
Efficient One-Pass Multi-View Subspace Clustering with Consensus Anchors

Suyuan Liu,1* Siwei Wang,1* Pei Zhang,1 Kai Xu,1 Xinwang Liu,1† Changwang Zhang,2 Feng Gao3

1 School of Computer, National University of Defense Technology, Changsha, China, 410073
2 CCF Theoretical Computer Science Technical Committee, Shenzhen, China, 518064

3 School of Arts, Peking University, Beijing, China, 100871
suyuanliu@nudt.edu.cn, wangsiwei13@nudt.edu.cn, zhangpei@nudt.edu.cn, kevin.kai.xu@gmail.com,

xinwangliu@nudt.edu.cn, changwangzhang@foxmail.com, gaof@pku.edu.cn

Abstract

Multi-view subspace clustering (MVSC) optimally integrates
multiple graph structure information to improve clustering
performance. Recently, many anchor-based variants are pro-
posed to reduce the computational complexity of MVSC.
Though achieving considerable acceleration, we observe that
most of them adopt fixed anchor points separating from
the subsequential anchor graph construction, which may ad-
versely affect the clustering performance. In addition, post-
processing is required to generate discrete clustering labels
with additional time consumption. To address these issues,
we propose a scalable and parameter-free MVSC method
to directly output the clustering labels with optimal an-
chor graph, termed as Efficient One-pass Multi-view Sub-
space Clustering with Consensus Anchors (EOMSC-CA).
Specially, we combine anchor learning and graph construc-
tion into a uniform framework to boost clustering perfor-
mance. Meanwhile, by imposing a graph connectivity con-
straint, our algorithm directly outputs the clustering labels
without any post-processing procedures as previous methods
do. Our proposed EOMSC-CA is proven to be linear com-
plexity respecting to the data size. The superiority of our
EOMSC-CA over the effectiveness and efficiency is demon-
strated by extensive experiments. Our code is publicly avail-
able at https://github.com/Tracesource/EOMSC-CA.

Introduction
In the era of big data, high-dimensional datasets have much
smaller inherent dimension than the respective ambient
space. In fact, most of the data can be represented by sam-
ples drawn from the sets of subspaces with low-dimension.
Based on the above assumptions, subspace clustering attends
to cluster the data lied in the linear subspaces and determine
the low-dimensional subspace corresponding to each cluster
(Vidal 2011; Elhamifar and Vidal 2013). However, data usu-
ally are collected from different sources or diverse domains
in many real-world problems (Wang et al. 2019; Zhang et al.
2020; Liu et al. 2021b; Wang et al. 2021a). For instance,
the same news can be covered in multiple forms as text, im-
age and video (Kang et al. 2019). Therefore, in order to take
full advantage of information from multiple sources, many
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MVC(multi-view clustering) methods have been proposed
recently to explore consistency and complementarity across
views (Tang et al. 2018; Wang et al. 2020; Liu et al. 2021a;
Zhang et al. 2021; Zhou et al. 2020a). The current MVC
methods are mostly based on graph models, which first learn
a common similarity matrix from the features of different
views and then execute a spectral clustering algorithm to ob-
tain the final clustering results (Liu et al. 2012; Ding and Fu
2014; Zhan et al. 2017; Xu et al. 2018; Zhou et al. 2021). Ex-
isting multi-view subspace clustering algorithms suffer from
high time consumption, making it difficult to process large-
scale data in reality. The high time complexity mainly comes
from the construction of the similarity matrix, the calcula-
tion of the spectral embedding in spectral clustering, and the
discretization of the spectral embedding.

