
F

= Tr
(
H>K̃γH

)
,

(7)

where ⊗ denotes element-wise multiplication between two
matrices, K̃p =

(∑n
i=1 A

(i)
)
⊗ Kp can be treated as a

normalized Kp, and K̃γ =
∑m
p=1 γ

2
pK̃p. Consequently,

by such normalization applied on each base kernel, we can
clearly see that the global kernel alignment in [15] is a spe-
cial case of the local kernel alignment criterion in Eq. (6).
This completes the proof.

As can be seen from Theorem 1, our formulation in Eq.
(6) reduces to SimpleMKKM when all elements of A(i) are
set as one. In that case, each sample takes the rest ones as its
neighbors. This implies that SimpleMKKM can be treated
as a special case of our formulation. Based on Theorem 1,
our formulation in Eq. (6) can be equivalently rewritten as,

minγ∈∆ J (γ), (8)

with

J (γ) =
{

max
H

Tr
(
H>K̃γH

)
, s.t. H>H = Ik.

}
(9)

By this way, the minγ-maxH optimization is transformed
to a minimization one, where its objective J (γ) is a kernel
k-means optimal value function.

The following Theorem 2 shows that each K̃p is still
kept positive semidefinite (PSD) with the aforementioned
normalization.

Theorem 2 Each K̃p (1 ≤ p ≤ m) is PSD.

Proof 2 Note that S(i) ∈ {0, 1}n×round(τ×n) and A(i) =

S(i)S(i)> , which implies that A(i) and
∑n
i=1 A

(i) are both
PSD. Also, the element-wise multiplication between two
PSD matrices is PSD. As a result, K̃p is PSD.

Based on Theorem 2, we know that each K̃p keeps pos-
itive semidefinite with the aforementioned normalization,
which guarantees the differentiability of J (γ). In the fol-
lowing, we first prove the differentiability of J (γ), show
how to calculate its gradient, and use the reduced gradient
descent algorithm in [15] to decrease Eq. (8).



3.2. The Calculation of Reduced Gradient and Op-
timization Algorithm

By following [15] and Theorem 2, Theorem 3 shows that
J (γ) in Eq. (8) is differentiable.

Theorem 3 ([15]) J (γ) in Eq. (8) is differentiable. Fur-

ther, ∂J (γ)
∂γp

= 2γpTr
(
H∗>K̃pH

∗
)

, where H∗ ={
arg maxH Tr

(
H>K̃γH

)
s.t. H>H = Ik

}
.

The formal proof is omitted due to space limit. The core
idea of this proof is to show that the global optimum for Eq.
(9) with a given γ is unique. Interested readers are referred
to [15] for the detailed proof.

In the following, we propose to solve the optimization
in Eq. (8) with a reduced gradient descent algorithm. We
firstly calculate the gradient of J (γ) according to Theorem
3, and then update γ with a descent direction by which the
equality and non-negativity constraints on γ can be guar-
anteed. To fulfill this goal, we firstly handle the equality
constraint by computing the reduced gradient by follow-
ing [19, 15]. Let γu be a non-zero component of γ and
5J (γ) denote the reduced gradient of J (γ). The p-th
(1 ≤ p ≤ m) element of5J (γ) is

[5J (γ)]p =
∂J (γ)

∂γp
− ∂J (γ)

∂γu
∀ p 6= u, (10)

and

[5J (γ)]u =
∑m

p=1,p6=u

(
∂J (γ)

∂γu
− ∂J (γ)

∂γp

)
(11)

Following the suggestion in [19, 15], we choose u to be the
index of the largest component of vector γ which is consid-
ered to provide better numerical stability.

