
Continual Multi-view Clustering
Xinhang Wan

wanxinhang@nudt.edu.cn
National University of Defense

Technology
Changsha, Hunan, China

Jiyuan Liu
liujiyuan13@nudt.edu.cn

National University of Defense
Technology

Changsha, Hunan, China

Weixuan Liang
weixuanliang@nudt.edu.cn

National University of Defense
Technology

Changsha, Hunan, China

Xinwang Liu∗
xinwangliu@nudt.edu.cn

National University of Defense
Technology

Changsha, Hunan, China

Yi Wen
wenyi21@nudt.edu.cn

National University of Defense
Technology

Changsha, Hunan, China

En Zhu
enzhu@nudt.edu.cn

National University of Defense
Technology

Changsha, Hunan, China

ABSTRACT
With the increase of multimedia applications, data are often col-
lected from multiple sensors or modalities, encouraging the rapid
development of multi-view (also called multi-modal) clustering
technique. As a representative, late fusion multi-view clustering
algorithm has attracted extensive attention due to its low com-
putation complexity yet promising performance. However, most
of them deal with the clustering problem in which all data views
are available in advance, and overlook the scenarios where data
observations of new views are accumulated over time. To solve
this issue, we propose a continual approach on the basis of late
fusion multi-view clustering framework. In specific, it only needs
to maintain a consensus partition matrix and update knowledge
with the incoming one of a new data view rather than keep all
of them. This benefits a lot by preventing the previously learned
knowledge from recomputing over and over again, saving a large
amount of computation resource/time and labor force. Nevertheless,
we design an alternate and convergent strategy to solve the resul-
tant optimization problem. Also, the proposed algorithm shows
excellent clustering performance and time/space efficiency in the
experiment.
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1 INTRODUCTION
With the rapid development of multimedia applications, data ob-
servations are often collected from multiple sensors and sources,
resulting in an explosive increase of multi-view1 analysis tech-
niques. Take the short video for an instance, a clip can be always
disassembled into image flow, sound record and text description
which are obtained from a camera, microphone and producer, re-
spectively. How to label the videos on a large scale is a critical and
popular research for pushing them to consumers personally.

Regarding each modality as a data view, multi-view clustering
(MVC) becomes an ideal unsupervised option to solve the afore-
mentioned issue. It uncovers the intrinsic clustering structure of
data samples by optimally fusing the complementary information
of each view. In literature, three popular paradigms are developed,
including multi-view subspace clustering [2, 4, 11, 23], multi-view
graph clustering [9, 20–22] and multiple kernel clustering [7, 15].
Some of the multi-view subspace clustering methods assume each
data view lies on a common subspace, while the others compute
a subspace with respect to each view and utilize them afterwards.
For example, Liu et al. [10] first obtain robust representations by
performing eigen-decomposition on the original data observations,
then try to find a consensus subspace among them. In contrast,
Kang et al. [6] first compute the subspaces of all views, then con-
catenate them for further clustering. Nevertheless, most multi-view
graph clustering algorithms [5, 8] transform the data samples of
multiple views into corresponding undirected graphs based on their
pairwise similarities, then perform spectral clustering and graph
fusion simultaneously. In multiple kernel clustering framework
[1, 26], one always learns the weights of base kernels to obtain a
linear kernel combination as the consensus kernel on which the
final clustering results can be obtained.

Although the above three types of algorithms have achieved
great success, there are still plenty of tough problems. One major
concern is the relatively high time and space complexity. Denote
the number of data samples as 𝑛, multi-view subspace clustering
requires O

(
𝑛2

)
space to store the consensus subspace structure and

1also called multi-modal, but use "multi-view" in the following.
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O
(
𝑛3

)
time to perform subspace decomposition, making it hard

to apply on large-scale tasks. The other two multi-view strategies
have the same issues. Fortunately, the emerging late fusion methods
[14, 19, 25] greatly ease this problem by projecting data into base
partition matrices (linear to sample number) in the early stage.
Later, base partitions are fused into a consensus one, where the
complexity is O (𝑛). It is worth noting that the storage complexity
is reduced to O (𝑛), since only the partition matrices are saved.
Due to the low complexity and promising performance, a cluster of
researches are also proposed on the basis of [14, 19, 25].

