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ABSTRACT
Anchor enhanced multi-view late fusion clustering has attracted

numerous researchers’ attention for its high clustering accuracy

and promising efficiency. However, in the existing methods, the

anchor points are usually generated through sampling or linearly

combining the samples within the datasets, which could result in

enormous time consumption and limited representation capability.

To solve the problem, in our method, we learn the view-specific

anchor points by learning them directly. Specifically, in our method,

we first reconstruct the partition matrix of each view through multi-

plying a view-specific anchor matrix by a consensus reconstruction

matrix. Then, by maximizing the weighted alignment between the

base partition matrix and its estimated version in each view, we

learn the optimal anchor points for each view. In particular, unlike

previous late fusion algorithms, which define anchor points as lin-

ear combinations of existing samples, we define anchor points as a

series of orthogonal vectors that are directly learned through opti-

mization, which expands the learning space of the anchor points.

Moreover, based on the above design, the resultant algorithm has

only linear complexity and no hyper-parameter. Experiments on 12

benchmark kernel datasets and 5 large-scale datasets illustrate that

the proposed Efficient Anchor Learning-based Multi-view Cluster-

ing (AL-MVC) algorithm achieves the state-of-the-art performance

in both clustering performance and efficiency.

CCS CONCEPTS
• Computing methodologies → Cluster analysis; • Theory of
computation → Unsupervised learning and clustering.
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1 INTRODUCTION
Multi-view data is a common data form in the fields of data analysis

and computer vision [4, 10, 23–25, 29, 36, 43]. A large amount of

unlabeled data is an important research object that researchers need

to face [8, 9, 14, 27, 33, 42]. Facing this problem, a great deal of multi-

view clustering is proposed [1, 3, 15, 16, 20, 31, 35, 39, 41, 44, 45, 47].

In order to meet the needs of large-scale multi-view data clustering,

sampling-based multi-view clustering method is one of the most

popular research topics [2, 7, 12, 13, 28, 32, 40]. In [13], researchers

first select 𝑘 independent anchors on each view by 𝑘-means method

and replace the original map with the corresponding anchor map.

After the affinity matrix and degree matrix are constructed by

anchor graph, multi-view spectral clustering is used to solve the

problem. [7] extends the use of anchors to multi-view subspace

learning. It uses the 𝑘-means method to get the anchor points and

then uses a similarity graph matrix to combine the anchor points to

reconstruct the original sample linearly. [17, 32] considers that the

anchors obtained by 𝑘-means are of low quality, which will limit

the effect of graph learning and do harm to clustering performance.

It learns an optimal consensus graph by fusing the anchor learning

and the original sample reconstruction into a unified objective form.

The information fusion of the above methods at the sample level

is easily affected by noise, which limits the performance of cluster-

ing. In the meantime, because the samples in the real world usually

have higher dimensions, the operation cost in the data learning pro-

cess is huge, which affects the efficiency of the algorithm. For this

reason, methods of multi-view clustering based on late fusion are

proposed. [37] learns the optimal consensus partition by maximiz-

ing the alignment of the consensus partition and the base partitions

of each view. In order to prevent the result from deviating too far

https://doi.org/10.1145/3503161.3548124
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from the average partition, the basis partition of the average ker-

nel is introduced as a regularization term. [46] uses a consensus

sampling matrix to divide the base partitions into linear combina-

tions and then gets the anchors. After that, the data reconstruction

matrix and anchor points of each view are used to reconstruct the

base partition. Finally, reconstruction matrices are used to learn an

optimal consensus partition.

Nevertheless, although existing multi-view methods have im-

proved clustering performance in different aspects, we observe the

following shortcomings in them: 1) The use of a sampling matrix

for a linear combination of samples increases the risk that good

anchors can not be learned from the poor quality of samples. 2)

High computational and storage complexity limits the application

of the algorithm to large-scale data. 3) The introduction of too

many hyper-parameters increases the risk of over-fitting, and in

the meantime, it increases the operation burden hundreds of times.

In order to overcome these shortcomings, this paper proposes a

new late fusion multi-view clustering method, namely Efficient An-

chor Learning-based Multi-view Clustering (AL-MVC). Specifically,

we define anchor points as a series of orthogonal vectors that are

directly learned through optimization, which expands the learning

space of the anchor points. Then we reconstruct the partition ma-

trix of each view by multiplying a view-specific anchor matrix by

a consensus reconstruction matrix. Finally, we learn the optimal

consensus reconstruction partition and optimal anchor points for

each view with orthogonal constraints on them. In summary, the

contributions of this paper can be summarized in the following

three aspects:

(1) We design a late fusion framework based on anchor learn-

ing to reconstruct the base partitions of each view by the view-

specific anchor and consensus reconstruction matrix. In the pre-

vious method, anchor points are selected by a linear combination

of samples, and the quality of original samples greatly restricts

the quality of anchor points. We define the anchor points as a se-

ries of orthogonal vectors directly through optimization learning,

expanding the anchor points’ learning space.

