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ABSTRACT

Anchor enhanced multi-view late fusion clustering has attracted
numerous researchers’ attention for its high clustering accuracy
and promising efficiency. However, in the existing methods, the
anchor points are usually generated through sampling or linearly
combining the samples within the datasets, which could result in
enormous time consumption and limited representation capability.
To solve the problem, in our method, we learn the view-specific
anchor points by learning them directly. Specifically, in our method,
we first reconstruct the partition matrix of each view through multi-
plying a view-specific anchor matrix by a consensus reconstruction
matrix. Then, by maximizing the weighted alignment between the
base partition matrix and its estimated version in each view, we
learn the optimal anchor points for each view. In particular, unlike
previous late fusion algorithms, which define anchor points as lin-
ear combinations of existing samples, we define anchor points as a
series of orthogonal vectors that are directly learned through opti-
mization, which expands the learning space of the anchor points.
Moreover, based on the above design, the resultant algorithm has
only linear complexity and no hyper-parameter. Experiments on 12
benchmark kernel datasets and 5 large-scale datasets illustrate that
the proposed Efficient Anchor Learning-based Multi-view Cluster-
ing (AL-MVC) algorithm achieves the state-of-the-art performance
in both clustering performance and efficiency.
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1 INTRODUCTION

Multi-view data is a common data form in the fields of data analysis
and computer vision [4, 10, 23-25, 29, 36, 43]. A large amount of
unlabeled data is an important research object that researchers need
to face [8, 9, 14, 27, 33, 42]. Facing this problem, a great deal of multi-
view clustering is proposed [1, 3, 15, 16, 20, 31, 35, 39, 41, 44, 45, 47].
In order to meet the needs of large-scale multi-view data clustering,
sampling-based multi-view clustering method is one of the most
popular research topics [2, 7, 12, 13, 28, 32, 40]. In [13], researchers
first select k independent anchors on each view by k-means method
and replace the original map with the corresponding anchor map.
After the affinity matrix and degree matrix are constructed by
anchor graph, multi-view spectral clustering is used to solve the
problem. [7] extends the use of anchors to multi-view subspace
learning. It uses the k-means method to get the anchor points and
then uses a similarity graph matrix to combine the anchor points to
reconstruct the original sample linearly. [17, 32] considers that the
anchors obtained by k-means are of low quality, which will limit
the effect of graph learning and do harm to clustering performance.
It learns an optimal consensus graph by fusing the anchor learning
and the original sample reconstruction into a unified objective form.

The information fusion of the above methods at the sample level
is easily affected by noise, which limits the performance of cluster-
ing. In the meantime, because the samples in the real world usually
have higher dimensions, the operation cost in the data learning pro-
cess is huge, which affects the efficiency of the algorithm. For this
reason, methods of multi-view clustering based on late fusion are
proposed. [37] learns the optimal consensus partition by maximiz-
ing the alignment of the consensus partition and the base partitions
of each view. In order to prevent the result from deviating too far
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from the average partition, the basis partition of the average ker-
nel is introduced as a regularization term. [46] uses a consensus
sampling matrix to divide the base partitions into linear combina-
tions and then gets the anchors. After that, the data reconstruction
matrix and anchor points of each view are used to reconstruct the
base partition. Finally, reconstruction matrices are used to learn an
optimal consensus partition.

Nevertheless, although existing multi-view methods have im-
proved clustering performance in different aspects, we observe the
following shortcomings in them: 1) The use of a sampling matrix
for a linear combination of samples increases the risk that good
anchors can not be learned from the poor quality of samples. 2)
High computational and storage complexity limits the application
of the algorithm to large-scale data. 3) The introduction of too
many hyper-parameters increases the risk of over-fitting, and in
the meantime, it increases the operation burden hundreds of times.

In order to overcome these shortcomings, this paper proposes a
new late fusion multi-view clustering method, namely Efficient An-
chor Learning-based Multi-view Clustering (AL-MVC). Specifically,
we define anchor points as a series of orthogonal vectors that are
directly learned through optimization, which expands the learning
space of the anchor points. Then we reconstruct the partition ma-
trix of each view by multiplying a view-specific anchor matrix by
a consensus reconstruction matrix. Finally, we learn the optimal
consensus reconstruction partition and optimal anchor points for
each view with orthogonal constraints on them. In summary, the
contributions of this paper can be summarized in the following
three aspects:

(1) We design a late fusion framework based on anchor learn-
ing to reconstruct the base partitions of each view by the view-
specific anchor and consensus reconstruction matrix. In the pre-
vious method, anchor points are selected by a linear combination
of samples, and the quality of original samples greatly restricts
the quality of anchor points. We define the anchor points as a se-
ries of orthogonal vectors directly through optimization learning,
expanding the anchor points’ learning space.

