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ABSTRACT
A representativemultiple kernel clustering (MKC) algorithm, termed

simple multiple kernel 𝑘-means (SMKKM), is recently proposed

to optimally mine useful information from a set of pre-specified

kernels to improve clustering performance. Different from existing

min-min learning framework, it puts a novel min-max optimization

manner, which attracts considerable attention in related community.

Despite achieving encouraged success, we observe that SMKKM

only focuses on combination coefficients among kernels and ig-

nores the relationship among the importance of different samples.

As a result, it does not sufficiently consider different contributions

of each sample to clustering, and thus cannot effectively obtain the

"ideal" similarity structure, leading to unsatisfying performance.

To address this issue, this paper proposes a novel sample weighted

multiple kernel k-means via min-max optimization (SWMKKM),

which sufficiently considers the sum of relationship between one

sample and the others to represent the sample weights. Such a

weighting criterion helps clustering algorithm pay more attention

to samples with more positive effects on clustering and avoids

unreliable overestimation for samples with poor quality. Based

on SMKKM, we adopt a reduced gradient algorithm with proved
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convergence to solve the resultant optimization problem. Compre-

hensive experiments on multiple benchmark datasets demonstrate

that our proposed SWMKKM dramatically improves the state-of-

the-art MKC algorithms, verifying the effectiveness of our proposed

sample weighting criterion.
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1 INTRODUCTION
Multiple Kernel Clustering (MKC) is a popular method for address-

ing multi-view clustering problem, which usually looks for an ap-

propriate strategy to mine useful information from a group kernels

to improve clustering performance. These kernel matrices are of-

ten pre-specified and can be constructed from miscellaneous views

data. Bymapping the original data into a reproducing kernel Hilbert

space (RKHS) through kernel tricks to extract non-linear informa-

tion of features, MKC groups closer samples into the same cluster

[4, 5, 8, 9, 11, 14, 15, 17, 19, 34, 39, 46].

MKC has been intensively studied and widely applied to various

applications [6, 12, 16, 32, 36, 38, 43, 47]. For example, the works in

[28, 49] develop multiple kernel subspace clustering (MKSC), which

https://doi.org/10.1145/3503161.3547917
https://doi.org/10.1145/3503161.3547917
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aims to obtain better representability to express high-dimension

non-linear features by combining the advantage of MKC with the

characteristic of subspace. The work in [44] assumes the low-rank

consensus kernel and block-diagonal self-representation to main-

tain the "ideal" structure of subspace representation for improved

robustness. By constructing graph from kernel matrices, the work

in [27] links graph learning withMKC to enhance the clustering per-

formance and tries adopting 𝑙2,1 norm to make it more robust. The

work in [31] proposes to hold local graph structure to extract the

information among specific samples and simultaneously preserves

global graph structure for the whole clustering, both of which are

very important to obtain potential available features. Some meth-

ods focus on the localized kernel alignment criterion, which pay

more attention to keeping closer sample pairs together and avoid-

ing the unreliable estimation of farther ones [6, 23]. By adopting

the paradigm of high-order neighborhood to further mine the lo-

calized relationship among samples, the work in [20] holds further

localized structure for better clustering. Clustering algorithms with

late fusion manner maximally align the consensus partition matrix

with a group base partition matrices, computing in partition layer

instead of kernel data layer, thus it can substantially reduce compu-

tation complexity. Due to the success of late fusion manner, it has

been further applied and extended, such as [37, 45].

As a representative of MKC, the recently proposed simple multi-

ple kernel 𝑘-means (SMKKM) [25] gives a novel min-max optimiza-

tion manner, which minimizes the alignment for kernel weights

and maximizes the alignment for partition matrices instead of the

simultaneous minimization for both. After that, a reduced gradient

algorithm is introduced to solve the resultant intractable optimiza-

tion problem. The novelties of objective manner and improvement

of clustering performance attract considerable concerns and re-

searches in community.

Despite that recently proposed SMKKM has achieved encour-

aging success as mentioned above, we observe an obvious and

important defect in the existing algorithms. That is, they only focus

on the combination coefficients among kernels, and do not suffi-

ciently consider the relationship among the importance of different

samples. They indiscriminately consider the contribution of each

sample for clustering. However, different samples usually have dis-

similar importance in clustering due to their variable effect and

quality in practice. More importantly, the low-quality or redundant

samples would hurt the ”ideal” similarity structure, leading to poor

clustering performance. To address this issue, we propose to learn

the kernel alignment and partition in a sample weighted manner.

Specifically, we consider each sample has different contributions

for clustering tasks and qualitatively represent sample weights with

the sum of relationship among one sample and the others. Such a

weighted criterion guides clustering algorithm to pay more atten-

tion to samples with more positive effects on clustering and avoids

unreliable overestimation of samples with poor quality. By this way,

our proposed SWMKKM could sufficiently consider different contri-

bution of samples according to the kernel information, and thereby

enhance the clustering performance. Afterwards, we demonstrate

the theoretical connection and difference between SMKKM and

our proposed SWMKKM, and point out that the former is a spe-

cial case of the latter with equal weights for all samples. Based on

this observation, we develop the objective function of our proposed

SWMKKM and carefully design a optimization strategy with proved

convergence to solve the resultant optimization problem. In addi-

tion, comprehensive experiments on multiple benchmark datasets

are carried out to evaluate the effectiveness of our proposed algo-

rithm. The results have demonstrated that our proposed SWMKKM

significantly outperforms the state-of-the-art MKC competitors,

verifying the effectiveness of our proposed algorithm. The main

contributions of this paper are summarized as follows,

• This paper, for the first time, points out that the recently

proposed algorithms can not effectively deal with different

contribution of samples, which may become a bottleneck

that performance cannot break through. Correspondingly,

we, for the first time, develop a sample weighted criterion

to address this issue, which is likely to form a new learning

framework to further improve and explain the performance

of algorithms.