(2) We maximize the weighted alignment between the base par-

tition matrix and each view estimate and replace the regularization

term of the consensus reconstruction matrix in the previous method

with orthogonal constraints. In this way, we enhance the represen-

tation ability of the clustering reconstruction matrix and realize

the algorithm contained no hyper-parameter. The effectiveness of

the proposed method is verified by experiments on multi-kernel

datasets and large-scale datasets.

(3) By fusing multi-view information at the partition level, this

framework can efficiently solve all multi-view clustering problems

with base partition as input. With a sample size of 60, 000, the

algorithm takes about just 3 seconds to run. The linear computation

and storage complexity as well as the extremely fast convergence

speed greatly expand the algorithm in the large-scale multi-view

data application scenario.

For the rest of this article, we will cover the related work in sec-

tion 2. We then describe the proposed method and its optimization

process in section 3. All the experimental results are shown and

analyzed in section 4. At the end of this paper, we summarize and

put forward a prospect in section 5.

Table 1: Basic notations for the proposed AL-MVC

Notations Meaning

𝑛 Number of samples

𝑚 Number of anchors

𝑘 Number of clusters

𝑙 Characteristic dimension of base partition

X𝑖 ∈ R𝑛×𝑑 Raw data matrix of 𝑖-th view

K𝑖 ∈ R𝑛×𝑛 Kernel matrix of 𝑖-th view

H𝑖 ∈ R𝑛×𝑘 Base partitions 𝑖-th view

C ∈ R𝑛×𝑚 Consensus sampling matrix

S𝑖 ∈ R𝑛×𝑚 Reconstruction matrix of 𝑖-th view

A𝑖 ∈ R𝑙×𝑚 Anchor matrix of 𝑖-th view

Z ∈ R𝑚×𝑛
Consensus reconstruction matrix and partition

I𝑚 ∈ R𝑚×𝑚
Identity matrix

𝛽𝑖 Weight of the 𝑖-th view

2 RELATEDWORK
2.1 Notations
To give a more explicit description of the proposed approach, we

record the symbols in Table 1. We use lowercase, bold lowercase,

and bold uppercase to represent scalars, vectors, and matrices.

2.2 Multi-kernel 𝐾-means
Kernel 𝑘-means is to map the data points in the input space to the

high-level feature space through a nonlinear mapping and cluster in

the new space. The nonlinear mapping increases the probability of

data points’ linear separability, achieving more accurate clustering

results for non-convex data distribution. Further, multi-kernel 𝑘-

means can handle clustering on multi-view data. Specifically:

In the 𝑖-th view, the sample point x is mapped to the reproducing

kernel Hilbert space using a feature map 𝜙𝑖 (·) : x ∈ X ↦→ H𝑖 .𝜸⊤ =

[𝛾1, · · · , 𝛾𝑝 ] are the weights of the 𝑝 kernel functions {𝜅𝑖 (·, ·)}𝑝𝑖=1
respectively. Then the kernel function can be defined as follows:

𝜅𝜸 (x𝑎, x𝑏 ) = 𝜙⊤𝜸 (x𝑎)𝜙𝜸 (x𝑏 ) =
∑︁𝑝

𝑖=1
𝛾2𝑖 𝜅𝑖 (x𝑎, x𝑏 ), (1)

Furthermore, the optimal objective formula of MKKM(multi-kernel

𝑘-means) can be given in the following form:

min

H,𝜸
Tr

(
K𝜸 (I𝑛 − HH⊤)

)
𝑠 .𝑡 . H ∈ R𝑛×𝑘 , H⊤H = I𝑘 , 𝜸

⊤1𝑝 = 1, 𝛾𝑖 ≥ 0,

(2)

Where 𝑛 is the number of samples, 𝑘 is number of clusters and

I𝑘 ∈ R𝑛×𝑘 is an identity matrix. H represents the optimal parti-

tion, it can be solved by alternately optimizing H and 𝜸 [6]. The

complexity of eigenvalue decomposition is O(𝑘𝑛2) when gamma

is fixed to solve H.