In order to improve efficiency, it has recently been pro-
posed to apply bipartite graph learning, using the relation-
ship between anchor points and data points to represent the
relationship between all data points (Chen and Cai 2011;
Adler, Elad, and Hel-Or 2015; Li et al. 2020; Liu et al.
2021c). Then the graph size of each view is reduced from
n×n to n×m and m is the number of anchor points. How-
ever, most anchor point selection applies heuristic sampling
strategies, such as k-means or random sampling, which pre-
vents the mutual negotiation between anchor point selection
and graph construction to achieve optimal clustering. Be-
sides, existing graph-based methods usually consist of two
stages, which construct graphs from raw data first, and per-
form post-processing to obtain the final result then (Zhou
et al. 2020b; Gao et al. 2020; Liu et al. 2019). The final clus-
ter structure is not clearly shown in the graph constructed
in the previous stage, and the clustering performance depen-
dents heavily on the constructed graphs (Nie et al. 2016b,
2017). Moreover, multi-view clustering algorithms usually
encounter a large number of hyper-parameters. How to de-
termine these hyper-parameters which severely reduce the
effectiveness of algorithms remains to be a challenge.

In this paper, we propose a scalable MVSC method named
Efficient One-pass Multi-view Subspace Clustering with
Consensus Anchors (EOMSC-CA) to directly output the
clustering labels without post-processing procedure. Firstly,
we learn the anchor points and fused graph together, and the
two procedures can be negotiated mutually to improve clus-
tering performance. At the same time, we adaptively learn
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Figure 1: The framework of existing anchor-based meth-
ods(left) and our method(right). The existing methods first
select anchor points from the data point of each view accord-
ing to the sampling strategy, then construct the graph rep-
resentation separately, and finally perform post-processing
to obtain the final cluster label. In contrast, our method di-
rectly learns consistent anchor points and common graph
representations from multi-view data. The process of learn-
ing anchors and the process of constructing graph influence
each other, and finally clustering labels are directly gener-
ated through graphs with exactly k connected components.

view weights in the framework without additional hyper-
parameters to balance the effects of the view. In addition, we
impose rank constraints on the Laplacian graph to make sure
that the final joint graph has exactly several connected com-
ponents of clusters to indicate each cluster. The effectiveness
and efficiency of our method can be verified by extensive ex-
periments on various large-scale benchmark datasets.

We can summarize our contribution in the following
points:

• Instead of existing fixed sampling anchors, we unify
fused graph construction and anchor learning into a uni-
fied and flexible framework so that they seamlessly con-
tribute mutually and boost performance.

• We propose a scalable MVSC method to output the op-
timal anchor graph with exactly k-connected compo-
nents, which can be directly used for clustering without
performing discretization procedures necessary for other
graph-based clustering methods.

• The result of the experiment on multiple datasets validate
the effectiveness and efficiency of our algorithm. Our
method is proven to be linearly time complexity respect-
ing to sample numbers without any hyper-parameters.
These clearly make the proposed EOMSC-CA more suit-
able for large-scale tasks.

Background

In this section, we introduce the subspace clustering in sin-
gle view and multi-view first, and then introduce the anchor-
based MVC methods. Table 1 summarizes our mainly used
notations.

Notation Definition
n Amount of data points
k Amount of clusters
v Amount of views
m Amount of anchor points
l Dimension of anchor matrix
dp Dimension of the p-th view
d

∑v
p=1 dp

β View coefficient
Xp ∈ Rdp×n Data matrix
Wp ∈ Rdp×l Projection matrix
A ∈ Rl×m Consensus anchor matrix
Z ∈ Rm×n Fused anchor graph

Table 1: Mainly used notations.

Subspace Clustering
Given data X ∈ Rd×n, subspace-based methods assume that
a linear combination of other data points in the same sub-
space can express each data point.

The first step of subspace clustering is to construct a
graph:

min
S

∥X−XS∥2F + λf(S), s.t.S ≥ 0,S⊤1 = 1, (1)

where S ∈ Rn×n denotes the non-negative self-
representation matrix, f(·) represents the regularization
functions, and λ is a balance parameter. The S⊤1 = 1 en-
sures that each column of S adds up to 1. With the size of S,
the graph construction in the first stage often takes at least
O
(
n3

)
.

After obtaining the coefficient matrix S, the second step is
to get the spectral embedding F ∈ Rn×k with the symmetric
similarity matrix W constructed as W = S+S⊤

2 ,

min
F

Tr
(
F⊤LF

)
, s.t.F⊤F = Ik, (2)

where L = D − W is the graph Laplacian with diagonal
matrix D defined as dii =

∑n
j=1 sij , and F is the spectral

embedding. The spectral clustering stage takes O
(
n3

)
com-

plexity.