• This paper rigorously proves the convexity and differentiabil-

ity of our proposed algorithm and give sufficient theoretical

support basis for the optimization. Based on this, we intro-

duces the reduced gradient descent method with guaranteed

convergence to optimize the resultant problem.

• Comprehensive experiments onmultiple benchmark datasets

have demonstrated that SWMKKMdramatically outperforms

the state-of-the-art MKC algorithms, verifying the effective-

ness of the proposed sample weighted criterion.

2 RELATEDWORK
In this section, we provide a brief review of MKKM and SMKKM,

and then introduce the motivation of our work.

2.1 Multiple Kernel K-means
Given a data matrix X ∈ R𝑛×𝑑 , 𝑘-means clustering aims to assign X
into 𝑘 clusters by minimizing the sum of squares error, where 𝑛 and

𝑑 is the number of samples and feature dimensions. Its objective

function can be formulated as follows,

min

S, c

1

𝑛

∑︁𝑛

𝑖=1

∑︁𝑘

𝑞=1
𝑆𝑖𝑞 ∥x𝑖 − c𝑞 ∥2 𝑠 .𝑡 . S1 = 1, (1)

where S ∈ {0, 1}𝑛×𝑘 is a clustering assignment matrix and 𝑆𝑖𝑞 = 1 if

x𝑖 belongs to the𝑞-th cluster. To handle with non-linear features, the
samples are usually mapped into a reproducing kernel Hilbert space

(RKHS) [33] by kernel methods. The kernel matrices can be written

as 𝐾𝑖, 𝑗 = 𝜙⊤
𝑖
𝜙 𝑗 with a mapping function 𝜑 (·). Then, by defining

H = SL
1

2 where L = 𝑑𝑖𝑎𝑔( [𝑠−1
1
, . . . , 𝑠−1

𝑘
]) with 𝑠 𝑗 =

∑𝑛
𝑖=1 S𝑖 𝑗 , we

can equivalently rewrite its formulation as follows,

min

H
Tr

(
K
(
I − HH⊤

) )
𝑠 .𝑡 . H⊤H = I.

(2)

Following the multiple kernel learning framework, the optimal

consensus kernel K𝜸 is usually assumed as a linear combination

of a group base kernel matrices. Therefore, the objective can be

extended as follows,

min

H,𝜸
Tr(K𝜸 (I − HH⊤)) 𝑠 .𝑡 . H⊤H = I,𝜸 ∈ Δ,

(3)

where Δ = {𝜸 ∈ R𝑚 | ∑𝑚
𝑝=1 𝛾𝑝 = 1, 𝛾𝑝 ≥ 0, ∀𝑝}, K𝜸 =

∑𝑚
𝑝=1 𝛾

2

𝑝K𝑝

and𝑚 denotes the number of data kernels. H and 𝜸 can be jointly

solved by an alternate optimization method in literature [11]. After
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that, a standard 𝑘-means algorithm is performed on the learned

partition matrix H to obtain the final cluster assignments.

2.2 Simple Multiple Kernel K-means
Recently, the work in [26] points out that often-used min𝜸 minH
paradigm probably can not achieve satisfying clustering perfor-

mance in real-world applications, sometimes even worse than the

baseline kernel 𝑘-means. Thus, more new clustering models are

encouraged to be designed and studied. Different from the min𝜸

minH paradigm, simple multiple kernel 𝑘-means (SMKKM) [26]

proposes a novel min𝜸 maxH optimization manner as follows,

min

𝜸 ∈Δ
max

H∈R𝑛×𝑘
Tr(K𝜸HH⊤) 𝑠 .𝑡 . H⊤H = I𝑘 . (4)

This new minimization-maximization manner makes Eq. (4) can-

not be easily solved by often-used alternate optimization method.

To solve the resultant optimization, SMKKM transforms the min𝜸

maxH into a minimization w.r.t 𝜸 , and designs a reduced gradient

descent strategy after proving the differentiability of the resultant

minimization formulation.

Although encouraging clustering performance improvement has

been brought by the recently proposed SMKKM,we observe that the

lack of consideration of the the relationship among the importance

of different samples in existing algorithms leads to the unsatisfied

similarity structure. To handle with this issue, we develop a sample

weighted multiple kernel 𝑘-means clustering algorithm and design

an optimization method to solve it.

3 SAMPLE WEIGHTED MKKM
In this section, we first develop the formulation of our proposed

SWMKKM and provide sufficient theoretical analysis of it. Then

we design a reduced gradient descent algorithm to optimize the

resultant problem. Finally, the convergence and computational com-

plexity of our proposed algorithm are discussed.

3.1 Proposed Formulation
As seen from Eq. (4), with the novel min-max optimization para-

digm, SMKKM has explored the ideas of clustering optimization

and achieved encouraging clustering performance. However, we

observe that it only focuses on combination coefficients among

kernels and ignores the relationship among the importance of dif-

ferent samples which shall have various contribution. As a result,

the lack of above considerations leads to the limited performance

improvement. To address this issue, we propose a sample weighted

multiple kernel 𝑘-means clustering algorithm, which learns the

kernel alignment and partition in a sample weighted manner.

To be specific, we regard kernel matrices as similarity, and the

differences in importance can be extracted from the overall similar-

ity relationship. We also inherit the assumption of MKKM, that is,

the optimal weights can be expressed by a linear combination of

a group of weights from different views.For example, if a sample

is similar to most other samples, this strategy considers it very

important and gives it a larger weight. And this sample is likely to

be a key node. Large weight values can make the learning of cluster

centroids more reliable and stable.Otherwise, the sample may be an

"unsatisfactory" sample or an outlier. A small weight can effectively

reduce the excessive impact of such samples on cluster centroids.