2.3 Late Fusion Multi-view Clustering
In [37], researchers believe that although each view describes the

characteristics of the data from a different angle, the implied clus-

tering representation should be consistent. The basic idea of the

method is to fuse multi-view information at the partition level, that

is, to learn an optimal consensus partition by using base partitions

that are obtained from different views. Particularly speaking:
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On each view, {E𝑖 }𝑝𝑖=1 can be computed using spectral clustering,

kernel 𝑘-means, and so on. E𝑖 is the base partition that contains the

clustering information. With the underlying partition as input, a

method of maximizing alignment is designed in the following form:

max

E,{B𝑖 }𝑝𝑖=1,𝜸
Tr

(
E⊤X

)
+ 𝜇Tr

(
E⊤Q

)
𝑠 .𝑡 . E⊤E = I𝑘 , B⊤

𝑖 B𝑖 = I𝑘 ,
∑︁𝑝

𝑖=1
𝛾2𝑖 = 1,

𝛾𝑖 ≥ 0, X =
∑︁𝑝

𝑖=1
𝛾𝑖E𝑖B𝑖 ,

(3)

E ∈ R𝑛×𝑘 is the consensus partition that is ultimately needed.

{B𝑖 }𝑝𝑖=1 ∈ R𝑘×𝑘 are rotation matrices used to align the features of

different views. Q ∈ R𝑛×𝑘 represents the average partition and can

be used to prevent the optimal partition from moving too far away

from the mean partition. In order to fuse multi-view clustering

information at the partition level, E is learned by a linear combi-

nation of base partition X and average partition Q. 𝜇 is a trade-off

hyper-parameter used to balance the two parts of the formula.

2.4 Anchor-based Late Fusion Multi-view
Clustering

In order to obtain higher computational efficiency and better clus-

tering performance, [46] improved the multi-view subspace meth-

ods by late fusion and anchor selection. Firstly, the base partition

H𝑖 ∈ R𝑙×𝑛 is obtained by KKM(kernel 𝑘-means) method, which can

be regarded as a set of 𝑛 samples with the characteristic number 𝑙 .

Then, a consensus sampling matrix C ∈ R𝑛×𝑚 is used to linearly

combine 𝑛 samples in H𝑖 to obtain m anchors with high expres-

sivity to reduce the number of samples. Finally, use the anchor

points to rebuild the base partition H𝑖 on each view. The goal of

the algorithm is as follows:

min

C,S,{S𝑖 }𝑝𝑖=1
−

𝑝∑︁
𝑖=1

Tr(H𝑖 (H𝑖CS𝑖⊤)⊤) + 𝛼
𝑝∑︁
𝑖=1

∥S − S𝑖 ∥2
F
,

𝑠 .𝑡 . 0 ≤ S𝑖 ≤ 1, 0 ≤ S ≤ 1, C⊤C = I𝑚 . (4)

In this framework, the consensus sampling matrix C merges the

information of each view and guides the learning of the reconstruc-

tion matrix S𝑖 ∈ R𝑛×𝑚 . With the information of partition level in

S𝑖 , the optimal consensus reconstruction matrix S can be learned.

Moreover, the maximum alignment framework measures the re-

construction loss, which makes the optimization solution more

convenient. In this way, the computational complexity of clustering

is controlled within O(𝑛2).
We think that this method still has some limitations: 1) Sampling

H𝑖 with the matrix C to generate anchor points, which will lead to

the quality of anchor points being limited by H𝑖 ’s quality, which

is not conducive to the improvement of performance. 2) There

is a quadratic term of H𝑖 in the optimization, which leads to the

increase of computational complexity with the quadratic of the

sample size. 3) In the second term of the optimization formula, the

consensus reconstruction matrix S is learned by fusing the base

partition matrix S𝑖 information of each view. The addition of the

hyper-parameter of the second term results in a tenfold increase in

computational complexity.

3 PROPOSED METHOD
In this section, we first introduce the motivation and formulation

of the proposed AL-MVC method. Then we give the optimization

process in detail. Finally, we theoretically analyze the convergence

and complexity of the proposed method.

3.1 Motivation and Formulation
Previous studies have shown that using anchors to reconstruct

data is an effective way to reduce computational complexity [13].