We then take the positivity constraints on γ into con-
sideration in the descent direction. Note that -5J (γ) is a
descent direction since our aim is to minimize J (γ). How-
ever, directly using this direction would violate the positiv-
ity constraints in the case that if there is an index p such
that γp = 0 and [5J (γ)]p > 0. In such case, the descent
direction for that component should be set to 0. This gives
the descent direction for updating γ as

dp =


0 if γp = 0 and [5J (γ)]p > 0

− [5J (γ)]p if γp > 0 and p 6= u

− [5J (γ)]u if p = u.
(12)

After a descent direction d = [d1, · · · , dm]> is computed
by Eq. (12), γ can be calculated via the updating scheme
γ ← γ + αd, where α is the optimal step size. It can be
selected by a one-dimensional line search strategy such as
Armijo’s rule. The whole algorithm procedure solving the
optimization problem in Eq. (6) is outlined in Algorithm 1.

Algorithm 1 The Proposed Localized SimpleMKKM
1: Input: {Kp}mp=1, k, τ, t = 1.
2: Initialize γ(1) = 1/m, flag = 1.
3: Calculate the round(τ×n)-nearest neighbor indicating

matrices {A(i)}ni=1 according to the average kernel.
4: K̃p = (

∑n
i=1 A

(i))⊗K.
5: while flag do
6: compute H by solving a kernel k-means with K̃γ .
7: compute ∂J (γ)

∂γp
(p = 1, · · · ,m) and the descent di-

rection d(t) in Eq. (12).
8: update γ(t+1) ← γ(t) + αd(t).
9: if max |γ(t+1) − γ(t)| ≤ 1e− 4 then

10: flag=0.
11: end if
12: t← t+ 1.
13: end while

3.3. Computational Complexity and Convergence

We discuss the computational complexity of the pro-
posed localized SimpleMKKM. From Algorithm 1, local-
ized SimpleMKKM firstly calculates a neighborhood mask
matrix with computational complexity O(n2 log2 n), and
then performs SimpleMKKM. Its overall complexity is
O(`0 ∗ n3 + n2 log2 n), where `0 is the minimum of it-
erations to achieve convergence. As observed, localized
SimpleMKKM does not significantly increase the compu-
tational complexity of existing MKKM and SimpleMKKM
algorithms, whose complexity are O(n3) at each iteration.

We then briefly discuss the convergence of localized
SimpleMKKM. Note that with given γ, Eq. (9) is a tra-
ditional kernel k-means which has a global optimum. Un-
der this condition, the gradient computation in Theorem 3 is
exact, and our algorithm performs reduced gradient descent
on a continuously differentiable function J (γ) defined on
the simplex {γ ∈ Rm|

∑m
p=1 γp = 1, γp ≥ 0, ∀p}, which

does converge to the minimum of J (γ) [19].

4. Experiments

In this section, we conduct a comprehensive experimen-
tal study to evaluate the proposed localized SimpleMKKM
in terms of overall clustering performance, the learned ker-
nel weights, the convergence and evolution of the learned
H, the parameter sensitivity analysis, and the running time.

4.1. Experimental Settings

A number of MKKM benchmark datasets are used to
evaluate the performance of localized SimpleMKKM, in-



Table 1. Dataset summary.

Dataset Number of
Samples Kernels Clusters

MSRA 210 6 7
Still 467 3 6

Cal-7 441 6 7
PFD 694 12 27

Nonpl 2732 69 3
Flo17 1360 7 17
Flo102 8189 4 102
Reuters 18758 5 6

cluding MSRA [24], Still [6], Cal-71, PFold2, Nonpl3,
Flo174, Flo1025, Reuters6. Table 1 summarizes the dataset
information in detail. It can be observed that the number of
samples, kernels and categories of these datasets show con-
siderable variation, providing a good platform to compare
the performance of different clustering algorithms.

For all datasets, the true number of clusters k is pre-
specified and set as the true number of classes. Clustering
accuracy (ACC), normalized mutual information (NMI),
purity and rand index (RI) are widely applied to evaluate the
clustering performance. For all algorithms, we repeat each
experiment 50 times with random initialization to reduce
the effect of randomness caused by k-means, and report the
means and variation.