To do so, we firstly initialize the weight matrix of single view as

follow,

W𝑝 = diag(K𝑝1), (5)

where K𝑝 denotes the kernel matrix of the 𝑝-th view. Next, we

combine the sample weights from all views with a power parameter

and obtain

W𝜸 =

(∑︁𝑚

𝑝=1
𝜸2

𝑝W𝑝

) _
2

, (6)

where 𝜸 ∈ 𝚫 and Δ = {𝜸 ∈ R𝑚 | ∑𝑚
𝑝=1 𝛾𝑝 = 1, 𝛾𝑝 ≥ 0, ∀𝑝}.

Finally, by merging Eq. (6) into Eq. (4), we obtain the formulation

of our proposed SWMKKM as follow,

min

𝜸 ∈Δ
max

H∈R𝑛×𝑘
Tr(H⊤W⊤𝜸 K𝜸W𝜸H)

𝑠 .𝑡 . H⊤H = I𝑘 ,𝜸 ∈ 𝚫,

(7)

where K𝜸 =
∑𝑚
𝑝=1𝜸

2

𝑝K𝑝 . As seen from Eq. (6), W𝜸 is also the

diagonal matrix where each term indicates the weight of the corre-

sponding sample. Furthermore, our proposed formulation is close

to the objective function of SMKKM in form, therefore we can solve

the resultant problem by the similar method. Based on this, the

formulation in Eq. (7) can be equivalently expressed as,

min

𝜸 ∈Δ
F (𝜸 ),

(8)

where

F (𝜸 ) = max

H
Tr(H⊤W⊤𝜸 K𝜸W𝜸H), 𝑠 .𝑡 . H⊤H = I𝑘 . (9)

Through this transform technique, the min𝜸 &maxH optimiza-

tion problem is converted to a minimization one. As meanwhile,

we let K̂𝜸 = W⊤𝜸 K𝜸W𝜸 and the objective function F (𝜸 ) can be

treated as a kernel 𝑘-means optimal solution problem.

3.2 Theoretical Analysis
In this subsection, we make a theoretical analysis of our proposed

algorithm, including the positive semidefiniteness, convexity and

differentiability.

Theorem 1. Each K𝜸 is positive semidefinite, then each K̂𝜸 (1 ≤
𝛾 ≤ 𝑚) is positive semidefinite.

Proof. As ∀𝜸 , K𝜸 is positive semidefinite, we can obtain ∀x ≠

0, x⊤K𝜸x ≥ 0. Then x⊤K̂𝜸x = (W𝜸x)⊤K𝜸 (W𝜸x) ≥ 0, therefore

K̂𝜸 = W⊤𝜸 K𝜸W𝜸 is positive semidefinite. □

Theorem 1 indicates that each K̂𝜸 still remains positive semidef-

inite (PSD) after aforementioned sample weighting processing and

so that the formulation is lower bounded by zero.

Theorem 2. When _ ≥ 1, F (𝜸 ) in Eq. (8) is convex.

The proof of Theorem 2 is given in appendix due to space limit.

By Theorem 2, the convexity of F (𝜸 ) is proved, and this is a neces-

sary condition of the following theorem, which is about the differ-

entiability of the proposed objective.



MM ’22, October 10–14, 2022, Lisbon, Portugal Y. Zhang and W. Liang, et al.

Theorem 3. F (𝜸 ) in Eq. (8) is differentiable. The parital derivative
of F (𝜸 ) at 𝛾𝑝 is

𝜕F (𝜸 )
𝜕𝛾𝑝

=2𝛾𝑝Tr(Ĥ⊤W𝜸K𝑝W𝜸 Ĥ)

+2_𝛾𝑝Tr(Ĥ⊤W𝑝 (
𝑚∑︁
𝑝=1

𝛾2𝑝W𝑝 ))
_
2
−1K𝜸W𝜸 Ĥ),

(10)

where Ĥ = argmaxHF (𝜸 ), 𝑠 .𝑡 . H⊤H = I𝑘 .

The form of Eq. (8) seems similar to the formula of Danskin’s

Theorem [3]. It can be known that only if Ĥ is the unique solution,

F (𝜸 ) can be shown differentiable by Danskin’s Theorem. Unfor-

tunately, there is more than one maximizer Ĥ with some fixed 𝜸 .
To address this issue, we elegantly transform it into an equivalent

optimization problem by the following lemma.

Lemma 4. With some fixed PSD matrix K, the following statement
holds:

max

H
Tr(KHH⊤) = max

P∈P𝑘
Tr(KP)

where H ∈ R𝑛×𝑘 , H⊤H = I𝑘 and P𝑘 ⊂ R𝑛×𝑛 is the space of rank-𝑘
orthogonal projection.

According to Theorem 1 and Lemma 4, the objective can be

written as F (𝛾) = maxP∈P𝑘 Tr(W⊤𝜸 K𝜸W𝜸P). The proof of Lemma

4 is given in appendix due the limited space. Further, to verify that

the objective meets the conditions of Danskin’s Theorem, we need

to prove the following two lemmas.

Lemma 5. With fixed 𝜸 , the solution of maxP∈P𝑘 𝐹 (𝜸 ) is unique,
where 𝐹 (𝜸 ) = Tr(W⊤𝜸 K𝜸W𝜸P).

Lemma 6. P is compact.

The proofs of Lemma 5 and Lemma 6 are also given in appendix.

Now we complete the proof of Theorem 3.