(2) We maximize the weighted alignment between the base par-
tition matrix and each view estimate and replace the regularization
term of the consensus reconstruction matrix in the previous method
with orthogonal constraints. In this way, we enhance the represen-
tation ability of the clustering reconstruction matrix and realize
the algorithm contained no hyper-parameter. The effectiveness of
the proposed method is verified by experiments on multi-kernel
datasets and large-scale datasets.

(3) By fusing multi-view information at the partition level, this
framework can efficiently solve all multi-view clustering problems
with base partition as input. With a sample size of 60, 000, the
algorithm takes about just 3 seconds to run. The linear computation
and storage complexity as well as the extremely fast convergence
speed greatly expand the algorithm in the large-scale multi-view
data application scenario.

For the rest of this article, we will cover the related work in sec-
tion 2. We then describe the proposed method and its optimization
process in section 3. All the experimental results are shown and
analyzed in section 4. At the end of this paper, we summarize and
put forward a prospect in section 5.
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Table 1: Basic notations for the proposed AL-MVC

Notations Meaning
n Number of samples
m Number of anchors
k Number of clusters
1 Characteristic dimension of base partition
X; € R4 Raw data matrix of i-th view
K; € R™" Kernel matrix of i-th view
H; € Rk Base partitions i-th view
C e R™m Consensus sampling matrix
S; € R™m Reconstruction matrix of i-th view
A; € RIxm Anchor matrix of i-th view
Z € R™™"  Consensus reconstruction matrix and partition

I, € RM*m Identity matrix
Bi Weight of the i-th view

2 RELATED WORK
2.1 Notations

To give a more explicit description of the proposed approach, we
record the symbols in Table 1. We use lowercase, bold lowercase,
and bold uppercase to represent scalars, vectors, and matrices.

2.2 Multi-kernel K-means

Kernel k-means is to map the data points in the input space to the
high-level feature space through a nonlinear mapping and cluster in
the new space. The nonlinear mapping increases the probability of
data points’ linear separability, achieving more accurate clustering
results for non-convex data distribution. Further, multi-kernel k-
means can handle clustering on multi-view data. Specifically:

In the i-th view, the sample point x is mapped to the reproducing
kernel Hilbert space using a feature map ¢;(-) : x € X > H;. pT =
[y1,- -+, ypl are the weights of the p kernel functions {x; (-, -)}f:1
respectively. Then the kernel function can be defined as follows:

p
oy (Xa%p) = 65 (Ka)y(xp) = Y VixiGxaxp), (1)
Furthermore, the optimal objective formula of MKKM(multi-kernel
k-means) can be given in the following form:

min Tr (K, (I, —-HH"
nin (Ky (I, )) o
st. HeR™ HTH=1,, Y 1p=1y 20,

Where n is the number of samples, k is number of clusters and
I; € R™ is an identity matrix. H represents the optimal parti-
tion, it can be solved by alternately optimizing H and y [6]. The
complexity of eigenvalue decomposition is O(kn?) when gamma
is fixed to solve H.

2.3 Late Fusion Multi-view Clustering

In [37], researchers believe that although each view describes the
characteristics of the data from a different angle, the implied clus-
tering representation should be consistent. The basic idea of the
method is to fuse multi-view information at the partition level, that
is, to learn an optimal consensus partition by using base partitions
that are obtained from different views. Particularly speaking:
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On each view, {Ei}‘f=1 can be computed using spectral clustering,
kernel k-means, and so on. E; is the base partition that contains the
clustering information. With the underlying partition as input, a
method of maximizing alignment is designed in the following form:

max Tr (ETX) + pTr (ETQ)
E{B:},y

st. E'E=T, B/Bi=T, » 1

i=1
P
vi=0, X= Zi:l ViEiBi,

E € Rk is the consensus partition that is ultimately needed.

V=1, )

{Bi}‘?=1 € Rk are rotation matrices used to align the features of
different views. Q € R™k represents the average partition and can
be used to prevent the optimal partition from moving too far away
from the mean partition. In order to fuse multi-view clustering
information at the partition level, E is learned by a linear combi-
nation of base partition X and average partition Q. y is a trade-off
hyper-parameter used to balance the two parts of the formula.