Moreover, fusing multi-view information at the partition level can

significantly improve the algorithm’s performance. In order to ob-

tain the appropriate anchor points for the clustering task, we expect

to merge the selection of anchor points and the process of cluster-

ing into a whole frame. However, unlike [46], we no longer use

the sampling matrix C to extract the samples from H𝑖 to get the

anchor H𝑖C, instead of learning the anchor A𝑖 ∈ R𝑙×𝑚 for each

view directly. The advantages of this approach are: 1) It avoids the

high-quality anchor that can not be sampled due to the limitation

of H𝑖 . 2) The quadratic term of H𝑖 in the optimization formula is

eliminated, which makes it possible to reduce the computational

complexity from quadratic to linear. In addition, we set each view

to have a different weight 𝛽𝑖 . Based on the above, the formula can

be written as follows,

min

A𝑖 ,Z,{Z𝑖 }𝑝𝑖=1,𝜷
−
∑︁𝑝

𝑖=1
Tr(𝛽𝑖H𝑖 (A𝑖Z𝑖 )⊤) + 𝜆

∑︁𝑝

𝑖=1
∥Z − Z𝑖 ∥2

F
,

𝑠 .𝑡 . 0 ≤ Z𝑖 ≤ 1, 0 ≤ Z ≤ 1, A⊤
𝑖 A𝑖 = I𝑚, ∥𝜷 ∥2 = 1. (5)

Moreover, we think that it is not necessary to learn the recon-

struction matrix Z𝑖 ∈ R𝑚×𝑛
on each view and then use them to

learn the consensus reconstruction matrix Z ∈ R𝑚×𝑛
. Because Z

has fused multiple view information at the partition level when

reconstructing the base partitions H𝑖 for each view. Furthermore, Z
can be regarded as 𝑛 sample points with𝑚-dimensional character-

istics. Each sample has a unique coordinate representation in the

space formed by the base of the𝑚 dimension. In order to increase

the information richness of the base and further improve the clus-

tering representation of consensus partition, we use orthogonal

constraints to replace the previous constraints on Z. We end up

with a formula that has no regularization term:

max

A𝑖 ,Z,𝜷

∑︁𝑝

𝑖=1
𝛽𝑖Tr(H𝑖 (A𝑖Z)⊤)

𝑠 .𝑡 . ZZ⊤ = I𝑚, A⊤
𝑖 A𝑖 = I𝑚, ∥𝜷 ∥2 = 1,

(6)

where H𝑖 ∈ R𝑙×𝑛 is the base partition of 𝑖-th view and 𝑙 is fixed as

𝑙 = 2𝑘 in the experiment. A𝑖 ∈ R𝑙×𝑚 represent the anchor points

set of 𝑖-th view, while m is the number of anchors. Z ∈ R𝑚×𝑛
is the

consensus partition matrix which is also a consensus reconstruction

matrix. The optimal Z is used to input 𝑘-means to get the clustering

result. 𝛽𝑖 is the weight of each view. Anchor A𝑖 and Z rebuild H𝑖

and maximum alignment H𝑖 to minimize the reconstruction loss.

3.2 Optimization
The above optimization formula is a nonconvex optimization prob-

lem because the optimization constraints are nonconvex. We use

alternative optimization techniques to solve the problem, in which
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Algorithm 1 The Proposed AL-MVC

1: Input: Base partitions {H1,H2, . . . ,H𝑝 }, number of clusters 𝑘 ,

number of anchors𝑚 and tolerance threshold 𝜖0.

2: Output: consensus partition Z.
3: Initialize each {A(1)

𝑖
}
𝑝

𝑖=1
∈ R𝑙×𝑚 to a matrix with diagonal

elements 1 and other elements 0, Z(0)
as a zero matrix, 𝜷 (1) =

1√
𝑝
and 𝑡 = 1.

4: repeat
5: Update Z(𝑡 )

by solving Eq. (8) with fixed A(𝑡 )
𝑖

and 𝜷 (𝒕)
.

6: Update A(𝑡 )
𝑖

by solving Eq. (7) with fixed 𝜷 (𝒕)
and Z(𝑡 )

.

7: Update 𝜷 (𝒕)
by solving Eq. (9) with fixed Z(𝑡 )

and A(𝑡 )
𝑖

.

8: 𝑡 = 𝑡 + 1.

9: until
(
obj

(𝑡−1) − obj
(𝑡 ) )/obj(𝑡 ) ≤ 𝜖0

we optimize one variable with other variables fixed. Details are as

follows:

3.2.1 Optimization of A𝑖 . Keeping Z and 𝜷 constant, and noting

that the A𝑗 on each view is independent of each other, we can write

an optimal formula for A𝑖 as follows,

max

A𝑖

Tr(A𝑖
⊤W1)

𝑠 .𝑡 . A⊤
𝑖 A𝑖 = I𝑚,

(7)

where W1 = H𝑖Z⊤
. For the above problems, we use the method in

[46] to solve them. Using singular value decomposition(SVD) on

W1, we can get W1 = U1Σ1V⊤
1
. The optimal solution closed-form

is A𝑖 = U1V⊤
1
. Each A𝑖 of 𝑝 views can be solved in accordance with

this method.