Proof. Denote that 𝑓 (𝜸 , P) = Tr(W⊤𝜸 K𝜸W𝜸P). It is easy to

check that ∀𝜸 ∈ Δ and P ∈ P, 𝑓 (𝜸 , P) is continuous. According
to Lemma 5 and Lemma 6, we know that P is compact and the

maximizer of 𝑓 (𝜸 , P) is unique with fixed 𝜸 . The conditions of

Danskin’s Theorem [3] hold, thus maxP 𝑓 (𝜸 , P) is differentiable.
With Lemma 4, we can obtain that 𝐹 (𝜸 ) = maxP 𝑓 (𝜸 , P) is also
differentiable. The proof is complete. □

Remark. By Theorem 3, we can optimize F (𝜸 ) by gradient descent
algorithm due to its differentiability. As stated in Theorem 2, the
objective function is convex and it will convergence to the global
minimum by the following optimization strategy.

3.3 Min-Max Optimization
First, since F (𝜸 ) can be treated as a kernel 𝑘-means optimal value

function, for any fixed 𝜸 , we can easily obtain the optimal solution

of maximization in Eq. (9) by eigenvalue decomposition as

H∗ =
{
argmax

H
Tr

(
H⊤K̂𝜸H

)
𝑠 .𝑡 . H⊤H = I𝑘

}
. (11)

Next, we adopt a reduced gradient descent algorithm to optimize

F (𝜸 ) by following [25, 30]. We can calculate the gradient of F (𝜸 )
by Theorem 3 and Eq. (11), and then update 𝜸 through the descent

Algorithm 1 Sample Weighted Multiple Kernel K-means via min-

max optimization

1: Input: {K𝑝 }𝑚𝑝=1, 𝑘, _.
2: Initialize 𝜸 (1) = 1/𝑚, {W𝑝 }𝑚𝑝=1 = 𝑑𝑖𝑎𝑔(K𝑝1) and t = 1.

3: repeat
4: Compute W𝜸 (𝑡 ) with Eq. (6).

5: Compute H∗ by solving a kernel k-means with K̂𝜸 (𝑡 ) =

W⊤
𝜸 (𝑡 )

K𝜸 (𝑡 )W𝜸 (𝑡 ) .

6: Compute
𝜕F(𝜸 (𝑡 ) )

𝜕𝛾𝑝
(𝑝 = 1, · · · ,𝑚).

7: Compute the gradient ∇F (𝜸 (𝑡 ) ) by Eq. (12, 13).

8: Compute the descent direction 𝒅 (𝑡 ) by Eq. (14).

9: Update 𝜸 via the scheme 𝜸 (𝑡+1) ← 𝜸 (𝑡 ) + 𝛼𝒅 (𝑡 ) .
10: 𝑡 ← 𝑡 + 1.
11: until max |𝜸 (𝑡+1) −𝜸 (𝑡 ) | ≤ 1𝑒 − 4

gradient with keeping the equality and non-negativity constraints.

We let 𝛾𝑢 be the largest component of 𝜸 and ∇F (𝜸 ) denotes the
reduced gradient of F (𝜸 ). The 𝑝-th (1 ≤ 𝑝 ≤ 𝑚) element of ∇F (𝜸 )
is [

∇F (𝜸 )
]
𝑝
=
𝜕F (𝜸 )
𝜕𝛾𝑝

−
𝜕F (𝜸 )
𝜕𝛾𝑢

∀ 𝑝 ≠ 𝑢, (12)

and [
∇F (𝜸 )

]
𝑢
=

𝑚∑︁
𝑝=1,𝑝≠𝑢

(
𝜕F (𝜸 )
𝜕𝛾𝑢

−
𝜕F (𝜸 )
𝜕𝛾𝑝

)
. (13)

Thus the equality constraint

∑𝑚
𝑝=1 𝛾𝑝 = 1 guaranteed to be satis-

fied by updating 𝜸 with the gradient in Eq. (12) and Eq. (13). After

that, by taking the positive constraints on 𝜸 into consideration in

the descent direction, we set it as

𝑑𝑝 =


0, if 𝛾𝑝 = 0 and

[
∇F (𝜸 )

]
𝑝
> 0,

−
[
∇F (𝜸 )

]
𝑝
, if 𝛾𝑝 > 0 and 𝑝 ≠ 𝑢,

−
[
∇F (𝜸 )

]
𝑢
, if 𝑝 = 𝑢.

(14)

Finally, 𝜸 can be updated via the scheme 𝜸 ← 𝜸 + 𝛼𝒅 where

𝒅 = [𝑑1, · · · , 𝑑𝑚]⊤ and 𝛼 denotes the descent direction and a learn-

ing step size. The optimal 𝛼 can be selected by Armijo’s rule. The

complete algorithm procedure of our proposed SWMKKM is out-

lined in Algorithm 1.

3.4 Discussion
Our proposed SWMKKM adopts the reduced gradient descent algo-

rithm and the objective value is monotonically decreased according

to the literature [30]. Furthermore, the convexity of the proposed

formulation is proved in Theorem 2, therefore, our proposed algo-

rithm is guaranteed to achieve the convergence of a global optimum.

From Eq. (1), at each iteration, SWMKKM needs to calculate a

weight matrix with computational complexity O(𝑛 log
2
𝑛), solve

a kernel k-means problem with computational complexity O(𝑛3),
compute the gradient and the descent direction with computational

complexity O(𝑚𝑛2𝑘) and search optimal step size with computa-

tional complexity O(𝑚𝑙). Therefore, its computation complexity

at each iteration is O(𝑛3 +𝑚𝑛2𝑘 +𝑚ℓ) where ℓ is the is the max

number of flops to find the optimal 𝛼 .
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Table 1: Datasets used in our experiments.

Dataset #Samples #Kernels #Clusters

Wpbc 194 10 2

Sonar 207 10 2

Wisconsin 265 2 5

Politicsuk 419 9 5

Cal-5 441 5 7

MFeat 2000 3 10

4Area 4236 2 4

Reuters 18758 5 6

4 EXPERIMENT AND ANALYSIS
In this section, we conduct comprehensive experiments on eight

benchmark datasets to evaluate effectiveness of our proposed SWMKKM.