2.4 Anchor-based Late Fusion Multi-view
Clustering

In order to obtain higher computational efficiency and better clus-
tering performance, [46] improved the multi-view subspace meth-
ods by late fusion and anchor selection. Firstly, the base partition
H; € R™" is obtained by KKM(kernel k-means) method, which can
be regarded as a set of n samples with the characteristic number I.
Then, a consensus sampling matrix C € R™™ is used to linearly
combine n samples in H; to obtain m anchors with high expres-
sivity to reduce the number of samples. Finally, use the anchor
points to rebuild the base partition H; on each view. The goal of
the algorithm is as follows:

p p
min -~ > Tr(H;(H;CS:)T) +a ) IS - Sill,
CS{S:L, im i=1

s£0<8;<1,0<S<1, C'C=1I. 4

In this framework, the consensus sampling matrix C merges the
information of each view and guides the learning of the reconstruc-
tion matrix S; € R™™, With the information of partition level in
S;, the optimal consensus reconstruction matrix S can be learned.
Moreover, the maximum alignment framework measures the re-
construction loss, which makes the optimization solution more
convenient. In this way, the computational complexity of clustering
is controlled within O(n?).

We think that this method still has some limitations: 1) Sampling
H; with the matrix C to generate anchor points, which will lead to
the quality of anchor points being limited by H;’s quality, which
is not conducive to the improvement of performance. 2) There
is a quadratic term of H; in the optimization, which leads to the
increase of computational complexity with the quadratic of the
sample size. 3) In the second term of the optimization formula, the
consensus reconstruction matrix S is learned by fusing the base
partition matrix S; information of each view. The addition of the
hyper-parameter of the second term results in a tenfold increase in
computational complexity.
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3 PROPOSED METHOD

In this section, we first introduce the motivation and formulation
of the proposed AL-MVC method. Then we give the optimization
process in detail. Finally, we theoretically analyze the convergence
and complexity of the proposed method.

3.1 Motivation and Formulation

Previous studies have shown that using anchors to reconstruct
data is an effective way to reduce computational complexity [13].
Moreover, fusing multi-view information at the partition level can
significantly improve the algorithm’s performance. In order to ob-
tain the appropriate anchor points for the clustering task, we expect
to merge the selection of anchor points and the process of cluster-
ing into a whole frame. However, unlike [46], we no longer use
the sampling matrix C to extract the samples from H; to get the
anchor H;C, instead of learning the anchor A; € RX™M for each
view directly. The advantages of this approach are: 1) It avoids the
high-quality anchor that can not be sampled due to the limitation
of H;. 2) The quadratic term of H; in the optimization formula is
eliminated, which makes it possible to reduce the computational
complexity from quadratic to linear. In addition, we set each view
to have a different weight ;. Based on the above, the formula can
be written as follows,

i -\ Hi(AZNT p 2
Ai,Z,?;ir}l»P 5 Zi:lTr(ﬁlHl(AlZl) )+Azi:l IZ - Z;|13,

=1
st.0<Zi<1, 0<Z<1 AJA;=Ip, [IBll2=1. 5)

Moreover, we think that it is not necessary to learn the recon-
struction matrix Z; € R™*" on each view and then use them to
learn the consensus reconstruction matrix Z € R™*". Because Z
has fused multiple view information at the partition level when
reconstructing the base partitions H; for each view. Furthermore, Z
can be regarded as n sample points with m-dimensional character-
istics. Each sample has a unique coordinate representation in the
space formed by the base of the m dimension. In order to increase
the information richness of the base and further improve the clus-
tering representation of consensus partition, we use orthogonal
constraints to replace the previous constraints on Z. We end up
with a formula that has no regularization term:

p
max D ATHHAAZ)T) o

s.t. ZZT =Ly, AJA; =Ln, Bl =1,

where H; € RIX" is the base partition of i-th view and [ is fixed as
| = 2k in the experiment. A; € RIxm represent the anchor points
set of i-th view, while m is the number of anchors. Z € R™*" is the
consensus partition matrix which is also a consensus reconstruction
matrix. The optimal Z is used to input k-means to get the clustering
result. f; is the weight of each view. Anchor A; and Z rebuild H;
and maximum alignment H; to minimize the reconstruction loss.