However, existing late fusion methods always deal with the clus-
tering problem in which all data views are available in advance, and
overlook the scenarios where data observations of new views are
accumulated over time. In a brain-computer interface system, the
signal data at a moment will constitute a new view [27]. Under the
circumstance of face recognition, the images of different perspec-
tives or time will also form a new view. To deal with these real-time
data, one obvious approach to current late fusion methods is recom-
puting with all data once a new view arrives, leading to a waste of
computation resources and time. To address the above issues, we
propose a novel algorithm termed continual multi-view clustering
(CMVC), which combines continual learning and late fusion into a
unified framework. The illustration of our framework is shown in
Figure 1. Specifically, CMVC only maintains a consensus partition
matrix, i.e., the fusion of all previous view information. Once a
newly collected view is available, it first gets a base clustering parti-
tion matrix computed by its kernel matrix to update the consensus
partition matrix, rather than keeping and re-computing all of them.
Nevertheless, an alternate strategy is developed to solve the opti-
mization problem, and the convergence can be guaranteed. Since
the consensus partition matrix is the only variable in optimization,
the storage complexity is largely reduced. Meanwhile, CMVC is
more efficient in fusing the information of previous views due to
only two partition matrices being utilized per iteration, reducing
its time overhead. In addition, our experimental results show that
CMVC achieves high clustering performance with low time and
space complexity. Overall, the main contributions are summarized
as follows:

(1) CMVC is the first attempt to handle real-time issues in late
fusion multi-view clustering literature and will provide an
inspiration for future research. By maintaining a consensus
partition matrix and fusing only two matrices each time,
CMVC only takes linear time and space complexity with
respect to sample number and view number, respectively.

(2) We propose a simple, stable and efficient two-step alter-
nate optimization strategy that is proven to be convergent
theoretically. Furthermore, its computational and storage
complexity are discussed.

(3) To validate the effectiveness of CMVC, we conduct extensive
experiments on multiple datasets. Compared to existing algo-
rithms, it has greatly improved the clustering performance
as well as time/space efficiency.
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Figure 1: The basic framework of our proposed algorithm.
Once the 𝑡-th view is available, the consensus partitionmatrix
H∗𝑡 will be updated by fusing H∗

𝑡−1 and the base partition H𝑡 .
CMVC fuses the views one by one until no more new view
is available, the final clustering results will be obtained by
conducting k-means on H∗𝑚 , where𝑚 is the number of total
views.

2 RELATEDWORK
In this section, we will briefly discuss the most related researches,
including multiple kernel k-means and late fusion multi-view clus-
tering algorithms.

2.1 Multiple kernel k-means
Given a group of pre-defined kernels {H𝑝 }𝑚𝑝=1, MKKM assumes
that the optimal kernel can be expressed by a linear combination
of the pre-defined kernels and constructs the optimal kernel K𝜷 as
K𝜷 =

∑𝑚
𝑝=1 𝛽

2
𝑝K𝑝 , where K𝑝 and 𝛽𝑝 are the kernel matrix of the

𝑝-th view and its corresponding weight. Based on this, it simulta-
neously learns the optimal kernel K𝜷 with the coefficients 𝜷 and
the clustering partition matrix H as follows

min
H,𝜷

Tr
(
K𝜷

(
I𝑛 − HHT

))
,

s.t. H ∈R𝑛×𝑘 ,H⊤H = I𝑘 , 𝜷
⊤1𝑚 = 1, 𝛽𝑝 ≥ 0,∀𝑝.

(1)

The problem in Eq. (1) can be solved by an alternate optimization
algorithm which is referred in [12]. After obtaining the clustering
partition matrix H, a subsequent standard k means is performed on
H to get the final cluster assignments.

Due to the satisfactory clustering performance, a group of meth-
ods have been proposed based on MKKM. Upon the alternating
minimization framework, [28] jointly optimizes the cluster assign-
ments and kernel weights with proven local convergence. On the
basis of Rayleigh quotient objective, it solves the resultant optimiza-
tion problem in a novel way. Li et al. [13] concentrates on sample
pairs with closer relationships by requiring each sample connecting
to its 𝑘-nearest neighbors. By locally implementing this alignment,
this method prevents dissimilar pairs from into the same clusters,
thus promoting better performance. Different from the above ap-
proaches, [18] proposes a minimization-maximization optimization
problem to minimize kernel alignment regarding kernel weight
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and maximize it respecting the clustering partition matrix, then
transforms this problem into a minimization one.

Despite existing MKKM methods can achieve great clustering
performance, most of them need to store and perform eigen de-
composition on a 𝑛 × 𝑛 matrix in each iteration, the basic space
and time complexity are O(𝑛2) and O(𝑛3), respectively. It makes
MKKM hard to handle large-scale datasets.