Along with localized SimpleMKKM, we ran another
nine comparative algorithms in recent multiple kernel clus-
tering literature, including

• Average kernel k-means (Avg-KKM). The consensus
kernel uniformly combines the base kernels, then it is
taken as the input of kernel k-means.

• Multiple kernel k-means (MKKM) [4]. The base
kernels are linearly combined into the consensus ker-
nel. In addition, the combination weights are opti-
mized along with clustering.

• Localized multiple kernel k-means(LMKKM) [2].
The base kernels are combined with sample-adaptive
weights.

• Optimal neighborhood kernel clustering (ONKC)
[14]. The consensus kernel is chosen from the neigh-
bor of linearly combined base kernels.

• Multiple kernel k-meanswith matrix-induced reg-
ularization (MKKM-MR) [11]. The optimal com-
bination weights are learned by introducing a matrix-
induced regularization term to reduce the redundancy
among the base kernels.

1http://www.vision.caltech.edu/ImageDatasets/
Caltech101

2mkl.ucsd.edu/dataset/protein-fold-prediction
3https://bmi.inf.ethz.ch/supplements/

protsubloc/
4www.robots.ox.ac.uk/˜vgg/data/flowers/17/
5www.robots.ox.ac.uk/˜vgg/data/flowers/102/
6http://kdd.ics.uci.edu/databases/reuters21578/

• Multiple kernel clustering with local alignment
maximization (LKAM) [9]. The similarity of a sam-
ple to its k-nearest neighbors, instead of all samples, is
aligned with the ideal similarity matrix.

• Multi-view clustering via late fusion alignment
maximization (LF-MVC) [23]. Base partitions are
first computed within corresponding data views and
then integrated into a consensus partition.

• MKKM-MM [1]. It proposes a minH-maxγ formu-
lation that combines views in a way to reveal high
within-cluster variance in the combined kernel space
and then updates clusters by minimizing such variance.

• SimpleMKKM [15]. It extends the widely used super-
vised kernel alignment criterion to multi-view cluster-
ing, and proposed a novel clustering objective which is
to minimize the alignment for the kernel weights and
maximize it for the clustering partition matrix.

The implementations of the compared algorithms are avail-
able in corresponding papers publicly, and we directly adopt
them without adjustment in our experiments. Among all
the aforementioned algorithms, ONKC [14], MKKM-MiR
[11], LKAM [9] and LF-MVC [23] have hyper-parameters
to be tuned. Following the same settings in the correspond-
ing papers, we reuse the released codes and tuned the hyper-
parameters carefully to produce the best possible results on
each dataset.

4.2. Experimental Results

Overall Clustering Performance Comparison. Table 2
presents the ACC, NMI, purity and RI comparison of all the
above algorithms. From Table 2, we obtain the following
observations:

• MKKM-MM [1] makes the first attempt to improve
MKKM via the minimization-maximization learning.
As observed, it does improve the MKKM, yet the per-
formance improvement over MKKM is marginal on
all datasets. Meanwhile, the proposed localized Sim-
pleMKKM significantly outperforms MKKM-MM.
This once again demonstrates the advantage of our for-
mulation and the associated optimization strategy.

• Besides our localized SimpleMKKM, SimpleMKKM
achieves comparable or better clustering performance
when compared with the aforementioned algorithms
on all benchmark datasets. This superiority is at-
tributed to its novel formulation and new optimization
algorithm.

• The proposed localized SimpleMKKM consistently
and significantly outperforms SimpleMKKM. For
example, it exceeds SimpleMKKM algorithm by
4.7%, 5.2%, 8.3%, 1.2%, 17.3%, 1.8%, 1.5% and
1.1% in terms of ACC on eight benchmark datasets.



Table 2. Empirical evaluation and comparison of localized SimpleMKKM with nine baseline methods on eight benchmark datasets in terms
of ACC, NMI, Purity and Rand Index. Boldface means no statistical difference from the best one.