3.2.2 Optimization of Z. Keeping A𝑖 and 𝜷 constant, we can

write an optimal formula for Z as follows,

max

Z
Tr(Z⊤W2)

𝑠 .𝑡 . ZZ⊤ = I𝑚,
(8)

whereW2 =
∑𝑝

𝑖=1
𝛽𝑖A⊤

𝑖
H𝑖 . Using singular value decomposition(SVD)

on W1, we can get W2 = U2Σ2V⊤
2
. The optimal solution closed-

form is Z = U2V⊤
2
.

3.2.3 Optimization of 𝜷 . Keeping irrelevant variables constant,

we can write an optimal formula for 𝜷 as follows,

max

𝜷

∑︁𝑝

𝑖=1
𝛽𝑖𝑐𝑖

𝑠 .𝑡 . ∥𝜷 ∥2 = 1,

(9)

where 𝑐𝑖 = Tr(H𝑖 (A𝑖Z)⊤) and 𝜷⊤ = [𝛽1, 𝛽2, ..., 𝛽𝑝 ]. According to

the Cauchy–Schwarz inequality, we can get the closed-form optimal

solution,

𝛽𝑖 = 𝑐𝑖/
√︂∑︁𝑝

𝑖=1
𝑐𝑖
2 . (10)

We summarize the above optimization process in Algorithm 1

in which 𝑜𝑏 𝑗 (𝑡 ) represents the objective value of the 𝑡-th iteration.

After getting the output Z, 𝑘-means method is performed to get the

final clustering result.

3.3 Convergence and Complexity Analysis
3.3.1 Convergence. In order to illustrate the convergence of the

proposed algorithm, we need to prove that the optimization Eq. (6)

is monotonically increasing and has an upper bound.

Theorem 1. Optimization formula Eq. (6) has an upper bound.

Proof. ∀ real number 𝑎, 𝑏 satisfy 𝑎𝑏 ≤ 1

2
(𝑎2 + 𝑏2). It is easy to

extend it to matrix form Tr(AB) ≤ 1

2
(Tr(AA⊤) + Tr(BB⊤)). Then

we can get Tr(H𝑖 (A𝑖Z)⊤) ≤ 1

2
(Tr(H𝑖H⊤

𝑖
) +Tr((A𝑖Z)⊤ (A𝑖Z))). H𝑖

is a constant matrix, so Tr(H𝑖H⊤
𝑖
) is a positive constant. Due to the

orthogonal constraint of A𝑖 and Z, Tr(H𝑖H⊤
𝑖
) + Tr((A𝑖Z)⊤ (A𝑖Z))

is also a positive constant and can be represented by 𝑟 . In this way,∑𝑝

𝑖=1
𝛽𝑖Tr(H𝑖 (A𝑖Z)⊤) ≤ 𝑝Tr(H𝑖 (A𝑖Z)⊤) = 𝑝𝑟 . Therefore, Eq. (6)

has an upper bound. □

In the iterative optimization algorithm we designed, every vari-

able in each iteration has an optimal closed-form solution. This

guarantees that the target value of the algorithm is monotonically

increasing. In conclusion, we can ensure that the algorithm is con-

vergent in theory.

3.3.2 Computational Complexity. We analyze the computa-

tional complexity of each step of Algorithm 1. When Z is updated,

the computation complexity of eigenvalue decomposition and ma-

trix multiplication are O(𝑚2𝑛+𝑚𝑙𝑛). When updating A𝑖 , the cost of

the calculation isO((𝑚2𝑛+𝑚𝑙𝑛)𝑝).When updating 𝜷 , the cost of the
calculation is O((𝑙2𝑛+𝑚𝑙𝑛)𝑝). Therefore, after 𝑡 iterations, the total
computational complexity isO(𝑡 ((𝑙2𝑛+𝑚𝑙𝑛)𝑝+(𝑚2𝑛+𝑚𝑙𝑛) (𝑝+1))).
The proposed method has linear computational complexity.

3.3.3 Storage Complexity. Matrices in proposed method are

Z, H𝑖 , A𝑖 , W1, W2, which occupy the memory space of O(2𝑚𝑛 +
𝑝𝑙𝑛 + 2𝑝𝑙𝑚). Vectors 𝜷 and 𝒄 cost O(2𝑝) memory. Total storage

complexity is O(2𝑚𝑛 + 𝑝𝑙𝑛 + 2𝑝 (𝑙𝑚 + 1)) which is also linear with

respect to sample size 𝑛.