2.2 Late Fusion Multi-view Clustering
Late fusion multi-view clustering (LFMVC) [25, 30, 31] is proposed
to reduce the high complexity of MKKM. LFMVC first performs
eigen decomposition on base kernel matrices {K𝑝 }𝑚𝑝=1 to obtain
base partition matrices {H𝑝 }𝑚𝑝=1, respectively. Then, LFMVC learns
a consensus partition matrix H∗ by the following objective:

max
H∗,{W𝑝 }𝑚𝑝=1,𝛽

Tr
(
H∗ TX

)
+ 𝜆 Tr

(
H∗ TM

)
s.t. H∗ TH∗ = I𝑘 ,W

T
𝑝W𝑝 = I𝑘 ,

𝑚∑︁
𝑝=1

𝛽2𝑝 = 1,𝛽𝑝 ≥ 0,X =

𝑚∑︁
𝑝=1

𝛽𝑝H𝑝W𝑝 ,

(2)

where 𝛽𝑝 is the coefficient of the 𝑝-th view, W𝑝 is the permutation
matrix of 𝑝-th view, which makes H𝑝 and H∗ can be maximally
aligned, M is the average partition region and a regularization
parameter 𝜆 is introduced to balance the weights between two
parts. The problem in Eq. (2) is also addressed by an alternate
optimization algorithm [25]. As seen, the eigen decomposition is
only performed once for each view. In the iterative process, only
𝑚 base partition matrices are stored, thus the space complexity is
basically O(𝑛). Meanwhile, the time complexity is also linear with
the sample number 𝑛.

Owing to to low time/space complexity and promising perfor-
mance, a number of extending algorithms appear on the basis of
LFMVC. Based on the observation of the relationship between 𝑘-
means and the alignment between base partitions and consensus
partition, [25] connects the consensus partition with weighted base
partitions to attain a better consensus partition. [14] proposes a
unified framework to simultaneously optimize the consensus ma-
trix and the generating of cluster labels, eliminating the effects of
the information loss between consensus matrix learning and the
subsequent 𝑘-means. Given the neglect of the inherent local struc-
ture, Zhang et al. [29] generate local kernels of each view using the
knowledge regarding the nearest neighbor indicator matrix, which
improves the robustness of the model.

Although LFMVC achieves high clustering performance with
low complexity, a nonnegligible drawback limits its application
range. In the setting of LFMVC, the number of views is fixed. In
practice, all used views are rarely available at once. When a new
view is collected, the existing LFMVC is not able to fuse it efficiently.
To address this issue, we propose a novel late fusion algorithm in
the following section.

3 CONTINUAL MULTI-VIEW CLUSTERING
In this section, we introduce the objective formulation of CMVC,
and then develop a two-step alternate optimization method to solve

the problem. After that, its convergence, complexity and extension
are discussed.

3.1 Formulation
As we discussed in the previous section, existing LFMVC methods
are difficult to deal with the situation when the number of views
is increasing over time. When a new view is collected, e.g., new
sensors equipped, LFMVC needs to fuse the information of previous
views again. As a result, all the view information will be saved and
fused repeatedly, inducing a huge waste of time and space resources.
To solve this problem, we propose CMVC, which combines LFMVC
with continual learning in a creative way. We only retain a consen-
sus partition matrix, and further improve it when a new view is
accumulated. In this way, the fusion process is more flexible and
economical with respect to both time and space consumption than
the original methods.

We will introduce a novel algorithm to fuse the information effi-
ciently. As mentioned above, we utilize a permutation matrix on the
base partition matrix to match the two parts suitably. Meanwhile,
CMVC introduces a regularization parameter to balance the weights
of the two parts of information. Furthermore, unlike previous late
fusion methods, CMVC directly learns the base partition H𝑡 after a
linear transformation H𝑡W𝑡 .

Suppose that the 𝑡-view is collected and H𝑡 is the base parti-
tion, while the consensus partition matrix H∗

𝑡−1 has been already
acquired. We can attain the optimal permutation matrix W𝑡 by
maximizing the objective formulation as

max
H̃𝑡 ,W𝑡

Tr
(
H̃⊤𝑡 H𝑡W𝑡

)
+ 𝜆 Tr

(
H̃⊤𝑡 H

∗
𝑡−1

)
,

s.t. H̃⊤𝑡 H̃𝑡 = I𝑘 ,W
⊤
𝑡 W𝑡 = I𝑘 .

(3)

After getting the optimal permutation matrix W𝑡 , CMVC will
update H∗𝑡 by directly combining the information of two parts as
follows

H∗𝑡 = H∗𝑡−1 + H𝑡W𝑡 . (4)
In order to make the value of H∗

𝑡−1 in Eq. (3) more reasonable, let
H̃∗
𝑡−1 = H∗

𝑡−1/(𝑡 − 1), and Eq. (3) can be expressed as

max
H̃𝑡 ,W𝑡

Tr
(
H̃⊤𝑡 H𝑡W𝑡

)
+ 𝜆 Tr

(
H̃⊤𝑡 H̃

∗
𝑡−1

)
,

s.t. H̃⊤𝑡 H̃𝑡 = I𝑘 ,W
⊤
𝑡 W𝑡 = I𝑘 .

(5)

CMVC fuses the views one by one until no more new view is
available, the final clustering results will be obtained by conducting
k-means on H∗𝑚 , where𝑚 is the number of total views.