3.2 Optimization

The above optimization formula is a nonconvex optimization prob-
lem because the optimization constraints are nonconvex. We use
alternative optimization techniques to solve the problem, in which
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Algorithm 1 The Proposed AL-MVC

1: Input: Base partitions {Hj, Hp, .. ., Hp}, number of clusters k,
number of anchors m and tolerance threshold .

2: Output: consensus partition Z.

3. Initialize each {Agl) }f:l € R>™™ to a matrix with diagonal
elements 1 and other elements 0, 7 as a zero matrix, =
\/Lﬁ andt = 1.

4: repeat

5. Update yAQ) by solving Eq. (8) with fixed Agt) and ().

() : . t t

6:  Update A;"’ by solving Eq. (7) with fixed ﬁ( ) and Z(®).

7. Update B() by solving Eq. (9) with fixed Z(Y) and Alm.

8: t=t+1.

9: until (obj(t_l) - obj(t))/obj(t) <€

we optimize one variable with other variables fixed. Details are as
follows:

3.2.1 Optimization of A;. Keeping Z and f§ constant, and noting
that the A j on each view is independent of each other, we can write
an optimal formula for A; as follows,

max Tr(A;T W)
A 4
sit. ATA; =Ty,
where W1 = H;ZT . For the above problems, we use the method in
[46] to solve them. Using singular value decomposition(SVD) on
Wi, we can get W1 = U121VI. The optimal solution closed-form
isA; = U1V;r. Each A; of p views can be solved in accordance with

this method.

3.2.2 Optimization of Z. Keeping A; and f constant, we can

write an optimal formula for Z as follows,

mZax Tr(Z"W3)

®)
sit. ZZT =1y,

where Wy = Zle ﬂiAiTHi. Using singular value decomposition(SVD)
on Wy, we can get Wy = UZZZVZT. The optimal solution closed-
formis Z = UzV;—.

3.23 Optimization of f. Keeping irrelevant variables constant,
we can write an optimal formula for § as follows,

P
mpe 3, i

st 1Bl =1,

where ¢; = Tr(H;(A;Z)") and 87 = [B1, e, .., Bp]. According to
the Cauchy-Schwarz inequality, we can get the closed-form optimal

solution,
p
Bi= Ci/\/ZiZI ci?. (10)

We summarize the above optimization process in Algorithm 1

©)

in which obj(*) represents the objective value of the ¢-th iteration.
After getting the output Z, k-means method is performed to get the
final clustering result.
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3.3 Convergence and Complexity Analysis

3.3.1 Convergence. In order to illustrate the convergence of the
proposed algorithm, we need to prove that the optimization Eq. (6)
is monotonically increasing and has an upper bound.

THEOREM 1. Optimization formula Eq. (6) has an upper bound.

PROOF. V real number q, b satisfy ab < %(a2 +b%). 1t is easy to
extend it to matrix form Tr(AB) < 3 (Tr(AAT) + Tr(BBT)). Then
we can get Tr(H;(A;Z)T) < %(Tr(HiH;r) +Tr((A;2)T (A;2))). H;
is a constant matrix, so Tr(HiH;r) is a positive constant. Due to the
orthogonal constraint of A; and Z, Tr(HiH;'—) +Tr((A;Z) T (A;Z))
is also a positive constant and can be represented by r. In this way,
P BTr(H;(AiZ)T) < pTr(H;(A;Z)T) = pr. Therefore, Eq. (6)
has an upper bound. O

In the iterative optimization algorithm we designed, every vari-
able in each iteration has an optimal closed-form solution. This
guarantees that the target value of the algorithm is monotonically
increasing. In conclusion, we can ensure that the algorithm is con-
vergent in theory.

3.3.2 Computational Complexity. We analyze the computa-
tional complexity of each step of Algorithm 1. When Z is updated,
the computation complexity of eigenvalue decomposition and ma-
trix multiplication are O (m?n+mln). When updating A;, the cost of
the calculation is O((m?n+mln)p). When updating B, the cost of the
calculation is O ((I?n+min)p). Therefore, after ¢ iterations, the total
computational complexity is O (t((I2n+min) p+(m?n+min) (p+1))).
The proposed method has linear computational complexity.

3.3.3 Storage Complexity. Matrices in proposed method are
Z,H;, A;, W1, W3, which occupy the memory space of O(2mn +
pln + 2plm). Vectors f and ¢ cost O(2p) memory. Total storage
complexity is O(2mn + pln + 2p(Im + 1)) which is also linear with
respect to sample size n.