DATASETS AVG-KKM
MKKM LMKKM ONKC MKKM-MR LKAM LF-MVC MKKM-MM SIMPLEMKKM

PROPOSED
[4] [2] [14] [11] [9] [23] [1] [15]

ACC

MSRA 83.3 ± 0.8 81.3 ± 3.1 81.9 ± 0.7 85.4 ± 0.4 88.1 ± 0.1 89.1 ± 0.2 87.8 ± 0.4 83.3 ± 0.8 86.5 ± 0.2 91.2 ± 1.0
STILL 31.3 ± 0.7 31.3 ± 0.6 31.1 ± 0.5 31.8 ± 1.0 31.7 ± 1.2 33.1 ± 0.3 32.0 ± 0.7 31.3 ± 0.7 31.3 ± 0.6 36.5 ± 0.8
CAL-7 59.2 ± 4.9 52.2 ± 4.3 53.9 ± 1.0 69.4 ± 2.5 68.4 ± 0.3 70.4 ± 1.4 71.4 ± 1.4 59.2 ± 4.9 68.2 ± 1.5 76.5 ± 0.2
PFD 29.0 ± 1.5 27.0 ± 1.1 22.4 ± 0.7 36.3 ± 1.5 34.7 ± 1.8 37.7 ± 1.2 33.0 ± 1.4 29.0 ± 1.5 34.7 ± 1.9 35.9 ± 1.5
NONPL 49.7 ± 0.2 49.3 ± 0.2 - 56.7 ± 0.0 50.4 ± 0.0 55.0 ± 0.0 48.7 ± 0.2 49.7 ± 0.2 52.0 ± 0.0 69.3 ± 0.0
FLO17 50.8 ± 1.5 44.9 ± 2.4 37.5 ± 1.6 54.2 ± 2.2 58.5 ± 1.5 50.0 ± 0.8 61.0 ± 0.7 50.8 ± 1.5 59.5 ± 1.3 61.3 ± 1.3
FLO102 27.1 ± 0.8 22.4 ± 0.5 - 39.5 ± 0.7 40.2 ± 0.9 41.4 ± 0.8 38.4 ± 1.2 27.1 ± 0.8 42.5 ± 0.8 44.0 ± 1.0
REUTERS 45.5 ± 1.5 45.4 ± 1.5 - 40.9 ± 2.1 39.7 ± 1.5 40.0 ± 2.2 45.4 ± 1.7 45.5 ± 1.5 45.5 ± 0.7 46.6 ± 1.0

NMI

MSRA 74.0 ± 1.0 73.2 ± 1.7 75.0 ± 1.4 74.9 ± 0.7 77.6 ± 0.3 79.8 ± 0.2 79.4 ± 0.8 74.0 ± 1.0 75.2 ± 0.5 82.6 ± 1.5
STILL 12.8 ± 0.8 13.0 ± 0.8 13.2 ± 0.5 12.9 ± 0.3 12.9 ± 0.4 12.9 ± 0.1 11.9 ± 0.5 12.8 ± 0.8 12.8 ± 1.0 13.8 ± 0.8
CAL-7 59.1 ± 2.9 51.6 ± 4.1 52.1 ± 1.3 63.5 ± 2.4 64.1 ± 0.2 65.3 ± 0.7 70.1 ± 3.0 59.1 ± 2.9 63.7 ± 0.3 74.6 ± 1.2
PFD 40.3 ± 1.3 38.0 ± 0.6 34.7 ± 0.6 44.4 ± 0.9 43.7 ± 1.2 46.2 ± 0.6 41.7 ± 1.1 40.3 ± 1.3 44.4 ± 1.1 45.2 ± 1.3
NONPL 17.2 ± 0.5 15.0 ± 0.5 - 11.8 ± 0.0 14.8 ± 0.0 16.0 ± 0.0 13.0 ± 0.1 17.2 ± 0.5 11.2 ± 0.0 22.6 ± 0.0
FLO17 49.7 ± 1.0 44.9 ± 1.5 38.8 ± 1.1 52.6 ± 1.2 56.4 ± 0.9 49.8 ± 0.6 58.9 ± 0.4 49.7 ± 1.0 57.8 ± 0.9 58.9 ± 0.5
FLO102 46.0 ± 0.5 42.7 ± 0.2 - 56.1 ± 0.4 56.7 ± 0.5 56.9 ± 0.3 54.9 ± 0.4 46.0 ± 0.5 58.6 ± 0.5 60.0 ± 0.4
REUTERS 27.4 ± 0.4 27.3 ± 0.4 - 21.0 ± 1.8 21.3 ± 1.3 21.5 ± 2.3 27.2 ± 0.2 27.4 ± 0.4 27.7 ± 0.2 27.0 ± 0.6