As seen from Eq. (5), CMVC just unites two matrices in each
update, which is more flexible and time-efficient. By maintaining
the consensus partition matrix rather than the partition matrix of
each view, it takes less space to store the information of previous
views. In total, CMVC is more nimble and economical in time and
space.

3.2 Alternate Optimization
There are two variables in Eq. (5) to optimize. Therefore, optimizing
them simultaneously is a tough task. To solve the optimization
problem, we design a two-step alternate optimization to optimize
each variable while the other one is fixed.
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Optimization H̃𝑡 . FixingW𝑡 , the optimization in Eq. (5) w.r.t H̃𝑡

can be reduced to

max
H̃𝑡

Tr
(
H̃⊤𝑡 A

)
, s.t. H̃⊤𝑡 H̃𝑡 = I𝑘 . (6)

where A = H𝑡W𝑡 + 𝜆H̃∗𝑡−1. If the matrix A has the singular value
decomposition (SVD) form as A = S𝚺VT, the optimization problem
in Eq. (6) can be solved by a closed-form solution in [25] as follows

H̃𝑡 = SVT (7)

OptimizationW𝑡 . Fixing H̃𝑡 , the optimization in Eq. (5) w.r.tW𝑡

is equivalent to

max
W𝑡

Tr
(
W⊤𝑡 B

)
s.t.W⊤𝑡 W𝑡 = I𝑘 (8)

where B = H⊤𝑡 H̃𝑡 . Similar to Eq. (6), Eq. (8) can be efficiently solved
by SVD with computational complexity O

(
𝑛𝑘2

)
.

Algorithm 1 Continual Multi-view Clustering (CMVC)

Input: {H𝑡 }𝑚𝑡=1, 𝑘 , 𝜆 and 𝜀0.
Output: H∗𝑚 .
1: Initialize the consensus partition matrix H∗1 = H1.
2: for 𝑡 = 2 to𝑚 do
3: H̃∗

𝑡−1 = H∗
𝑡−1/(𝑡 − 1).

4: Initialize W𝑡 = I𝑘 and 𝑖 = 1.
5: while not converged do
6: Update H̃𝑡 by solving Eq. (6).
7: UpdateW𝑡 by solving Eq. (8).
8: 𝑖 ← 𝑖 + 1
9: end while

(
𝑜𝑏 𝑗𝑖 − 𝑜𝑏 𝑗𝑖−1

)
/𝑜𝑏 𝑗𝑖 ≤ 𝜀0

10: Update H∗𝑡 based on Eq. (4).
11: end for

The optimization process of the entire algorithm is summarized
in Algorithm 1. It is worth noting that the views arrive in sequence
in practical applications and H𝑡 is generated when a new view
is obtained. In the following part, we will prove the convergence
of CMVC in theory and then discuss about its complexity and
extension.

3.3 Discussion
3.3.1 Convergence. By Cauchy-Schwartz inequality, we divide Eq.
(5) into two parts as

Tr
(
H̃⊤𝑡 H𝑡W𝑡

)
≤ ∥H̃⊤𝑡 ∥𝐹 ∥H𝑡W𝑡 ∥𝐹 = 𝑘, (9)

and
Tr

(
H̃⊤𝑡 H̃

∗
𝑡−1

)
≤ ∥H̃⊤𝑡 ∥𝐹 ∥H̃∗𝑡−1∥𝐹 . (10)

Since H̃∗
𝑡−1 is a fixed, we denote that ∥H̃∗

𝑡−1∥𝐹 = 𝑐 , where 𝑐 is a
constant. Then, Eq. (10) can be upper bounded by

Tr
(
H̃⊤𝑡 H̃

∗
𝑡−1

)
≤ 𝑐
√
𝑘. (11)

Combining Eq. (9) and Eq. (11), we can obtain

Tr
(
H̃⊤𝑡 H𝑡W𝑡

)
+ 𝜆 Tr

(
H̃⊤𝑡 H̃

∗
𝑡−1

)
≤ 𝑘 + 𝑐𝜆

√
𝑘. (12)

Therefore, the objective function has an upper bound.Wewill verify
in the following part that the objective value of Eq. (5) monotoni-
cally increases. For the ease of expression, we simplify the objective
in Eq. (5) as

max
H̃𝑡 ,W𝑡

𝑓

(
H̃𝑡 ,W𝑡

)
, s.t. (H̃𝑡 ,W𝑡 ) ∈ Δ. (13)

As demonstrated in Algorithm 1, the optimization process consists
of two iterative parts in each iteration, i.e. H̃𝑡 subproblem and
W𝑡 subproblem. It is worth mentioning that superscript 𝑖 denotes
the optimization at round 𝑖 . The convergence analysis is given as
follows:

1) H̃𝑡 -subproblem: GivenW(𝑖)𝑡 , H̃(𝑖+1)𝑡 can be obtained via op-
timizing (6), leading to