4 EXPERIMENTS
In this section, we first present the benchmark kernel datasets,

the settings of the experiment, and the comparison algorithms.

Then We evaluate the proposed algorithm experimentally from

both clustering performance and the running time. Moreover, we

design two ablation experiments to verify the validity of anchor-

based learning and orthogonal constraint on Z. In order to illustrate

the performance and speed advantages of the proposed algorithm,

we compare the performance of two new large-scale algorithms

with ours. Finally, we complete the convergence analysis of the

algorithm and explore the effect of the number of anchors on our

method.

4.1 Benchmark Datasets and Experimental
Settings

4.1.1 Datasets Introduction. In the proposed method, the base

partitions are generated by base kernels via KKM algorithm. The

basic information of 12 benchmark kernel datasets involved is listed

in Table 2.
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Table 2: Information of benchmark kernel datasets

Dataset Samples Kernel Cluster Data Type

BBCSport-2view 554 2 5 text

Reuters 18758 5 6 text

CCV 6773 6 20 video

Caltech101-10 1020 48 102 image

Caltech101-15 1530 48 102 image

Caltech101-20 2040 48 102 image

Caltech101-25 2550 48 102 image

Caltech101-30 3060 48 102 image

Flower102 8189 4 102 image

Scene15_mtv 4485 3 15 image

Football-9view 248 9 20 graph

SensITVehicle 1500 2 3 graph

4.1.2 Experimental Setup. In our experimental setting, the num-

ber of clusters 𝑘 is known. Without a hyper-parameter, the charac-

teristic dimension of the base partition is fixed as 𝑙 = 2𝑘 and the

number of anchors is constant𝑚 = 𝑘 . To make the comparison fair,

we download the code from the corresponding website or request it

from the corresponding author. Because all of the methods end up

using 𝑘-means to get the final clustering results, we run 𝑘-means

20 times and calculate the average result of the clustering in each

experiment. We used the widely accepted accuracy (ACC), nor-

malized mutual information (NMI), and purity metrics to measure

the clustering performance. All experiments are completed on a

desktop computer with a 3.70GHz Intel(R) Core(TM) 𝑖9 − 10900𝑋

CPU and 64GB RAM and MATLAB 2022𝑎 (64bit).

4.2 Compared Algorithms
To illustrate the effectiveness of the proposed method, several rep-

resentative models are compared, including the classical method

MKKM [5] which fuses multi-kernel information by linear com-

bination, three improved multi-kernel methods MKKM-MiR [18],

SwMC [26] andONKC [21], two late fusion kernelmethodLF-MVC
[37] and OPLF [19], a novel kernel method based on minimization

and maximization problem SMKKM [22], two local kernel meth-

ods LKAM [11] and SPMKC [30], and a late fusion anchor-based

representative models, CSA-MKC [46].

4.3 Experimental Results
The clustering performance of the proposed AL-MVC method with

10 comparison algorithms on 12 datasets is detailed in Table 3. The

best results are shown in red, suboptimal results in blue, and ’-’ to

represent out-of-memory or running time of more than a month.

Analyzing the results of the experiment, we can draw the following

conclusions:

1) As can be seen from Table 3, our algorithm shows excellent

performance on ACC, NMI, and purity. On the 12 benchmark kernel

datasets, the proposed method has the best ACC results. Only two

NMI metrics and one purity metric are suboptimal but are very

close to optimal ones.

2) Compared with other multi-kernel clustering methods, the

four late fusion methods LF-MVC [37], OPLF [19], CSA-MKC [46]

and our AL-MVC, have obvious advantages both in clustering per-

formance and the number of hyper-parameters. They learn consen-

sus partitioning by fusing partition-level information from multiple

views and can mine deeper data features.

3) Compared with the three late fusion methods, the proposed

method is still superior in performance. LF-MVC is a baseline of

the late-fusion methods and is comprehensively surpassed by the

proposed algorithm in performance. OPLF is also a late fusion

approach with no hyper-parameter, yet our approach outperforms

it on all datasets. Moreover, CSA-MKC is also an effective method,

but the computational complexity with the quadratic of the sample

size and two hyper-parameters limits its application.

The above experimental results have fully demonstrated the

effectiveness of our method. In summary, our approach has the

following advantages: 1) Our method reconstructs base partition

with view-specific anchor matrices and a consensus reconstruction

matrix, which integrate anchor learning and clustering tasks into a

unified framework. 2) We define anchor points as a series of orthog-

onal vectors that are directly learned through optimization rather

than linear combinations of existing samples in precious [46], which

increases the representativeness of the anchors. 3) Moreover, based

on the algorithm framework of maximum alignment, our method

achieves linear computation and storage complexity without any

hyper-parameter.