PURITY

MSRA 83.3 ± 0.8 81.5 ± 2.7 81.9 ± 0.7 85.4 ± 0.4 88.1 ± 0.1 89.1 ± 0.2 87.8 ± 0.4 83.3 ± 0.8 86.5 ± 0.2 91.2 ± 1.0
STILL 33.8 ± 0.8 33.8 ± 0.7 33.3 ± 0.5 34.2 ± 0.9 34.1 ± 1.0 36.1 ± 0.2 35.0 ± 0.5 33.8 ± 0.8 33.8 ± 0.7 38.2 ± 1.1
CAL-7 68.0 ± 3.2 63.8 ± 3.7 66.4 ± 0.6 74.0 ± 2.1 72.9 ± 0.3 76.6 ± 0.4 79.6 ± 2.9 68.0 ± 3.2 72.3 ± 0.2 81.7 ± 1.3
PFD 37.4 ± 1.7 33.7 ± 1.1 31.2 ± 1.0 42.7 ± 1.3 41.9 ± 1.4 43.7 ± 0.8 39.3 ± 1.5 37.4 ± 1.7 41.8 ± 1.5 42.5 ± 1.6
NONPL 72.5 ± 0.2 71.2 ± 0.2 - 62.3 ± 0.1 60.4 ± 0.0 61.6 ± 0.1 69.7 ± 0.1 72.5 ± 0.2 60.4 ± 0.0 70.6 ± 0.0
FLO17 51.9 ± 1.5 46.2 ± 2.0 39.2 ± 1.3 55.4 ± 2.2 59.7 ± 1.6 51.4 ± 0.7 62.4 ± 0.7 51.9 ± 1.5 60.9 ± 1.2 62.0 ± 1.3
FLO102 32.3 ± 0.6 27.8 ± 0.4 - 45.6 ± 0.7 46.3 ± 0.8 48.0 ± 0.6 44.6 ± 0.8 32.3 ± 0.6 48.6 ± 0.7 50.3 ± 0.7
REUTERS 53.0 ± 0.4 52.9 ± 0.5 - 51.8 ± 1.5 50.9 ± 1.4 51.9 ± 1.0 52.9 ± 0.3 53.0 ± 0.4 53.3 ± 0.0 52.8 ± 0.2