The clustering performance, evolution of the objective value and

the learned H, weight coefficients, parameter sensitivity and com-

putational efficiency are studied carefully.

4.1 Experiment Setting
Eight often-used and representativemulti-view datasets are adopted

in the experiments to evaluate the clustering performance of our

proposed SWMKKM, including Wpbc1, Sonar1, Wisconsin1, Foot-
ball2, Politicsuk2, Cal-53, MFeature4, 4Area[29], Reuters5. Among

them, Wisconsin is a Webkb dataset used in [2, 42]; MFeat is a hand-

written digital dataset used in [35, 50]; Politicsuk is a Politics dataset

used in [13, 41]; Wpbc is Wisconsin Prognostic Breast Cancer used

in [40, 48]. The detail information of datasets is outlined in Table 1.

As seen, the numbers of samples, kernels and clusters vary over a

considerable range, which ensures the reasonable comparison and

evaluation among different clustering algorithms. For all datasets,

it is assumed that the real number of clusters 𝑘 is given and taken

as the input of algorithms.

We adopt four often-used criteria to evaluate the clustering per-

formance of all comparison algorithms, i.e. clustering accuracy

(ACC), normalized mutual information (NMI), purity (PUR) and

rand index (RI). For all algorithms, each experiment is repeated 50

times with performing various initialization to reduce the adverse

impact of randomness caused by 𝑘-means, and their means and

the corresponding standard deviations are reported. Our all experi-

ments are conducted on a PC with Intel Core i9-10900X CPU and

64G RAM in MATLAB R2020b environment.

In our experiments, we compare the proposed algorithm with

dozen state-of-the-art multi-view clustering baseline algorithms,

including: Average kernel 𝑘-means (Avg-KKM). Avg-KKM con-

structs the consensus kernel by averagely combining all kernels.

Single Best kernel 𝑘-means (SB-KKM). SB-KKM directly takes

each base kernel as as the input of kernel k-means algorithm, and

choose the best kernel. Multiple kernel 𝑘-means (MKKM) [10].
MKKM aims to learn the kernel coefficients while performing KKM.

Localized multiple kernel 𝑘-means (LMKKM) [7]. LMKKM

combines the kernels in a localized way in order to capture more

information. Optimal neighborhood kernel clustering (ONKC)

1
http://archive.ics.uci.edu/ml/datasets/

2
http://mlg.ucd.ie/aggregation/

3
http://www.vision.caltech.edu/Image_Datasets/Caltech101/

4
http://archive.ics.uci.edu/ml/datasets/Multiple+Features

5
https://kdd.ics.uci.edu/databases/reuters21578/

[24]. ONKC chooses the optimal kernel from the neighbor of lin-

ear combination of base kernels. Multiple kernel 𝑘-means with
matrix-induced regularization (MKKM-MR) [21]. MKKM-MR

introduces a matrix-induced regularization term in order to en-

hance the diversity and reduce the redundancy of the chosen ker-

nels. Mulitple kernel clustering with local alignment max-
imization (LKAM) [18]. LKAM aligns the ideal similarity with

the similarity of samples to k-nearest neighbors rather than all

samples.Multi-view clustering via late fusion alignment max-
imization (LFMVC) [37]. LFMVC calculates all base partitions and

fuses them to learn a consensus partition.Robust multiple kernel
𝑘-means with min-max optimization (RMKKM) [1]. Inspired
by the adversarial learning, RMKKM gives a min-max paradigm

for more robustness to perturbation. Simple multiple kernel
𝑘-means (SMKKM) [25]. SMKKM introduces a novel clustering

paradigm byminimizing alignment with reject to the kernel weights

and maximizing alignment with reject to. the assignment partition.

Multiple kernel clustering with neighbor-kernel subspace
segmentation (NKSS) [49]. NKSS linearly combines the neighbor

kernels through an exact-rank-constrained subspace segmentation

to extract a consensus affinity matrix.Multiple Kernel Clustering
with Global and Local Graph Structure Preserving (SPMKC)
[31]. SPMKC aims to preserve the global and local structure by in-

troducing a self-expressiveness term and a local structure learning

term. One pass late fusion multi-view clustering (OPLFMVC)
[22]. OPLFMVC unifies consensus partition learning and cluster la-

bels generation into a single optimization to directly obtain cluster

labels. Localized simple multiple kernel k-means (LSMKKM)
[23]. LSMKKM inherits the advantages of SMKKM and adopts a

local alignment to fuse the information of base kernels.

The source codes of these algorithms are publicly available and

we directly run them without revision in the experiment. Among

them, ONKC [24], MKKM-MR [21], LKAM [18], LFMVC [37], NKSS

[49] and LSMKKM [23] have hyper-parameters to be tuned. Fol-

lowing the corresponding literature, we take grid search method to

tune the hyper-parameters and produce the best possible results

on each dataset. We also list the optimal hyper-parameters for each

algorithm (if have) in the appendix for reproducibiity.

4.2 Experimental Results
4.2.1 Overall Clustering Performance. We list the ACC, NMI and

RI comparison of the aforementioned algorithms in Table 2 where

boldface indicates the best one and underline means the second

best. From this table, We can have the following observation:

• Avg-KKM, as a baseline algorithm, provides the reference

clustering performance, and as seen, the clustering perfor-

mance of our proposed SWMKKM completely passes the

baseline. For example, our proposed SWMKKM exceeds Avg-

KKM by 11.6%, 7.0%, 23.2%, 17.3%, 8.1%, 17.2%, 5.9% and

13.8% on all benchmark datasets in term of ACC. Meanwhile,

SWMKKM exceeds another baseline algorithm SB-KKM by

10.5%, 5.6%, 15.5%, 13.8%, 8.1%, 21.8%, 14.3% and 12.1%. These

results verify the possibility and the efficiency of our pro-

posed SWMKKM.

http://archive.ics.uci.edu/ml/datasets/
http://mlg.ucd.ie/aggregation/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://kdd.ics.uci.edu/databases/reuters21578/
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Figure 1: The objective values of SWMKKM’s formulation varying with the number of iterations.
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Figure 2: The evolution of SWMKKM’s learning process varying with the number of iterations.
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Figure 3: The kernel weights learned by various compared algorithms.
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Figure 4: The sensitivity of SWMKKM with the variation of _ in term of ACC.