Multi-view Subspace Clustering
For multi-view data {Xp}vp=1, where Xp ∈ Rdp×n rep-
resents the p-th view data with dp dimensions, the MVSC
model can be expressed as follows:

min
Sp,S

∥Xp −XpSp∥2F + λf(S,Sp), s.t.Sp ≥ 0,S⊤
p 1 = 1,

(3)

where f(·) represents the unified regularization term. Per-
forming spectral clustering on the fused global graph Z and
then the final results can be reached.

Based on the above framework, many MVSC methods
have recently been proposed. Gao et al. (2015) propose to
learn an independent subspace representation in each view,
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and then use a unified index matrix to get a common cluster-
ing result. In order to explore the complementarity informa-
tion, Cao et al. (2015) propose to introduce Hilbert-Schmidt
independence criterion as a regularization term. Considering
that the subspace representation learned from multiple views
may be redundant, Zhang et al. (2015) regard the subspace
representation matrix of different views as a tensor, and ex-
plore the intersection information among views with low
rank constraints. Another important point is to impose ap-
propriate constraints on the subspace representation, such as
low-rank constraints (Wang et al. 2018) or sparse constraints
(Lu, Yan, and Lin 2016). Brbić and Kopriva (2018) suggest
to build a consensus affinity matrix that satisfies both low-
rank and sparsity.

However, the above methods poorly handle with scalabil-
ity problem. Specifically, in addition to fusing multi-view
information, multi-view subspace clustering requires graph
construction and spectral embedding as the same as single-
view.

Anchor-based Multi-view Clustering
In recent years, anchor graph is applied to solve large-scale
data clustering problems (Kang et al. 2020; Li et al. 2020;
Ou et al. 2020; Kang et al. 2021; Sun et al. 2021; Wang et al.
2021b). The principle of anchor based method is to choose
some representative points from the original data called an-
chor points, and then use the relationship between anchor
points and the entire data points to cover the complete affin-
ity. Specifically, a small graph Z ∈ Rm×n is constructed
to replace the original graph S ∈ Rn×n. With the applica-
tion of anchor points, the complexity of subspace clustering
can be greatly reduced while maintaining considerable effi-
ciency.

Some recent works have applied anchor graphs into multi-
view clustering. Kang et al. (2020) propose to get anchors of
each view with k-means at first, and then construct anchor
graphs separately. Li et al. (2020) provide an anchor selec-
tion strategy based to importance build anchor graphs inde-
pendently in each view and then fuse them into a consensus
one.

Although anchor-based methods achieve considerable
performance, there exists several limitations. For one thing,
the selection of anchor points is separated in each view with-
out mutual negotiation with the clustering process. For an-
other, inevitable hyper-parameters affect their efficiency on
large-scale data. Moreover, existing works need to preform a
post-processing process to get the final result, and the cluster
structure is not obvious in the constructed graph. In the next
section, we propose EOMSC-CA to solve the above prob-
lems.

The Proposed Methodology
In this section, we will describe in detail the novel subspace
clustering method termed as EOMSC-CA, including the mo-
tivation, formulation, optimization, and complexity analysis.

Motivation
Reducing the redundancy of data in large-scale data cluster-
ing is the key to improve efficiency. Actually, a small num-

ber of instances are enough to reconstruct the underlying
subspaces. Therefore, the existing works propose to select
some points from the original data as anchor points to re-
construct the relationship structure.

However, the existing anchor-based multi-view subspace
methods all perform heuristic sampling strategies, which
means that graph construction and anchor selection are sep-
arated. After selecting the anchor points separately in each
view, graphs are then constructed as follows,

min
Zp

v∑
p=1

∥Xp −ApZp∥2F , s.t.Zp ≥ 0,Z⊤
p 1 = 1, (4)

where Ap denotes anchor matrix on each view and Zp is the
anchor graph.