4 EXPERIMENTS

In this section, we first present the benchmark kernel datasets,
the settings of the experiment, and the comparison algorithms.
Then We evaluate the proposed algorithm experimentally from
both clustering performance and the running time. Moreover, we
design two ablation experiments to verify the validity of anchor-
based learning and orthogonal constraint on Z. In order to illustrate
the performance and speed advantages of the proposed algorithm,
we compare the performance of two new large-scale algorithms
with ours. Finally, we complete the convergence analysis of the
algorithm and explore the effect of the number of anchors on our
method.

4.1 Benchmark Datasets and Experimental
Settings

4.1.1 Datasets Introduction. In the proposed method, the base

partitions are generated by base kernels via KKM algorithm. The

basic information of 12 benchmark kernel datasets involved is listed
in Table 2.
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Table 2: Information of benchmark kernel datasets

Dataset Samples Kernel Cluster Data Type
BBCSport-2view 554 2 5 text
Reuters 18758 5 6 text
Ccv 6773 6 20 video
Caltech101-10 1020 48 102 image
Caltech101-15 1530 48 102 image
Caltech101-20 2040 48 102 image
Caltech101-25 2550 48 102 image
Caltech101-30 3060 48 102 image
Flower102 8189 4 102 image
Scenel5_mtv 4485 3 15 image
Football-9view 248 9 20 graph
SensITVehicle 1500 2 3 graph

4.1.2 Experimental Setup. In our experimental setting, the num-
ber of clusters k is known. Without a hyper-parameter, the charac-
teristic dimension of the base partition is fixed as [ = 2k and the
number of anchors is constant m = k. To make the comparison fair,
we download the code from the corresponding website or request it
from the corresponding author. Because all of the methods end up
using k-means to get the final clustering results, we run k-means
20 times and calculate the average result of the clustering in each
experiment. We used the widely accepted accuracy (ACC), nor-
malized mutual information (NMI), and purity metrics to measure
the clustering performance. All experiments are completed on a
desktop computer with a 3.70GHz Intel(R) Core(TM) i9 — 10900X
CPU and 64GB RAM and MATLAB 2022a (64bit).

4.2 Compared Algorithms

To illustrate the effectiveness of the proposed method, several rep-
resentative models are compared, including the classical method

MKKM [5] which fuses multi-kernel information by linear com-
bination, three improved multi-kernel methods MKKM-MiR (18],

SwMC [26] and ONKC [21], two late fusion kernel method LF-MVC
[37] and OPLF [19], a novel kernel method based on minimization

and maximization problem SMKKM [22], two local kernel meth-
ods LKAM [11] and SPMKC [30], and a late fusion anchor-based

representative models, CSA-MKC [46].

4.3 Experimental Results

The clustering performance of the proposed AL-MVC method with
10 comparison algorithms on 12 datasets is detailed in Table 3. The
best results are shown in red, suboptimal results in blue, and ’-’ to
represent out-of-memory or running time of more than a month.
Analyzing the results of the experiment, we can draw the following
conclusions:

1) As can be seen from Table 3, our algorithm shows excellent
performance on ACC, NM], and purity. On the 12 benchmark kernel
datasets, the proposed method has the best ACC results. Only two
NMI metrics and one purity metric are suboptimal but are very
close to optimal ones.

2) Compared with other multi-kernel clustering methods, the
four late fusion methods LF-MVC [37], OPLF [19], CSA-MKC [46]
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and our AL-MVC, have obvious advantages both in clustering per-
formance and the number of hyper-parameters. They learn consen-
sus partitioning by fusing partition-level information from multiple
views and can mine deeper data features.

3) Compared with the three late fusion methods, the proposed
method is still superior in performance. LF-MVC is a baseline of
the late-fusion methods and is comprehensively surpassed by the
proposed algorithm in performance. OPLF is also a late fusion
approach with no hyper-parameter, yet our approach outperforms
it on all datasets. Moreover, CSA-MKC is also an effective method,
but the computational complexity with the quadratic of the sample
size and two hyper-parameters limits its application.

The above experimental results have fully demonstrated the
effectiveness of our method. In summary, our approach has the
following advantages: 1) Our method reconstructs base partition
with view-specific anchor matrices and a consensus reconstruction
matrix, which integrate anchor learning and clustering tasks into a
unified framework. 2) We define anchor points as a series of orthog-
onal vectors that are directly learned through optimization rather
than linear combinations of existing samples in precious [46], which
increases the representativeness of the anchors. 3) Moreover, based
on the algorithm framework of maximum alignment, our method
achieves linear computation and storage complexity without any
hyper-parameter.