𝑓

(
H̃(𝑖+1)𝑡 ,W(𝑖)𝑡

)
≥ 𝑓

(
H̃(𝑖)𝑡 ,W(𝑖)𝑡

)
. (14)

2) W𝑡 -subproblem: Given H̃(𝑖+1)𝑡 ,W(𝑖+1)𝑡 can be obtained via
optimizing (8), leading to

𝑓

(
H̃(𝑖+1)𝑡 ,W(𝑖+1)𝑡

)
≥ 𝑓

(
H̃(𝑖+1)𝑡 ,W(𝑖)𝑡

)
. (15)

Combining Eq. (14) and Eq. (15), the following inequality holds that:

𝑓

(
H̃(𝑖+1)𝑡 ,W(𝑖+1)𝑡

)
≥ 𝑓

(
H̃(𝑖)𝑡 ,W(𝑖)𝑡

)
, (16)

which demonstrates that the objective value monotonically in-
creases with iterations.

Based on Eq. (12), we can conclude that Eq. (5) exists an upper
bound. Therefore, the algorithm is theoretically convergent. Fur-
thermore, we will verify that the algorithm is convergent in the
experiment.

3.3.2 Computation Complexity. According to the optimization pro-
cess outlined in Algorithm 1, the computational complexity of
CMVC in each iteration is O

(
𝑛𝑘2

)
. Let 𝑇 denote the maximum

number of iterations and 𝑚 represent the number of views, the
computation complexity of CMVC is O

(
𝑇𝑚𝑛𝑘2

)
. Compared with

traditional LFMVC methods we have mentioned before, they need
to fuse all the views when a fresh view is available, so the compu-
tation complexity of traditional LFMVC is O

(
𝑚2) with respect to

𝑚, which is O (𝑚) in CMVC.

3.3.3 Space Complexity. As can be seen in Algorithm 1, CMVC
only needs to save a consensus partition matrix instead of the
partition matrices of all views. It is obvious that CMVC requires
less space and the space complexity is O (𝑛𝑘).

3.3.4 Extension. To our knowledge, for the first time, CMVC com-
bines late fusion and continual learning, which will provide an
inspiration for future research. Furthermore, by keeping a consen-
sus partition matrix rather than the partition matrix of each view,
CMVC is more flexible and takes less space, which can be extended
to other multi-view clustering methods.

4 EXPERIMENTAL RESULTS
In this section, we conduct experiments to compare CMVC with
several multiple kernel clustering and late fusion methods on sev-
eral representative datasets. After that, its convergence analysis,
running time and parameter sensitivity are discussed. In addition,
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Table 1: Datasets used in our experiments.

Dataset Samples Kernels Clusters
3Sources 169 3 6
Olympics 464 9 29
BBCSport 544 2 5

Cora 2708 2 7
Flower102 8189 4 102

CCV 6773 3 20
AR10P 130 6 10

SUNRGBD 10335 2 45
NUS-WIDE 30000 5 31

AwA 30475 6 50

we investigate the effect of the view order and number of views in
our algorithm, respectively.

4.1 Experimental Settings
4.1.1 Datasets. Ten benchmark datasets of different categories are
used to testify the effectiveness of CMVC, including 3Sources2,
Olympics3, BBCSport4, Cora5, Flower1026, CCV7, AR10P8, SUN-
RGBD9, NUS-WIDE10 and AwA11. The information of each dataset
is summarized in Table 1. It is clear that the first seven datasets are
regular datasets and the last three are large-scale datasets. Since
multiple kernel learning will result in out-of-memory error on large-
scale datasets, we only compare IV-LFMC to late fusion methods
for the latter three datasets.

4.1.2 Compared Algorithms.

(1) Average kernel k-means (Avg-KKM). All kernels are
used to construct the optimal kernel by assigning the same
weights and then use the optimal kernel as the input of kernel
k-means.

(2) Localizedmultiple kernel k-means (LMKKM) [3]. LMKKM
combines kernels in a localized way to get better data char-
acteristics.

(3) Optimal neighborhood kernel clustering (ONKC) [16].
ONKC builds a bridge between kernel learning and cluster-
ing. It improves the represent ability of the optimal kernel.

(4) Simplemkkm: Simplemultiple kernel k-means (SMKKM)
[17]. SMKKM performs multiple kernel learning by extend-
ing supervised kernel alignment and then transfers the prob-
lem into a smooth minimization one.

(5) Multiple kernel k-means with matrix-induced regular-
ization (MKKM-MiR) [13]. MKKM-MiR utilizes a matrix-
induced regularization in order to reduce the redundancy of
the base kernels.