The graph constructed separately in each view cannot ex-
plore the complementary information well, which need to
perform fusion algorithm to get a consensus graph. Besides,
after constructing the graph with subspace clustering, it is
usually necessary to perform spectral clustering to obtain
the spectral embedding, and then adopts k-means to obtain
the clustering results. This two-stage process causes the final
cluster structure unclear in the constructed graph, and qual-
ity of the graph significantly affects the clustering results
(Nie et al. 2016b).

Formulation of Problem
For the above challenges, we intend to learn anchors
through optimization instead of sampling. Based on the as-
sumption that high-dimensional data in different views share
a consensus low-dimensional subspace, the learned anchors
should be consistent in the consensus subspace. Define the
projection matrix {Wp}vp=1, we can align the consensus an-
chors A with the original data of the p-th view.

In order to make the obtained graph a clear clustering
structure and get the cluster results directly, we hope to con-
struct a graph containing precisely k connected parts. For the
graph Z ∈ Rm×n constructed based on the anchor method,
we define the augmented graph S as

S =

[
Z⊤

Z

]
∈ R(n+m)×(n+m). (5)

Then we get the normalized Laplacian matrix L̃ = I −
D− 1

2SD− 1
2 , where di =

∑n+m
j=1 sij is the i-th element of

the diagonal matrix D. According to the following Theorem,
the rank constraint of Laplacian matrix ensures S to be k-
connected.

Theorem 1 : The number of connected components in S
equals to the cardinality of the eigenvalue zero of the nor-
malized Laplacian matrix L̃.

Therefore, the graph S has precisely k connected compo-
nents with rank constraints on L̃. Since S is composed of Z,
Z has the same amount of connected components as S.

Eventually, our proposed EOMSC-CA has the following
formulation,

min
β,Wp,A,Z

v∑
p=1

β2
p ∥Xp −WpAZ∥2F , (6)

7578



s.t.β⊤1 = 1,W⊤
p Wp = Il,A

⊤A = Im,

Z ≥ 0,Z⊤1 = 1, rank
(
L̃
)
= n+m− k,

where Xp ∈ Rdp×n denotes the original data of the p-th
view with dp dimension, βp is the weight coefficient that
balances the influence of each view, Wp is the projection
matrix and A ∈ Rl×m is the consensus anchor matrix with
m anchors and l dimension.

Optimization
To solve the above optimization, all variables are updated
alternatively, which means updating one variable with others
being fixed.

Optimize Z by fixing other variables When Wp,A,β
are fixed, optimizing Z is equal to solve the following equa-
tion:

min
Z

v∑
p=1

β2
p Tr

(
Z⊤Z− 2X⊤

p WpAZ
)
, (7)

s.t.Z ≥ 0,Z⊤1 = 1, rank
(
L̃
)
= n+m− k.

Define σi

(
L̃
)

as the i-th smallest eigenvalue of L̃. Then

σi

(
L̃
)

≥ 0 since L̃ is semi-definite. With λ to be large
enough, Eq. (7) equals to the following problem:

min
Z

v∑
p=1

β2
p Tr

(
Z⊤Z− 2X⊤

p WpAZ
)
+ λ

k∑
i=1

σi

(
L̃
)
,

(8)
s.t.Z ≥ 0,Z⊤1 = 1.

We can rewrite Eq. (8) as follows according Fan (1949),

min
Z,F

v∑
p=1

β2
p Tr

(
Z⊤Z− 2X⊤

p WpAZ
)
+ λTr

(
F⊤L̃F

)
,

(9)
s.t.Z ≥ 0,Z⊤1 = 1,F⊤F = Ik,

where F ∈ R(n+m)×k is the indicator matrix.
Fixing Z, Eq. (9) becomes:

min
F⊤F=Ik

Tr
(
F⊤L̃F

)
. (10)

To solve Eq. (10), we need to compute the eigenvectors of
L̃, which takes O(k(n+m)2) complexity. In order to reduce
the complexity, we compute the eigenvectors of Z instead of
S. Specifically, F and D in Eq. (10) can be decomposed as

F =

[
F(n)

F(m)

]
,DS =

[
D(n)

D(m)

]
, (11)

where F(n) represents the indicator of data points and F(m)

denotes the indicator of anchor points. Then we can rewrite
Eq. (10) as follows:

min
F⊤

(n)
F(n)+F⊤

(m)
F(m)=Ik

Tr
(
F⊤

(n)D
1
2

(n)Z
⊤D

1
2

(m)F
⊤
(m)

)
.