4.4 Ablation Study
This section demonstrates the validity of anchor-based learning

and the effectiveness of applying orthogonal constraints to the

consensus reconstruction matrix through two ablation experiments.

4.4.1 Design of Ablation Formula. In order to illustrate the

validity of learning view-specific anchors, we design the formula of

ablation 1 Eq. (11) to obtain anchor points by a linear combination

of existing samples based on the consensus sampling matrix:

max

C,Z,𝜷

∑︁𝑝

𝑖=1
𝛽𝑖Tr(H𝑖 (H𝑖CZ)⊤)

𝑠 .𝑡 . ZZ⊤ = I𝑚, C⊤C = I𝑚, ∥𝜷 ∥2 = 1

(11)

where C ∈ R𝑛×𝑚 is the consensus sampling matrix.

What’s more, we apply the constraint 0 ≤ Z ≤ 1 to the consensus

partition matrix Z and get the formula of ablation 2 Eq. (12), which

can demonstrate the effectiveness of orthogonal constraints on Z,

max

A𝑖 ,Z,𝜷

∑︁𝑝

𝑖=1
𝛽𝑖Tr(H𝑖 (A𝑖Z)⊤)

𝑠 .𝑡 . 0 ≤ Z ≤ 1, A⊤
𝑖 A𝑖 = I𝑚, ∥𝜷 ∥2 = 1

(12)

4.4.2 Results of Ablation Study. In Table 4, we record the ACC,

NMI, purity, and running time of the ablation experiments, respec-

tively. Compared with the two ablation experiments, our method

has significant advantages both in clustering performance and com-

putation efficiency, which fully proves the validity of learning an-

chors and the effectiveness of applying orthogonal constraints to

consensus partition.
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Table 3: The performance of our algorithm and ten comparison algorithms on twelve benchmark kernel datasets.

Dataset

MKKM MKKM-MiR LKAM ONKC SwMC LF-MVC SMKKM SPMKC OPLF CSA-MKC

Ours

(2011) (2016) (2016) (2017) (2017) (2019) (2020) (2020) (2021) (2021)

Parameter number 0 1 2 2 0 1 0 4 0 2 0

ACC(%)
BBCSport_2view 39.38 39.51 35.05 39.71 36.76 60.06 39.41 80.88 60.85 79.43 91.77

Caltech101-10 22.12 32.70 30.76 32.43 20.69 34.29 33.45 30.00 26.67 35.53 36.03

Caltech101-15 19.75 31.85 28.86 30.44 16.67 33.07 31.79 26.80 28.24 34.47 35.02

Caltech101-20 18.30 30.40 27.66 29.34 13.73 32.24 31.51 26.91 29.71 34.28 34.72

Caltech101-25 16.97 29.17 26.08 28.91 15.45 31.47 29.86 24.82 26.35 33.41 34.40

Caltech101-30 16.63 28.51 24.78 28.25 8.86 31.58 30.63 24.35 26.67 32.81 34.27

CCV 17.99 21.24 20.38 22.39 10.84 25.13 22.24 9.67 22.74 27.86 27.93

Flower102 22.41 40.22 41.40 39.55 6.72 38.45 42.51 - 29.78 46.12 46.29

Football-9view 72.96 77.12 76.25 78.49 35.08 79.07 70.38 45.97 80.24 84.12 85.03

Scene15_mtv 41.18 38.41 41.42 39.93 11.33 45.82 43.60 11.82 43.26 45.89 47.66

SensITVehicle 53.36 54.13 66.40 54.21 34.67 66.28 54.27 54.20 54.87 68.73 72.33

Reuters 45.44 46.15 - 41.85 - 45.68 45.52 - 44.65 46.26 46.54

NMI(%)
BBCSport_2view 15.69 15.77 5.87 16.10 2.63 40.38 15.73 62.00 41.46 64.76 78.13