2http://mlg.ucd.ie/datasets/3sources.html
3http://mlg.ucd.ie/aggregation/
4http://mlg.ucd.ie/datasets/segment.html
5http://linqs-data.soe.ucsc.edu/public/lbc/
6http://www.robots.ox.ac.uk/~vgg/data/flowers/102/
7http://www.ee.columbia.edu/ln/dvmm/CCV/
8http://featureselection.asu.edu/
9http://rgbd.cs.princeton.edu/
10https://lms.comp.nus.edu.sg/wp-content/
11https://cvml.ist.ac.at/AwA/

(6) Late fusion multiple kernel clustering with local ker-
nel alignment maximization (LF-LKA) [29]. LF-LKA is a
late fusion based method. It proposes a multiple kernel clus-
tering method with a local kernel alignment to concentrate
on closer sample pairs.

(7) Late fusion multi-view clustering via global and local
alignmentmaximization(LF-GAM) [24]. LF-GAM is a late
fusion basedmethod. It fuses partition level information from
every individual view and aligns the consensus partition
information with the weighted ones.

(8) Onepass late fusionmulti-view clustering (OP-LFMVC)
[14]. OP-LFMVC is also a late fusion based method. It opti-
mally fuses the base partition matrices of each view to learn
a consensus one.

The implementations of the above algorithms are publicly available
on corresponding websites. So we directly use these codes without
any changes in our experiments. As for algorithms with hyper-
parameters, we adopt the same method as these papers to tune
the hyper-parameters and choose the best results to compare. And
in CMVC, we set 𝜆 ∈ 2. ∧ [−10,−8, · · · , 10]. Then We evaluate
the performance of algorithms through three widely used metrics,
including accuracy (ACC), normalized mutual information (NMI)
and purity. By the way, to reduce the impact of the randomness
of k-means, each algorithm performs k-means 50 times and takes
their average as the final result. Our experiments are implemented
on a desktop computer with an Intel(R) Core(TM) i9-10850K CPU
and 128 GB RAM, MATLAB 2020b (64-bit). Moreover, the code of
CMVC is available on Github 12.

4.2 Experimental Results
4.2.1 Clustering Performance Comparison on Regular Datasets. Ta-
ble 2 demonstrates the results of CMVC and the comparison al-
gorithms on seven regular datasets based on the three clustering
metrics mentioned above. From this table, we have the following
observations:

(1) As a method of LFMVC, CMVC can handle situations where
the number of views is not fixed and can grow over time. Fur-
thermore, CMVC is a great improvement over LFMVC and
achieves the best clustering performance among the com-
pared algorithms. For instance, CMVC exceeds the second
best algorithm by 2.88%, 1.20% , 0.26%, 9.10%, 2.90%, 3.97%
and 0.91% in terms of ACC on the benchmark datasets, and
the improvements on other metrics are similar, illustrating
that CMVC can effectively combine the information between
different views.

(2) Late fusion based multi-view clustering methods outperform
the traditional multiple kernel clustering ones by a large mar-
gin. LF-LKA [29], LF-GAM [24] and OP-LFMVC [14] show
better results on most benchmark datasets in terms of ACC,
NMI and Purity. For example, the worst result of LFMVC
methods exceeds the best one of kernel-based methods by
19.49%, 59.95% and 8.99% with respect to ACC on 3Sources,
BBCSport and CCV. These results verify the excellent cluster-
ing performance of LFMVC. Compared to MKKC, LFMVC is

12https://github.com/wanxinhang/CMVC
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Table 2: Empirical evaluation and comparison of CMVC with nine baseline methods on 7 regular benchmark datasets in terms
of clustering accuracy (ACC), normulaized mutual information (NMI) and Purity.

datasets Avg-KKM MKKM LMKKM ONKC SMKKM MKKM-MiR LF-LKA LF-GAM OP-LFMVC CMVC
ACC(%)

3Sources 40.83 41.42 34.91 45.56 32.54 45.56 58.58 54.44 61.54 63.31
Olympic 74.78 69.83 59.70 80.17 74.78 78.02 81.47 77.16 76.29 81.68
BBCSport 38.97 38.97 38.97 39.34 38.97 38.97 59.56 59.38 61.03 61.76

Cora 31.50 25.15 22.64 40.84 35.82 35.86 35.08 47.45 43.72 51.77
Flower102 27.29 22.81 22.57 40.93 40.97 40.13 43.84 43.24 31.21 45.11

CCV 19.74 17.94 18.68 22.46 21.53 20.97 26.22 25.48 24.48 27.26
AR10P 38.46 40.00 43.85 44.62 40.00 40.77 43.85 44.97 36.92 45.38

NMI(%)
3Sources 30.67 31.27 14.22 34.78 15.55 31.81 47.43 53.32 51.42 55.19
Olympics 80.41 78.72 66.50 85.05 80.07 84.82 87.07 84.89 86.89 87.17
BBCSport 15.44 15.44 15.30 15.87 15.44 15.44 41.00 39.03 46.27 44.07

Cora 16.78 9.44 6.72 23.15 19.16 19.14 19.43 29.74 24.33 30.51
Flower102 46.32 42.92 43.24 57.06 57.75 56.91 57.33 57.29 47.35 59.47