(12)
Eq. (12) can be easily solved by the following theorem.

Theorem 2 : Suppose Q ∈ Rn×m, A ∈ Rn×k and B ∈
Rm×k, we have the follow problem

max
ATA+BTB=Ik

Tr
(
ATQB

)
. (13)

The optimal solutions of the problem are A =
√
2
2 U and

B =
√
2
2 V, where U and V are respectively corresponding

to the top k left and right singular vectors.
After optimizing F, we optimize Z in Eq. (9) with the

optimal F. To solve the problem, we noticed:

Tr
(
F⊤L̃F

)
=

1

2

n+m∑
i=1

n+m∑
j=1

∥∥∥∥∥ f i√
D(i, i)

− f j√
D(j, j)

∥∥∥∥∥
2

2

sij .

(14)
With the definition in Eq. (11), we can further transform

the above formula as follows,

Tr
(
F⊤L̃F

)
=

∑n
i=1

∑m
j=1

∥∥∥∥ f i(n)√
D(n)(i,i)

−
fj
(m)√

D(m)(j,j)

∥∥∥∥2
2

zji.

(15)
Then Eq. (9) with respect to Z is equal to:

min
Z⊤1=1,Z≥0

n∑
i=1

m∑
j=1

v∑
p=1

β2
p

(
z2ji − 2cpijzji

)
+λtijzji, (16)

where Cp = X⊤
p WpA and tij =∥∥∥∥ f i(n)√

D(n)(i,i)
−

fj
(m)√

D(m)(j,j)

∥∥∥∥2
2

. Denoting Z:,i as a vector

with the i-th element to be zji, we optimize Z by column:

min
Z⊤

:,i1=1,Z:,i≥0

∥∥∥∥∥Z⊤
:,i −

(
Ci,: −

λ

2
ti,:

)
/

v∑
p=1

β2
p

∥∥∥∥∥
2

2

, (17)

where C =
∑v

p=1 β
2
pCp.

According to Nie, Wang, and Huang (2014), Eq. (17) has
a closed form solution. We summarize the procedures of
solving Eq. (7) in Algorithm 1.

Algorithm 1: Algorithm for optimizing Z.

Input: C ∈ Rn×m, cluster number k, a small value λ.
Output: Anchor graph Z ∈ Rm×n.

1: Initialize F(n) and F(m), which are formed by the k left

and right singular vectors of
[

Im
0

]
∈ Rn×m corre-

sponding to the k largest singular values.
2: repeat
3: Update each column of Z by solving Eq. (17);
4: Update D(n) and D(m) where d(n)(i, i) =∑m

j=1 zji and d(m)(j, j) =
∑n

i=1 zji;
5: Update F(n) and F(m) by solving Eq. (12);
6: Update λ due to L̃;
7: until Z has exactly k connected components.
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Optimize Wp by fixing other variables With Z,A and
β being fixed, Wp can be optimized as

min
Wp

v∑
p=1

β2
p ∥Xp −WpAZ∥2F , s.t.W⊤

p Wp = Il. (18)

Since Wp is independent in each view, we transform Eq.
(18) into the following equivalent formulation,

max
Wp

Tr
(
W⊤

p Gp

)
, s.t.W⊤

p Wp = Il, (19)

where Gp = XpZ
⊤A⊤. The optimal solution of Wp is

UV⊤ with U and V to be the singular matrix of Gp.

Optimize A by fixing other variables Fixing Z,Wp and
β, the optimization of A can be rewritten as,

min
A

v∑
p=1

β2
p ∥Xp −WpAZ∥2F , s.t.A⊤A = Im. (20)

The above equation equals to the following form by re-
moving unrelated items,

max
A

Tr
(
A⊤B

)
, s.t.A⊤A = Im, (21)

where B =
∑v

p=1 β
2
pW

⊤
p XpZ

⊤. Supposing UΣV⊤ to be
the singular value decomposition result of B, the optimal
solution of Eq. (21) is UV⊤.