• Recently proposed LSMKKM does improve the clustering

performance by its localized alignment criterion and min-

max optimization paradigm. As seen, LSMKKMcan be treated

as the state-of-the-art comparison algorithm, since it achieves

the most second best results on all datasets. However, our

proposed SWMKKM still exceeds it by 4.4%, 1.8%, 24.8%,

2.2%, 9.2%, 0.4%, 17.2% and 12.2% on all benchmark datasets

in term of ACC. This outperforming strongly demonstrates

the superiority of our proposed sample weight criterion.

• As can be seen from the results, our proposed SWMKKM

achieves the state-of-the-art performance on all datasets in

terms of ACC and RI. For instance, SWMKKM exceeds the

second best result on each dataset by 4.4%, 1.8%, 8.3%, 2.2%,

3.0%, 0.3%, 5.7% and 12.1% in term of ACC. Especially on

Reuters dataset, while other algorithms can not achieve a

discriminative effect and can not obtain a clustering accuracy

of more than 50, our proposed SWMKKM achieve far ahead

clustering performance.



Sample Weighted Multiple Kernel K-means via Min-Max Optimization MM ’22, October 10–14, 2022, Lisbon, Portugal

Table 2: Aggregated clustering accuracy (ACC), normalized mutual information (NMI) and rand index (RI) comparison
(mean±std) of different clustering algorithms on all benchmark datasets. Boldface indicates the best result and underline
means the second best on each dataset. The results on purity (PUR) is similar and given in appendix due to space limit.

Algrithmn Sonar Wisconsin Politicsuk Cal-5 Wpbc MFeature 4Area Reuters

ACC

Avg-KKM 57.5 ± 0.2 52.9 ± 0.4 51.9 ± 2.6 59.8 ± 3.4 59.3 ± 0.1 78.1 ± 1.0 83.1 ± 0.2 45.5 ± 1.5

SB-KKM 58.6 ± 2.1 54.3 ± 0.0 59.6 ± 3.8 64.3 ± 0.7 59.3 ± 0.0 73.5 ± 2.1 74.7 ± 0.0 47.2 ± 0.0

MKKM 57.5 ± 0.2 54.1 ± 2.8 50.6 ± 3.1 52.8 ± 4.0 59.3 ± 0.0 63.8 ± 1.5 74.5 ± 0.0 45.4 ± 1.5

LMKKM 57.5 ± 0.2 46.0 ± 0.7 45.3 ± 0.4 53.5 ± 1.1 59.3 ± 0.0 64.9 ± 1.2 73.7 ± 0.0 -

ONKC 61.8 ± 0.0 56.5 ± 0.3 62.7 ± 1.2 68.1 ± 3.4 58.1 ± 0.5 79.8 ± 1.9 71.1 ± 0.0 41.8 ± 1.2

MKKM-MR 57.0 ± 0.0 55.8 ± 0.6 62.4 ± 1.7 70.2 ± 0.2 56.2 ± 0.0 79.5 ± 2.5 71.7 ± 0.0 46.2 ± 1.4

LKAM 57.0 ± 0.0 56.7 ± 0.2 61.3 ± 2.2 68.7 ± 3.6 64.4 ± 0.0 90.7 ± 0.0 51.2 ± 3.2 45.5 ± 0.0

LFMVC 56.2 ± 0.6 53.6 ± 0.5 63.3 ± 0.1 71.3 ± 2.7 58.2 ± 0.0 82.6 ± 0.0 83.3 ± 0.3 45.7 ± 1.6

RMKKM 57.5 ± 0.1 53.7 ± 0.6 52.3 ± 1.9 61.8 ± 4.1 58.8 ± 0.0 93.1 ± 3.0 70.6 ± 0.0 45.5 ± 1.5

SMKKM 63.8 ± 0.0 53.7 ± 0.6 47.9 ± 0.9 69.5 ± 2.6 58.2 ± 0.0 95.0 ± 0.3 70.8 ± 0.0 45.5 ± 0.7

NKSS 62.3 ± 0.0 54.9 ± 0.8 55.6 ± 0.1 64.2 ± 1.8 61.9 ± 0.0 82.8 ± 0.8 61.6 ± 2.6 -

SPMKC 54.6 ± 0.0 41.2 ± 0.7 52.4 ± 0.1 55.1 ± 3.6 56.7 ± 0.0 63.1 ± 1.5 74.3 ± 0.0 26.8 ± 0.0

OPLFMVC 59.9 ± 0.0 51.8 ± 5.9 66.8 ± 3.6 70.0 ± 3.5 57.2 ± 0.0 80.3 ± 1.8 65.1 ± 1.3 43.9 ± 1.0

LSMKKM 64.7 ± 0.0 58.1 ± 0.4 50.3 ± 0.2 75.9 ± 4.0 58.2 ± 0.0 94.9 ± 0.2 71.8 ± 0.4 47.1 ± 1.0

SWMKKM 69.1 ± 0.0 59.9 ± 0.6 75.1 ± 0.7 78.1 ± 0.2 67.4 ± 0.6 95.3 ± 0.0 89.0 ± 0.0 59.3 ± 0.0
NMI

Avg-KKM 1.7 ± 0.1 34.2 ± 0.8 25.9 ± 1.3 59.7 ± 2.9 2.0 ± 0.0 73.1 ± 0.6 62.1 ± 0.5 27.4 ± 0.4