CCV 17.16 15.52 14.41 18.78 18.33 18.05 21.08 19.81 18.44 21.90
AR10P 37.27 39.53 41.54 39.33 38.95 37.35 40.14 45.80 36.47 50.04

Purity(%)
3Sources 56.21 56.80 47.34 56.21 46.75 56.21 71.01 75.74 71.60 74.56
Olympics 82.11 79.53 66.81 81.90 82.97 87.07 88.69 87.28 85.78 88.79
BBCSport 48.71 48.71 48.71 48.71 48.71 48.71 68.38 67.28 72.06 70.22

Cora 41.47 35.78 35.08 44.72 47.16 47.16 46.27 54.03 51.44 56.72
Flower102 32.28 27.88 28.79 46.49 47.54 43.07 50.12 49.37 35.00 50.54

CCV 23.98 22.21 21.87 24.67 25.20 23.83 28.60 28.01 27.09 30.67
AR10P 39.23 40.00 44.62 40.77 40.77 36.92 43.85 44.97 37.69 46.92

Flower102 CCV SUNRGBD AwA NUS-WIDE
0

10

20

30

40

50

60

S
p
ee

d
 u

p

LF-LKA

LF-GAM

OP-LFMVC

CMVC

Figure 2: Speed up comparison of three LFMVC algorithms on five benchmark datasets. In each dataset, the algorithm that
consumes the most time are listed as a reference and the corresponding speed up is 1.

more time and space efficient and achieves better clustering
performance.

(3) CMVC shows an advantage when processing data of large
size. For example, among the 7 regular benchmark datasets,
there are more data samples in Folwer102 and CCV. Mean-
while, CMVC shows more wonderful results in terms of ACC,
NMI and Purity on the two datasets.

To be summarized, CMVC demonstrates superior clustering per-
formance on all datasets and can be used in situations where the
number of views can increase over time. In addition, LFMVC shows

better results than multiple kernel clustering, which provides some
inspirations for future research.

4.2.2 Clustering Performance Comparison on Large-scale Datasets.
Since the multiple kernel clustering algorithms assume huge time
and space resources, it is tough to process large-scale data. Thus,
we just compare CMVC with three LFMVC algorithms, and the
clustering results are shown in Table 3. Note that ’-’ indicates the
algorithm cannot be executed completely due to out-of-memory
error. From the table, we can conclude that CMVC also performs



Continual Multi-view Clustering MM ’22, October 10–14, 2022, Lisboa, Portugal

Table 3: Empirical evaluation and comparison of CMVC with
three baseline methods on 3 large-scale benchmark datasets
in terms of clustering accuracy (ACC), normulaized mutual
information (NMI) and Purity.

datasets LF-LKA LF-GAM OP-LFMVC CMVC
ACC(%)

SUNRGBD 18.90 19.38 19.91 18.37
AwA 10.64 - 10.02 11.26

NUS-WIDE 12.96 13.36 10.47 14.97
NMI(%)

SUNRGBD 23.02 23.15 21.03 23.37
AwA 12.53 - 11.55 13.78

NUS-WIDE 11.53 11.31 8.35 13.65
Purity(%)

SUNRGBD 38.98 38.70 36.67 39.68
AwA 13.06 - 11.63 13.59

NUS-WIDE 24.24 23.98 19.77 25.87

well on large-scale datasets. As the number of data increases, the
algorithm shows better performance. For example, CMVC exceeds
the second best one by 12.06%, 18.39% and 6.72% in ACC, NMI and
Purity on NUS-WIDE. Similarly, the clustering results on AwA are
superior to LF-MKA and OP-LFMVC, outperforming the second
best method by 5.83%, 9.98% and 4.06% on the three metrics, while
LF-GAM gets trouble handling this dataset. In addition, CMVC
is more flexible because it is able to deal with continual multi-
view data. Overall, the algorithm has a good application scenario
because of its low computation complexity and excellent clustering
performance.

4.2.3 Running Time Comparison. We conduct experiments to eval-
uate the time efficiency of our proposed algorithm and the results
are shown in Figure 2. Note that the running time of CMVC is
obtained from the arrival of the first view until the fusion of the
last view, and the speed up of the method which consumes the
most time on each dataset is set to 1 as a reference. To compare the
results precisely, we also record them in Table 4. It can be concluded
that CMVC consumes much less time to process multi-view data.
Besides, the clustering performance of CMVC is satisfactory.

4.3 Convergence and Parameter Sensitivity
Study

4.3.1 Convergence. We have theoretically proved the convergence
of our proposed algorithm. In this section, we experimentally verify
that the algorithm will eventually converge to a local optimum. We
fix 𝜆 to 2 and obtain the objective values of CMVCwith the iteration
number on Flower102 and NUS-WIDE datasets (one regular dataset
and one large-scale dataset). Corresponding curves are plotted in
Figure 3. The results on other datasets are similar and omitted
because of space limit. It can be observed that its objective value
increases monotonically and the algorithm converges in less than
20 iterations.