Optimize β by fixing other variables When Z,Wp and
A are fixed, the objective function with respect to β can be
formulated as

min
β

v∑
p=1

β2
pMp, s.t.β

⊤1 = 1,β ≥ 0, (22)

where Mp = ∥Xp −WpAZ∥2F . We can obtain the optimal
βp by Cauchy-Buniakowsky-Schwarz inequality as

βp =

1
Mp∑v

p=1
1

Mp

, (23)

The whole pipeline of solving Eq. (6) is summarized in
Algorithm 2.

Algorithm 2: EOMSC-CA

Input: Multi-view dataset {Xp}vp=1, cluster number k.
Output: Z ∈ Rm×n with exactly k connected components.

1: Initialize W,A,Z. Initialize βp = 1
v .

2: repeat
3: Compute C =

∑v
p=1 β

2
pX

⊤
p WpA.

4: Update Z by Algorithm 1;
5: Update Wp by solving Eq. (19);
6: Update A by solving Eq. (21);
7: Update β by solving Eq. (23);
8: until converged.

Complexity Analysis
Due to the application of anchor strategy, EOMSC-
CA has a low computational complexity. Specifically,
it takes O

(
nm2t+m3t+ nmlt+ nmdt

)
to perform

Algorithm 1 to construct Z with t being the iteration
number, where solving Eq. (12) costs O

(
nm2 +m3

)
and solving Eq. (17) costs O (nl(d+m)) in each it-
eration. In the process of optimizing Wp, performing
SVD in each view needs O

(
dpl

2
)

and matrix multi-
plication needs O (mdp(n+ l)). When updating A, it
cost O

(
ml2

)
for SVD and O (nl(m+ dp)) for matrix

multiplication. And calculating βp costs only O (1). To-
tally, the main computational complexity in Algorithm 2 is
O
(
n(m2t+mlt+mdt+ dl) +m3t+ dl2 +mdl +ml2

)
.

In our algorithm, m ≪ n, d ≪ n, l ≪ n and t ≪ n.
Therefore, the optimization step in our algorithm is a linear
complexity to sample numbers.

After obtaining a k-connected graph Z, we perform a lin-
ear graph algorithm on it instead of performing SVD on
graph and then k-means to get results. The computational
complexity of this step is O (nml), which is also linear to
the number of samples. By contrast, most of the MVSC al-
gorithms have O

(
n3

)
complexity.

Dataset #Samples #View #Class

ORL mtv 400 3 40
Caltech101-7 1474 6 7

Mfeat 2000 6 10
Caltech101-20 2386 6 20
Caltech101-all 9144 5 102

SUNRGBD 10335 2 45
NUSWIDEOBJ 30000 5 31

AWA 30475 6 50
YoutubeFace 101499 5 31

Table 2: Datasets used in our experiments.

Experiments
To evaluate the performance of EOMSC-CA, we conduct
experiments in this section.

Benchmark Datasets
We perform experiments on nine widely used multi-
view benchmark datasets: ORL mtv, Caltech101-7,
Mfeat, Caltech101-20, Caltech101-all, SUNRGBD,
NUSWIDEOBJ, AWA, YoutubeFace. The details of them
are shown in Table 2. Specifically, ORL mtv contains 400
images in 40 classes. Caltech101-7 with 1474 instances in
7 categories and Caltech101-20 with 2386 subjects in 20
classes are both subsets of the image dataset Caltech101
(Fei-Fei, Fergus, and Perona 2004). Mfeat was generated
from UCI machine learning repository, which consists of
the digits from 0 to 9. SUNRGBD (Song, Lichtenberg, and
Xiao 2015) consists of 10335 indoor scene images spread
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Dataset MLRSSC
(2018)

AMGL
(2016)

SFMC
(2020)

RMKM
(2013)

BMVC
(2018)

LMVSC
(2020)

MSGL
(2021)