4.4 Ablation Study

This section demonstrates the validity of anchor-based learning
and the effectiveness of applying orthogonal constraints to the
consensus reconstruction matrix through two ablation experiments.

4.4.1 Design of Ablation Formula. In order to illustrate the
validity of learning view-specific anchors, we design the formula of
ablation 1 Eq. (11) to obtain anchor points by a linear combination
of existing samples based on the consensus sampling matrix:

P . . . T
max ) ATr(Hi(HCZ)T)

st ZZT =1y, CTC =1y, |Bllz =1

(11)

where C € R™ is the consensus sampling matrix.

What’s more, we apply the constraint 0 < Z < 1 to the consensus
partition matrix Z and get the formula of ablation 2 Eq. (12), which
can demonstrate the effectiveness of orthogonal constraints on Z,

P, AT
max D ATHHAAZ)T) )

sE0<Z <1, AJA; =T, [|Ifllz =1

4.4.2 Results of Ablation Study. In Table 4, we record the ACC,
NML, purity, and running time of the ablation experiments, respec-
tively. Compared with the two ablation experiments, our method
has significant advantages both in clustering performance and com-
putation efficiency, which fully proves the validity of learning an-
chors and the effectiveness of applying orthogonal constraints to
consensus partition.
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Table 3: The performance of our algorithm and ten comparison algorithms on twelve benchmark kernel datasets.

MKKM MKKM-MiR LKAM ONKC SwMC LF-MVC SMKKM SPMKC OPLF CSA-MKC

Dataset (2011) (2016) (2016) (2017) (2017)  (2019)  (2020)  (2020) (2021)  (2021)  O%'S
Parameter number 0 1 2 2 0 1 0 4 0 2 0
ACC(%)

BBCSport_2view  39.38 39.51 3505 3971 3676  60.06 3941 8088  60.85 7943 91.77
Caltech101-10 22.12 32.70 30.76 3243 2069  34.29 3345 3000  26.67 3553 36.03
Caltech101-15 19.75 31.85 28.86 3044 1667  33.07 3179 26.80 2824 3447 3502
Caltech101-20 18.30 30.40 27.66 2934 1373 32.24 3151 2691 2971 3428 3472
Caltech101-25 16.97 29.17 26.08 2891 1545 3147 29.86 2482 2635 3341  34.40
Caltech101-30 16.63 28.51 2478 2825 886  31.58 30.63 2435  26.67 3281  34.27

cev 17.99 21.24 2038 2239 1084  25.13 22.24 9.67 2274  27.86  27.93

Flower102 22.41 40.22 4140 3955 672 3845 42,51 - 2978 4612 46.29

Football-9view  72.96 77.12 76.25 7849 3508  79.07 7038 4597  80.24 8412  85.03

Scenel5_mtv 41.18 38.41 4142 3993 1133  45.82 4360 1182 4326 4589  47.66

SensITVehicle 53.36 54.13 66.40 5421  34.67  66.28 5427 5420  54.87 68.73  72.33

Reuters 45.44 46.15 - 41.85 - 45.68 45.52 - 4465 4626  46.54
NMI(%)

BBCSport_2view  15.69 15.77 587 1610  2.63 4038 1573 6200  41.46 64.76  78.13
Caltech101-10 55.47 62.26 60.91  61.89  34.60  63.17 6272 60.06  55.46 6387  64.17
Caltech101-15 49.41 57.95 56.11  57.15 2437  59.08 58.10 5376  54.50 59.87  60.23
Caltech101-20 4538 54.77 5286 5407 1925  56.15 5553 5090  52.22 5760 5771
Caltech101-25 42.26 52.21 50.09 51.88 2101  53.91 52.83 4790  49.04 5568  56.08
Caltech101-30 40.11 50.23 47.62 4994 1132  52.48 5178 4492 4759 5352 54.49

ccv 15.04 18.03 1758 1852 107  20.09 18.22 160 18.72 2310 2330

Flower102 42.67 56.71 56.89  56.11 551 54.94 58.63 - 46.77 60.74  60.85

Football-9view 7891 79.88 79.67 8118 3734  83.79 7591 4890  86.69  90.01  88.89

Scenel5_mtv 38.62 37.25 4214 3773 261 4271 40.60 2.80 4188 4505 4459

SensITVehicle 10.25 11.32 2363 1131 155  23.53 1124 2031 12.28 2756 3134

Reuters 27.35 25.30 - 22.27 - 27.39 27.75 - 27.09 2755  30.01
PUR(%)