4.3.2 Parameter Sensitivity Study. As seen in Eq. (5), CMVC intro-
duces a regularization parameter 𝜆 to balance the learning efficiency
between the learned information and the information of the coming
view. In our experiments, we tune it in
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Figure 3: The objective values of CMVC varies with iterations
(𝜆 = 22). The results on other datasets are similar and omitted
due to space limit.

research. In this section, we conduct experiments to demonstrate
the influence of this parameter on two datasets. Other datasets are
not presented because of the space limit, but their results are also fa-
vorable in most cases. The results are shown in Figure 4. It is worth
noting that the experimental results of the second best method
are also plotted in these figures as a reference. From these figures,
we can observe that: 1) CMVC is stable and performs well when 𝜆

ranges from
[
20, 21, · · · , 210

]
, which inspires us how to to set the

hyperparameter in practical applications; 2) Most of the experimen-
tal results increase at first and then keep steady, outperforming the
second best algorithm.
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Figure 4: The sensitivity of CMVC with the variation of 𝜆
in terms of NMI on two datasets compared with the second
best method. The curves on other datasets are similar and
we omit them due to space limit.

4.4 Experiment on the effect of view order
Considering the algorithm deals with the scenarios where the num-
ber of views can increase, we conduct experiments to investigate
the effect of different fusion orders on the results. For instance,
suppose that there are three views {𝑉1,𝑉2,𝑉3} in total. If𝑉1,𝑉2 and
𝑉3 are fused in turn, the final experimental results may differ from
other fusion sequences, such as the fusing order of 𝑉3, 𝑉2 and 𝑉1 .
Let𝑚 denote the number of views, there are𝑚! =𝑚∗ (𝑚−1) ∗· · ·∗1
fusing orders. For example, there are 4 views in Flower102, so its
number of fusing orders is 24. Figure 5 reports the results of CMVC
compared with the second and third best methods with respect to
different orders on Flower102. The clustering performance on other
datasets is also excellent but not shown because of space limit. From
Figure 5 we can conclude that the different fusing orders of views
have little effect on the results, and the results are far better than
those of the comparison algorithms. Therefore, it can be obtained
that our approach is robust and efficient.
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Table 4: Running time comparison of compared methods under several datasets.

Method Flower102 CCV SUNRGBD AwA NUS-WIDE
Time Speed up Time Speed up Time Speed up Time Speed up Time Speed up

LF-LKA 8.31 × 6.14 0.95 × 8.91 2.69 × 9.70 15.19 × 38.74 6.14 × 27.14
LF-GAM 23.70 × 2.15 6.45 × 1.32 24.68 × 1.06 - - 29.89 × 5.57

OP-LFMVC 51.00 × 1.00 8.51 × 1.00 26.08 × 1.00 588.48 × 1.00 166.61 × 1.00
CMVC 3.20 × 15.93 0.24 × 35.80 0.52 × 50.15 10.31 × 57.08 3.12 × 53.40

Flower102
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Different view orders
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Figure 5: The results of CMVC varies with different orders of views compared with the second and third best methods on
Flower102. The results on other datasets are similar and we omit them due to space limit.
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Figure 6: The results of the proposed method with variations
in the number of views on two datasets (𝜆 = 22). The ones on
other datasets are similar and omitted due to space limit.

4.5 Experiment on the effect of view number
Considering that CMVC can handle the situations where the num-
ber of views can grow with time, we perform experiments to in-
vestigate whether CMVC fuses the information greatly with the
increase of view number. In our experiments, we document the
clustering results by increasing the number of views on different
datasets one by one. Similar to the previous section, due to space
limit, we only demonstrate the results of two datasets. Also, CMVC
is still working on other datasets. The results are shown in Figure 6.
We can see that as the number of views increases, the experiment
results become more and more exceptional. It can be obtained that
the algorithm integrates the information of the previous views well,

and for the newly added view, it can also be adequately combined
with the known information. So we can conclude that the CMVC
can be greatly applied to the situation where the number of views
increases.

5 CONCLUSION
In this paper, we address the shortcomings of existing LFMVC
algorithms that are difficult to handle with scenarios where the
number of views increases. Based on this, we combine LFMVC with
continual learning in a unified framework and propose a continual
multi-view clustering algorithm. By keeping a consensus partition
matrix that contains the view information fused before, CMVC
only needs to fuse two matrices when a newly collected view is
available, which is more flexible and economical in time and space.
In addition, comprehensive experiments demonstrate the excellent
efficiency of the proposed method. In future research, we intend to
investigate how this algorithm can be used to deal with incomplete
views.
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