FPMVS
(2021) Ours

Hyper-parameter number 3 1 0 1 4 1 2 0 0
ACC

ORL mtv 0.0500 [0.6951] 0.6150 0.4350 0.4875 0.5862 0.2100 0.5251 0.6225
Caltech101-7 0.6090 0.3960 0.6526 0.2877 0.2239 0.3535 0.7347 0.5694 [0.8351]

Mfeat 0.2000 [0.8262] 0.7575 0.6710 0.6935 0.8170 0.7545 0.8225 0.8220
Caltech101-20 0.3600 0.2878 0.5947 0.3961 0.1689 0.2929 0.4790 [0.6542] 0.6404
Caltech101-all 0.1085 0.1401 0.1777 0.1650 0.2123 0.1449 0.1412 [0.2855] 0.2232

SUNRGBD 0.1391 0.0981 0.1136 0.1771 0.1669 0.1809 0.1310 0.2335 [0.2370]
NUSWIDEOBJ N/A N/A 0.1221 0.1328 0.1299 0.1476 0.1204 0.1922 [0.1968]

AWA N/A N/A 0.0390 0.0656 0.0867 0.0723 0.0802 [0.0893] 0.0870
YoutubeFace N/A N/A N/A N/A 0.0897 0.1403 0.1671 0.2302 [0.2650]

NMI
ORL mtv 0.1583 0.8717 0.8269 0.7010 0.6773 0.7880 0.4372 0.7443 [0.8815]

Caltech101-7 0.1788 0.4408 [0.5629] 0.1411 0.0470 0.3384 0.3794 0.5391 0.5219
Mfeat 0.2863 0.8674 [0.8684] 0.6533 0.6605 0.7609 0.7654 0.7930 0.8319

Caltech101-20 0.2008 0.4760 0.4285 0.5034 0.1626 0.4187 0.3113 [0.6323] 0.5109
Caltech101-all 0.0474 0.3529 0.2613 0.3494 [0.4246] 0.3332 0.2612 0.3415 0.2470

SUNRGBD 0.0421 0.1840 0.0230 0.2531 0.1954 [0.2550] 0.0933 0.2418 0.2249
NUSWIDEOBJ N/A N/A 0.0096 [0.1435] 0.1290 0.1276 0.0573 0.1326 0.1327

AWA N/A N/A 0.0034 0.0738 [0.1372] 0.0855 0.0792 0.1047 0.0972
YoutubeFace N/A N/A N/A N/A 0.0593 0.1179 0.0007 [0.2339] 0.0032

Fscore
ORL mtv 0.0582 0.5123 0.3066 0.3068 0.3054 0.4599 0.0517 0.3793 [0.6200]

Caltech101-7 0.5287 0.4035 0.6409 0.2879 0.2275 0.3790 0.6524 0.5632 [0.7967]
Mfeat 0.2739 [0.8083] 0.7111 0.5922 0.5879 0.7252 0.7011 0.7559 0.7701

Caltech101-20 0.3069 0.2182 0.3150 0.3565 0.1138 0.2564 0.4174 [0.6904] 0.6471
Caltech101-all 0.0502 0.0406 0.0462 0.1486 0.1854 0.1047 0.0864 [0.2083] 0.1083

SUNRGBD 0.1291 0.0644 0.1212 0.1168 0.1019 0.1159 0.0949 [0.1597] 0.1539
NUSWIDEOBJ N/A N/A 0.1140 0.0865 0.0881 0.0932 0.0856 0.1343 [0.1367]

AWA N/A N/A 0.0457 0.0359 0.0559 0.0365 0.0421 [0.0626] 0.0599
YoutubeFace N/A N/A N/A N/A 0.0579 0.0831 0.1511 0.1396 [0.1641]

Table 3: ACC, NMI and Fscore comparison of different clustering algorithms on datasets. The best results are highlighted in
bold with brackets, and the second best and comparable results are bolded.

over 45 classes. NUSWIDEOBJ (Chua et al. 2009) is an ob-
ject recognition database with 30000 objects. AWA contains
50 different animals with their six features. YoutubeFace is
produced from YouTube with 101499 instances.