RAND INDEX

MSRA 68.1 ± 1.0 66.2 ± 3.1 68.0 ± 1.1 69.8 ± 0.7 74.5 ± 0.1 76.7 ± 0.4 74.5 ± 0.8 68.1 ± 1.0 71.2 ± 0.5 80.6 ± 1.8
STILL 8.0 ± 0.5 8.0 ± 0.5 8.0 ± 0.2 8.2 ± 0.2 8.1 ± 0.3 7.7 ± 0.0 7.7 ± 0.4 8.0 ± 0.5 7.9 ± 0.5 9.3 ± 0.3
CAL-7 46.0 ± 6.5 38.3 ± 4.9 41.2 ± 1.1 56.8 ± 4.2 55.6 ± 0.6 59.4 ± 2.2 65.2 ± 3.4 46.0 ± 6.5 55.6 ± 0.3 69.4 ± 0.7
PFD 14.4 ± 1.8 12.1 ± 0.7 7.8 ± 0.4 18.0 ± 1.1 17.2 ± 1.5 20.1 ± 1.1 16.1 ± 1.5 14.4 ± 1.8 17.6 ± 1.9 19.8 ± 1.2
NONPL 17.6 ± 0.3 15.8 ± 0.4 - 14.2 ± 0.0 8.5 ± 0.0 10.4 ± 0.0 14.1 ± 0.2 17.6 ± 0.3 8.0 ± 0.0 35.0 ± 0.0
FLO17 32.2 ± 1.3 27.2 ± 1.8 20.6 ± 1.1 35.2 ± 1.5 39.9 ± 1.3 31.6 ± 0.8 44.1 ± 0.4 32.2 ± 1.3 41.5 ± 1.5 43.2 ± 0.9
FLO102 15.5 ± 0.5 12.1 ± 0.4 - 24.9 ± 0.5 25.5 ± 0.6 27.2 ± 0.6 25.5 ± 1.0 15.5 ± 0.5 28.5 ± 0.8 29.9 ± 0.8
REUTERS 21.8 ± 1.4 21.8 ± 1.4 - 18.8 ± 2.4 18.9 ± 2.0 16.9 ± 2.7 21.4 ± 1.1 21.8 ± 1.4 22.1 ± 0.8 21.5 ± 0.3
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Figure 1. The kernel weights learned by different algorithms. The results on other datasets omitted due to space limit.



5 10 15 20 25 30

Iteration

70

75

80

85

90

P
e
rf

o
rm

a
n
c
e
 (

%
)

MSRA

5 10 15 20 25 30

Iteration

35

40

45

50

55

60

65

P
e
rf

o
rm

a
n
c
e
 (

%
)

FLO17

5 10 15 20 25 30

Iteration

20

30

40

50

P
e
rf

o
rm

a
n
c
e
 (

%
)

Reuters

ACC

NMI

Purity

Rand Index

Figure 2. The clustering performance of the learned H by localized SimpleMKKM with iterations on three benchmark datasets. The curves
on other datasets are omitted due to space limits.
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Figure 3. The objective of localized SimpleMKKM varies with iterations. The curves on other datasets are omitted due to space limits.

The improvements in terms of other criteria are
similar. Furthermore, a visual comparison is presented
in Fig. 4. As seen, proposed algorithm shows clearer
clustering structure compared with SimpleMKKM.
These results well demonstrate the superiority of the
proposed localized SimpleMKKM that benefits from
exploring and extracting the localized information of
kernel matrix.

Besides inheriting the advanced formulation and new
optimization from SimpleMKKM, the proposed algorithm
adopts a local manner to calculate the kernel alignment,
which enables it to well handle the variation among ker-
nels. These factors jointly lead to its significant improve-
ment over the alternatives on all datasets. We expect that its
simplicity and efficacy will make it a good option to be ap-
plied into practical clustering applications. In addition, we
point out that the results of LMKKM [2] on some datasets
are not reported due to the out-of-memory error, which are
caused by its cubic computational and memory complexity.

(a) SimpleMKKM (b) Proposed

Figure 4. Clustering structure Visual comparison on MSRA.

Table 3. The optimal hyper-parameters for each algorithm.
Datasets ONKC MKKM-MiR LKAM LF-MVC Ours