BBCSport_2view  48.86 48.91 41.68  49.13 3750  68.78 4886  80.88  68.57 81.64 9177
Caltech101-10 23.42 34.80 3274 3422 2422 36.20 3538 3176  27.55 3834 3845
Caltech101-15 21.21 33.64 30.68 3235 2033  35.11 33.63 2856  29.08 37.03  37.13
Caltech101-20 19.94 32.37 2969 3117 1657  34.17 3343 2853  30.88 3678  37.02
Caltech101-25 18.63 31.25 2836  31.04 17.80  33.86 3212 27.22 2729 3589  37.06
Caltech101-30 18.01 30.60 2679 3006 1075  33.68 3269 2595  28.27 3507 36.68

cev 22.18 23.74 2332 2464 1135  28.16 2529 1178  26.52 31.04  31.40
Flower102 27.79 46.34 48.05 4563  8.08 4456 48.64 - 34.03 5280  53.11
Football-9view  75.71 78.35 7774 8010  39.11  82.26 7230 4798  82.26 86.68  87.58
Scenel5_mtv 44.29 42.40 4601 4360 1162  49.36 4838  13.00  47.65 50.89 5228
SensITVehicle 53.36 54.13 66.40 5421 3513  66.28 5427 5420  54.87 68.73 7233
Reuters 52.94 52.15 - 52.63 - 53.23 53.27 - 52.92 66.71  65.67

4.5 Running Time Comparison

In order to illustrate the advantages of the algorithm in compu-
tational efficiency, we use LF-MVC time as a benchmark to get
the relative running time of all methods, then show the logarithm
of the base 10 to the relative running time in Figure 1. As can be
seen from the figure, our method has an obvious speed advantage
on the whole. Although our algorithm is slightly slower than LF-
MVC on some small datasets, our algorithm does not contain a
hyper-parameter and does not have to pay the hundredfold cost
of traversing all the cases. Moreover, the computational efficiency

advantage of our method is more evident on the larger datasets
while it has excellent clustering performance.

4.6 Comparison with Large-scale Algorithms

Five large-scale datasets, ranging in size from 6, 773 to 60, 000, are
selected and their information recorded in Table 5. To better illus-
trate the effectiveness and efficiency of the algorithm on large-scale
data, we compare it with two latest large-scale multi-view algo-
rithms SMVSC [32] proposed in 2021, FPMSC [38] proposed in 2022
and record the results in Table 6. As can be seen from the table, our
algorithm not only has advantages in clustering performance but
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Table 4: Results of ablation study on twelve benchmark datasets

Dataset ACC(%) NMI(%) Purity(%) Time(s)
Ablation1 Ablation2 Ours Ablationl Ablation2 Ours Ablationl Ablation2 Ours Ablationl Ablation2 Ours
BBCSport_2view 83.64 48.40 91.77 65.63 23.92 78.13 83.64 53.06 91.77 0.53 69.24 0.03
Caltech101-10 35.48 30.27 36.03 63.84 58.48 64.17 37.81 32.41 38.45 40.54 235.75 13.83
Caltech101-15 33.82 31.04 35.02 59.47 56.24 60.23 36.09 33.05 37.13 76.26 310.19 16.79
Caltech101-20 33.27 31.48 34.72 56.76 54.62 57.71 35.41 33.60 37.02 104.01 716.46 20.07
Caltech101-25 31.83 30.87 34.40 54.40 52.74 56.08 34.62 33.33 37.06 80.75 755.13 22.39
Caltech101-30 31.48 31.71 34.27 52.61 51.90 54.49 34.02 33.89 36.68 174.77 1133.74 24.90
CCVv 27.44 26.73 27.93 21.57 21.59 23.30 29.96 30.26 31.40 56.13 2408.20 0.60
Flower102 37.18 43.19 46.29 51.99 56.98 60.85 42.77 49.66 53.11 165.48 2667.56 5.60
Football-9view 85.95 73.35 85.03 90.13 79.57 88.89 88.75 76.59 87.58 0.69 30.52 0.12
Scenel5_mtv 44.97 42.97 47.66 43.20 38.92 44.59 50.52 45.78 52.28 18.14 1204.55 0.33
SensITVehicle 50.40 40.93 72.33 8.93 5.77 31.34 50.40 42.07 72.33 1.48 229.40 0.02
Reuters 45.60 43.26 46.54 30.66 19.73 30.01 65.00 64.94 65.67 220.16 6533.68 1.00
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Figure 1: Time comparison on twelve benchmark kernel datasets.
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Figure 2: The target value of each iteration of the proposed method on three datasets.
Table 5: Information of five large-scale datasets also outperforms the other two algorithms in computing speed. In
Dataset  Sample View(Kernel) Cluster Feature particular, our method can achieve 99.08% ACC in less than 3 sec-