Experimental Setup
We compare our method with the following eight STOA
MVC methods: MLRSSC (Brbić and Kopriva 2018);
AMGL (Nie et al. 2016a); SFMC (Li et al. 2020); RMKM
(Cai, Nie, and Huang 2013); BMVC (Zhang et al. 2018);
LMVSC (Kang et al. 2020); MSGL (Kang et al. 2021); FR-
MVS (Wang et al. 2021b);.

The proposed method has no hyper-parameters to be
tuned, but we need to determine the anchors number and
the dimension of anchor matrix. In the experiments, the an-
chors number and the dimension of anchor matrix are both
traverse [k, 2k, ..., 7k] where k is the clustering number of
each dataset. For the compared algorithms, we search their
best parameters for fairness. Moreover, we run 50 times k-
means and report the best result. To evaluate the clustering
performance, we employ three widely used criteria includ-
ing accuracy (ACC), normalized mutual information (NMI)
and Fscore. All the experiments are performed on a desktop

with Intel Core i9-10900X CPU and 64G RAM, MATLAB
2019b(64-bit).

Experimental Results
Table 3 compares the clustering performance of the
EOMSC-CA with other methods on nine benchmark
datasets. We mark the optimal results in red, use bold for
the suboptimal and close results, and ‘N/A’ to indicate out-
of-memory issue. According to the results, we have the fol-
lowing conclusions:

• The proposed algorithm can achieve the best on the nine
datasets and is close to the best on the rest datasets, which
proves its effectiveness in multi-view clustering.

• AMGL achieve the best performance among all meth-
ods on ORL mtv. However, AMGL cannot handle large-
scale tasks due to high complexity. Compared with the
above method, EOMSC-CA not only has close perfor-
mance on the corresponding datasets, but also can be per-
formed on large-scale datasets.

The comparison of NMI and Fscore are also reported in
Table 3. We conclude that our EOMSC-CA has considerable
performance among baseline algorithms. To further prove
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Figure 2: Run time of different algorithms on each baseline datasets.

2 4 6 8 10

Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
e

rf
o

rm
a

n
c
e

 (
%

)

ACC

NMI

Fscore

(a) ORL mtv

2 4 6 8 10 12 14

Iteration

0.05

0.1

0.15

0.2

P
e

rf
o

rm
a

n
c
e

 (
%

)

ACC

NMI

Fscore

(b) NUSWIDEOBJ

Figure 3: The clustering ACC, NMI and Fscore of our algo-
rithm w.r.t the iterations.

the effectiveness of our algorithm optimization, we also con-
duct experiments on evolution of the clustering performance
with variation iterations. As shown in Figure 3, the ACC,
NMI and Fscore monotonically increase at each iteration
and stabilize in the last few iterations. The results verify
EOMSC-CA’s effectiveness in optimization.

Running Time Comparison

The run time of various algorithms on nine datasets are
compared in Figure 2. Compared with most STOA multi-
view methods, EOMSC-CA has the better computational ef-
ficiency as shown in the figure. BMVC and MSGL run faster
than other methods, while they have four and two hyper-
parameters to be chosen with poorer clustering performance.
Therefore, it can be demonstrated that our method has high
efficiency on multi-view clustering, which is proved by the-
oretical and experimental results.
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Figure 4: Sensitivity analysis of anchor number for our
method over ORL mtv and NUSWIDEOBJ.

Sensitivity analysis

In order to analyse the influence of the amount of anchors
on the clustering performance, we fix l and conduct a com-
parative experiment on ORL mtv and NUSWIDEOBJ. As
shown in Figure 4, our algorithm is not greatly affected by
the anchor number.

Conclusion

In this paper, we propose a novel multi-view subspace clus-
tering method termed as EOMSC-CA. In contrast to most
anchor-based methods, the selection of anchor points and the
construction of subspace graphs are optimized jointly to im-
prove the clustering performance in our method. Moreover,
by imposing a connectivity constraint, we directly generate
the clustering result without post-processing. Extensive ex-
periments on real-world datasets prove the effectiveness and
efficiency of the proposed method.
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