SB-KKM 2.2 ± 0.8 31.4 ± 0.0 52.1 ± 5.5 59.3 ± 0.9 2.0 ± 0.0 67.7 ± 1.5 53.9 ± 0.0 25.5 ± 0.0

MKKM 1.7 ± 0.1 28.2 ± 2.3 26.2 ± 0.7 53.1 ± 3.4 2.0 ± 0.0 64.0 ± 0.8 53.8 ± 0.0 27.3 ± 0.4

LMKKM 1.7 ± 0.1 15.1 ± 1.5 22.2 ± 0.2 51.0 ± 1.3 2.0 ± 0.0 65.0 ± 0.3 52.7 ± 0.0 -

ONKC 3.8 ± 0.0 31.9 ± 0.2 43.1 ± 3.0 62.3 ± 2.3 2.8 ± 0.1 71.8 ± 1.5 46.2 ± 0.0 22.3 ± 0.4

MKKM-MR 1.2 ± 0.0 32.7 ± 0.3 43.4 ± 2.7 65.4 ± 0.3 0.0 ± 0.0 71.6 ± 2.0 47.0 ± 0.0 25.3 ± 0.7

LKAM 1.2 ± 0.0 36.2 ± 0.1 43.5 ± 0.7 64.0 ± 2.5 1.8 ± 0.0 82.3 ± 0.1 22.3 ± 1.7 29.9 ± 0.0

LFMVC 1.2 ± 0.2 32.4 ± 0.6 45.2 ± 0.0 65.4 ± 2.1 1.8 ± 0.0 78.2 ± 0.0 62.4 ± 1.2 27.4 ± 0.4

RMKKM 1.7 ± 0.0 31.1 ± 0.6 26.2 ± 1.3 61.8 ± 2.2 1.9 ± 0.0 87.2 ± 2.1 45.8 ± 0.0 27.4 ± 0.4

SMKKM 5.3 ± 0.0 31.2 ± 0.6 30.5 ± 0.9 64.2 ± 1.3 2.4 ± 0.0 89.7 ± 0.5 45.8 ± 0.0 27.7 ± 0.2

NKSS 4.4 ± 0.0 34.1 ± 0.6 31.2 ± 0.1 57.6 ± 1.2 0.1 ± 0.0 86.1 ± 1.4 38.8 ± 1.1 -

SPMKC 5.8 ± 0.0 3.9 ± 0.8 26.7 ± 0.1 51.9 ± 1.1 1.7 ± 0.0 65.3 ± 1.2 53.2 ± 0.0 0.6 ± 0.0

OPLFMVC 2.8 ± 0.0 31.4 ± 5.2 46.6 ± 3.7 66.2 ± 2.7 2.4 ± 0.0 76.6 ± 0.7 51.1 ± 3.8 24.8 ± 1.5

LSMKKM 6.1 ± 0.0 32.2 ± 0.4 20.5 ± 0.3 71.7 ± 2.8 2.4 ± 0.0 89.5 ± 0.3 44.6 ± 2.2 27.0 ± 0.6

SWMKKM 10.6 ± 0.0 34.5 ± 0.4 53.6 ± 0.9 74.6 ± 1.0 3.7 ± 0.2 90.4 ± 0.1 68.7 ± 0.0 35.3 ± 0.0
RI

Avg-KKM 1.8 ± 0.1 28.1 ± 0.7 27.9 ± 2.8 46.7 ± 4.6 2.9 ± 0.1 63.3 ± 1.1 62.5 ± 0.4 21.8 ± 1.4