MSRA ρ = 0.5, λ = 4 λ = 1 τ = 0.05, λ = 2 λ = 0.5 τ = 0.55
STILL ρ = 0.25, λ = 0.5 λ = 0.25 τ = 0.05, λ = 0.5 λ = 1 τ = 0.55
CAL-7 ρ = 4, λ = 0.25 λ = 1 τ = 0.05, λ = 1 λ = 1 τ = 0.05
PFD ρ = 2, λ = 4 λ = 2 τ = 0.85, λ = 4 λ = 0.25 τ = 0.85
NONPL ρ = 0.25, λ = 4 λ = 1 τ = 0.25, λ = 4 λ = 4 τ = 0.05
FLO17 ρ = 4, λ = 0.25 λ = 0.25 τ = 0.05, λ = 4 λ = 0.5 τ = 0.35
FLO102 ρ = 2, λ = 2 λ = 2 τ = 0.05, λ = 1 λ = 0.25 τ = 0.65
REUTERS ρ = 0.5, λ = 4 λ = 1 τ = 0.05, λ = 2 λ = 0.5 τ = 0.4

Kernel Weight Analysis. We further investigate the ker-
nel weights learned by all aforementioned algorithms on
all datasets. The results are plotted in Figure 1. As seen,
the kernel weights learned by ONKC, MKKM-MiR and
LKAM vary greatly on almost all datasets, and are highly
sparse on some datasets such as Nonpl and Reuters. This
sparsity would make the multiple kernel matrices insuffi-
ciently exploited, leading to poor performance. For exam-
ple, the clustering accuracy of MKKM-MiR and LKAM
on Reuters is only 39.7% and 40.0%. In contrast, despite
the `1-norm constraint on γ, the kernel weights learned by
our localized SimpleMKKM are non-sparse on all datasets,
which contributes to its superior clustering performance.
This non-sparsity of the learned kernel weights is attributed
to our new reduced gradient descent algorithm, which in
turn is derived based on our new minγ-maxH kernel align-
ment objective.

Convergence and Evolution of the Learned H. As
proved in Section 3.3, localized SimpleMKKM is guaran-
teed to converge theoretically. To see this point in depth,
we plot the objective of localized SimpleMKKM with it-
erations on all datasets, as shown in Figure 3. From the
figures, we observe that its objective is monotonically de-
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Figure 6. The effect of the size of neighborhood τ on the clustering performance on three representative datasets. The curves on other
datasets are omitted due to space limits.

creased and usually converges in several iterations on all
datasets. Also, to reveal the clustering performance varia-
tion of the learned H with the iteration increases, we cal-
culate ACC, NMI, purity and RI at each iteration, and plot
them in Figure 2. As observed, the clustering performance
of localized SimpleMKKM is firstly increased with itera-
tions, slightly oscillates and then remains stable. The result
reveals the effectiveness and necessity of the learning pro-
cedure.

Parameter Sensitivity Analysis. The newly proposed lo-
calized SimpleMKKM introduces a hyper-parameter τ to
preserve more reliable neighborhood structure among sam-
ples. We conduct an additional experiment to show the
effect of this parameter on the clustering performance, as
shown in Figure 6. Here τ varies from 0.05 to 0.95 with step
size as 0.05. From this figure, we observe that the newly
proposed algorithm shows stable performance across a wide
range of τ values, indicating its robustness with the varia-
tion of the hyper-parameter. In addition, the optimal hyper-
parameters for each algorithm (if have) have been listed in
Table 3 for repeatability.

Running Time Comparison. Finally, we report the run-
ning time of the aforementioned algorithms on all datasets,
as plotted in Figure 5. We observe that besides greatly im-

proving the clustering performance, the proposed localized
SimpleMKKM does not significantly increase the computa-
tional cost.

5. Conclusion
While the recently proposed SimpleMKKM demon-

strates promising clustering performance, it does not suf-
ficiently consider the variation among base kernel matrices.
This paper proposes to calculate the kernel alignment in a
local manner to address this issue. We uncover the theoreti-
cal connection between SimpleMKKM and the proposed al-
gorithm. Based on this observation, we adopt a reduced gra-
dient descent algorithm to solve the resultant optimization
problem. Moreover, the proposed localized SimpleMKKM
demonstrates significantly improved clustering results via
extensive experiments on multiple benchmark data sets. In
the future, instead of keeping the nearest neighbors of each
sample unchanged, we plan to further improve clustering by
automatically updating them during the learning course.
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