onds by clustering MNIST dataset with 60000 samples. Because the
ccv 6773 3 20 20,20,20 dimensions of the original samples are much larger than those of

ALOI-100 10800 4 100 77,13,64,125 the base partitions, our late fusion algorithm has more advantages
2688,2000,252 .
» ’ in large-scale data than other large-scale methods.
AWA 30475 6 50 2000,2000,2000 g g
Cifar100 50000 3 10 512,2048,1024 C Analvsi
MNIST 60000 3 10 342,1024,64 4.7 Convergence Analysis

In Section 3, we have proved the convergence of the algorithm in
theory. In this subsection, to further illustrate the convergence of
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(a) BBCSport-2view(iter=1)

(b) BBCSport-2view(iter=5)

(c) BBCSport-2view(iter=15)

Figure 3: Consensus partition Z shown by t-SNE method when iterations are 1,5, 15 on the BBCSport-2view dataset.

the algorithm, we first record the variation of the target value of
iterations on 3 datasets in Figure 2. Then, the consensus partition
matrix Z updated of each iteration on the BBCSport-2view is visu-
alized using the t-SNE [34] method, and the results are shown in
Figure 3. From Figure 2 we can see that the target value increases
monotonically as the number of iterations increases. Observing
from Figure 2 and Figure 3, it takes less than 15 iterations to con-
verge in general.

4.8 Quantitative Analysis of Anchor Point

In our experimental setup, the number of anchors was fixed at
m = k. We increase the search space for the number of anchors and
set m = [k, 2k, ..., 6k]. The accuracy of the algorithm on Reuters
dataset is shown in Figure 4. From the figure, we can find the
optimal number of anchors is m = 4k, and ACC is over 50% in this
case. Therefore, in future work, we will research the choice of the
number of anchors.

5 CONCLUSION

In this paper, we propose a novel late fusion method - Efficient An-
chor Learning-based Multi-view Clustering (AL-MVC) to enhance
the performance and efficiency of multi-view clustering. We multi-
ply the anchor matrix of each view by the consensus reconstruction
matrix to reconstruct the base partition. Then maximum alignment
partitions and their estimated versions are designed to learn the
optimal anchor points and consensus reconstruction matrix. The
orthogonal constraint is applied to the consensus reconstruction
matrix to enhance its ability of feature representation and further
improve its clustering performance. Based on the integration of
anchor learning and clustering in a unified framework design, our
algorithm not only shows excellent clustering performance but also
has only linear computing and storage complexity without hyper-
parameter. In the future, we will explore the optimal number of
anchors and apply the algorithm to missing multi-view clustering
based on the complementary information of multiple views.
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Table 6: Comparison with two latest large-scale algorithms

Dataset Metric FPMSC SMC Ours
ACC(%) 2197 2139  27.93
cev NMI(%) 16.65 16.71 23.29
Purity(%) 24.35 24.07 31.36
Time(s) 87.44 13.90 0.60
ACC(%) 3397 3537  67.98
NMI(%) 6514 5815  79.07
ALOI-100 .
Purity(%)  34.92 3630  69.82
Time(s)  451.08  224.09 8.14
ACC(%)  9.06 933 995
NMI(%)  10.66 9.97  11.27
AWA
W. Purity(%) 9.46 10.47 12.01
Time(s) 2060.00 2285.66 12.03
ACC(%) 6732 7233  91.92
. NMI(%)  90.67  88.18  97.93
Cifar100 .
ar Purity(%) 67.86 7330  93.98
Time(s) 3457.74 2792.46 22.98
ACC(%)  98.84  98.84  99.08
NMI(%) 9651 9649  97.17
MNIST
NIS Purity(%) 98.84 98.84 99.08
Time(s) 1012.81  438.63 2.98
Reuters
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Figure 4: The effect of anchor number on proposed algorithm

Nunber of Achors

accuracy on Reuters dataset.
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