SB-KKM 2.7 ± 1.2 24.5 ± 0.0 47.5 ± 6.0 49.5 ± 0.9 2.9 ± 0.0 57.4 ± 2.8 55.5 ± 0.0 23.6 ± 0.0

MKKM 1.8 ± 0.1 24.8 ± 2.2 27.6 ± 2.0 41.7 ± 4.4 2.9 ± 0.0 49.8 ± 1.2 55.4 ± 0.0 21.8 ± 1.4

LMKKM 1.8 ± 0.1 7.1 ± 0.5 20.7 ± 0.4 40.6 ± 0.8 2.9 ± 0.0 50.6 ± 0.6 52.0 ± 0.0 -

ONKC 5.1 ± 0.0 26.9 ± 0.4 40.8 ± 1.4 55.3 ± 3.8 2.3 ± 0.3 64.4 ± 2.4 47.1 ± 0.0 20.3 ± 0.3

MKKM-MR 1.5 ± 0.0 26.6 ± 0.4 40.9 ± 1.4 58.0 ± 0.3 0.0 ± 0.0 64.0 ± 3.2 48.0 ± 0.0 23.1 ± 0.6

LKAM 1.5 ± 0.0 31.8 ± 0.3 40.4 ± 1.5 57.2 ± 4.7 5.5 ± 0.0 80.5 ± 0.1 17.2 ± 1.7 24.1 ± 0.0

LFMVC 1.1 ± 0.4 27.9 ± 0.8 41.6 ± 0.1 63.4 ± 3.6 2.3 ± 0.0 72.1 ± 0.0 62.8 ± 0.8 22.1 ± 1.6

RMKKM 1.8 ± 0.1 23.6 ± 0.7 28.1 ± 2.1 49.2 ± 5.4 2.6 ± 0.0 86.3 ± 3.3 46.5 ± 0.0 21.8 ± 1.4

SMKKM 7.1 ± 0.0 23.6 ± 0.7 28.7 ± 1.2 57.4 ± 2.0 2.3 ± 0.0 89.3 ± 0.6 46.5 ± 0.0 22.1 ± 0.8

NKSS 5.6 ± 0.0 29.4 ± 0.9 30.0 ± 0.1 46.2 ± 2.5 0.9 ± 0.0 80.1 ± 2.2 35.9 ± 1.7 -

SPMKC 0.4 ± 0.0 -0.9 ± 0.5 26.8 ± 0.1 39.4 ± 4.0 1.4 ± 0.0 53.3 ± 1.4 43.4 ± 0.0 0.1 ± 0.0

OPLFMVC 3.5 ± 0.0 24.0 ± 5.1 45.6 ± 5.1 59.5 ± 5.5 1.7 ± 0.0 69.4 ± 0.5 50.7 ± 4.5 20.6 ± 0.5

LSMKKM 8.2 ± 0.0 29.5 ± 0.5 16.8 ± 0.2 72.0 ± 6.3 2.3 ± 0.0 89.2 ± 0.4 43.1 ± 0.4 21.6 ± 0.2

SWMKKM 14.2 ± 0.0 32.6 ± 0.7 62.6 ± 0.9 72.6 ± 0.4 9.2 ± 0.3 90.1 ± 0.1 74.0 ± 0.0 35.5 ± 0.0

• Comparing all results on kernel dataset of Reuters, it can be

found that there is a obvious bottleneck of clustering perfor-

mance. Taking ACC as an example, in recent years, various

studies on multiple kernel k-means have not significantly

improved it, and ACC is always maintained at about 45 to

47. However, the improvement of our proposed SWMKKM
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Figure 5: Running time comparison of different algorithms on eight benchmark datasets (logarithm in seconds).
is dramatically significant and breakthrough, which outper-

forms all comparison method by one-fifth.

• Mostmulti-view clustering algorithms, such asMKKM,ONKC,

LFMVC, SPMKC and so on, adopt alternative optimization

method to learn the optimal variables, which can not be guar-

anteed to achieve the convergence of a global optimum. This

leads to their results are not stable enough, and the effect

of the model can not be fully mined. Instead, our proposed

SWMKKM adopts a novel paradigm with the reduced gradi-

ent descent method, which can make the learning process

smoother and ensure convergence to the global optimization.

To sum up, our proposed SWMKKM strongly shows superior

clustering performance compared with comparisons on all datasets,

validating the effectiveness of the proposed sample weighted multi-

ple kernel 𝑘-means. We expect that its ingenious idea and dramatic

performance will attract intensive attention and inspire more gen-

eral study in community. In addition, note that ’-’ in Table 2 indi-

cates that the corresponding results can not be obtained because

of out-of-memory error which is caused by unbearable memory

complexity.

4.2.2 Convergence and Evolution. As discussed in Section 3.4, our

proposed SWMKKM theoretically guarantees to achieve the con-

vergence of a global optimum. To verify this point, we plot the

curves of SWMKKM’s objective value with reject to the number of

iterations on all datasets, as shown in Figure 1. It can be observed

that the objective value decreases monotonically and the algorithm

usually converges quickly. Furthermore, to show the evolution of

the learning process of SWMKKM, we calculate clustering perfor-

mance at each iteration with learned H, and report them in Figure 2.

As observed, the clustering performance of SWMKKM usually rises

rapidly on small fluctuations and then keep relatively stable in most

cases, which sufficiently demonstrates effectiveness and necessity

of our learning process. The results on the other datasets are similar

and thus omitted due to space limit.

4.2.3 Kernel Coefficients Analysis. We also study the kernel weight

coefficients learned by comparison algorithms on all datasets. The

results onMFeatures and Reuters are plotted in Figure 3. As seen, the

kernel weights learned by ONKC,MKKM-MR, LKAM and LSMKKM

on each benchmark dataset are considerably sparse. This kind of

sparsity would cause that the algorithm pays more attention on a

certain kernel matrix and lacks sufficient mining of information in

different kernels, resulting in unsatisfying performance. However,

the kernel weights learned by our proposed SWMKKMare relatively

denser, which promotes the full use of information in different

kernels. The figures on the other datasets are similar and thus

omitted due to space limit.

4.2.4 Parameter Sensitivity Analysis. To further study the influence
of hyper-parameters _ on our proposed SWMKKM, we carry out

corresponding experiments and plot the change of ACC with the

variation of _, as reported in Figure 4. Note that the results of Avg-

KKM and SB-KKM are also given as baseline references. From the

observation, our proposed SWMKKM achieves advanced clustering

performance across a wide range of _. The figures on the other

datasets are similar and thus omitted due to space limit.

4.2.5 Running Time Comparison. Finally, we also report the run-
ning time of all comparison algorithms on all benchmark datasets

in our experiment in Figure 5. Note that, we scale the values and set

the execution time of SB-KKM be reference for clearer comparison.

As observed, our proposed SWMKKM is at a medium level and

holds a running time being match for that of LSMKKM. What’s

more, SWMKKM does not greatly increase the time cost while

significantly improving the clustering performance.

5 CONCLUSION
We observed that the existing algorithms still have a performance

bottleneck due to the lack of considering different contribution of

samples. As expected, they ignore the relationship among the impor-

tance of different samples and thus the ”ideal” similarity structure

cannot be effectively generated. To address this issue, we propose

a novel sample weighted multiple kernel 𝑘-means (SWMKKM) in

this paper, which, for the first time, develops a sample weighted

criterion for clustering. We inherit the min-max optimization par-

adigm from SMKKM and introduce the reduced gradient descent

method to solve the resultant optimization problem. Comprehen-

sive experimental results show the leading performance and the

effectiveness of SWMKKM. Though empirically observing that

SWMKKM achieves exciting improvement in this work, we have

not found a satisfying method to learn adaptive sample weights and

further improve the performance. In the future, we plan to explore

the general effect of sample weight criterion and seek for a better

manner to study the importance of different samples.
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