Caltech101-10 55.47 62.26 60.91 61.89 34.60 63.17 62.72 60.06 55.46 63.87 64.17

Caltech101-15 49.41 57.95 56.11 57.15 24.37 59.08 58.10 53.76 54.50 59.87 60.23

Caltech101-20 45.38 54.77 52.86 54.07 19.25 56.15 55.53 50.90 52.22 57.60 57.71

Caltech101-25 42.26 52.21 50.09 51.88 21.01 53.91 52.83 47.90 49.04 55.68 56.08

Caltech101-30 40.11 50.23 47.62 49.94 11.32 52.48 51.78 44.92 47.59 53.52 54.49

CCV 15.04 18.03 17.58 18.52 1.07 20.09 18.22 1.60 18.72 23.10 23.30

Flower102 42.67 56.71 56.89 56.11 5.51 54.94 58.63 - 46.77 60.74 60.85

Football-9view 78.91 79.88 79.67 81.18 37.34 83.79 75.91 48.90 86.69 90.01 88.89

Scene15_mtv 38.62 37.25 42.14 37.73 2.61 42.71 40.60 2.89 41.88 45.05 44.59

SensITVehicle 10.25 11.32 23.63 11.31 1.55 23.53 11.24 20.31 12.28 27.56 31.34

Reuters 27.35 25.30 - 22.27 - 27.39 27.75 - 27.09 27.55 30.01

PUR(%)
BBCSport_2view 48.86 48.91 41.68 49.13 37.50 68.78 48.86 80.88 68.57 81.64 91.77

Caltech101-10 23.42 34.80 32.74 34.22 24.22 36.20 35.38 31.76 27.55 38.34 38.45

Caltech101-15 21.21 33.64 30.68 32.35 20.33 35.11 33.63 28.56 29.08 37.03 37.13

Caltech101-20 19.94 32.37 29.69 31.17 16.57 34.17 33.43 28.53 30.88 36.78 37.02

Caltech101-25 18.63 31.25 28.36 31.04 17.80 33.86 32.12 27.22 27.29 35.89 37.06

Caltech101-30 18.01 30.60 26.79 30.06 10.75 33.68 32.69 25.95 28.27 35.07 36.68

CCV 22.18 23.74 23.32 24.64 11.35 28.16 25.29 11.78 26.52 31.04 31.40

Flower102 27.79 46.34 48.05 45.63 8.08 44.56 48.64 - 34.03 52.80 53.11

Football-9view 75.71 78.35 77.74 80.10 39.11 82.26 72.30 47.98 82.26 86.68 87.58

Scene15_mtv 44.29 42.40 46.01 43.60 11.62 49.36 48.38 13.00 47.65 50.89 52.28

SensITVehicle 53.36 54.13 66.40 54.21 35.13 66.28 54.27 54.20 54.87 68.73 72.33

Reuters 52.94 52.15 - 52.63 - 53.23 53.27 - 52.92 66.71 65.67

4.5 Running Time Comparison
In order to illustrate the advantages of the algorithm in compu-

tational efficiency, we use LF-MVC time as a benchmark to get

the relative running time of all methods, then show the logarithm

of the base 10 to the relative running time in Figure 1. As can be

seen from the figure, our method has an obvious speed advantage

on the whole. Although our algorithm is slightly slower than LF-

MVC on some small datasets, our algorithm does not contain a

hyper-parameter and does not have to pay the hundredfold cost

of traversing all the cases. Moreover, the computational efficiency

advantage of our method is more evident on the larger datasets

while it has excellent clustering performance.

4.6 Comparison with Large-scale Algorithms
Five large-scale datasets, ranging in size from 6, 773 to 60, 000, are

selected and their information recorded in Table 5. To better illus-

trate the effectiveness and efficiency of the algorithm on large-scale

data, we compare it with two latest large-scale multi-view algo-

rithms SMVSC [32] proposed in 2021, FPMSC [38] proposed in 2022

and record the results in Table 6. As can be seen from the table, our

algorithm not only has advantages in clustering performance but
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Table 4: Results of ablation study on twelve benchmark datasets

Dataset

ACC(%) NMI(%) Purity(%) Time(s)

Ablation1 Ablation2 Ours Ablation1 Ablation2 Ours Ablation1 Ablation2 Ours Ablation1 Ablation2 Ours

BBCSport_2view 83.64 48.40 91.77 65.63 23.92 78.13 83.64 53.06 91.77 0.53 69.24 0.03

Caltech101-10 35.48 30.27 36.03 63.84 58.48 64.17 37.81 32.41 38.45 40.54 235.75 13.83

Caltech101-15 33.82 31.04 35.02 59.47 56.24 60.23 36.09 33.05 37.13 76.26 310.19 16.79

Caltech101-20 33.27 31.48 34.72 56.76 54.62 57.71 35.41 33.60 37.02 104.01 716.46 20.07

Caltech101-25 31.83 30.87 34.40 54.40 52.74 56.08 34.62 33.33 37.06 80.75 755.13 22.39

Caltech101-30 31.48 31.71 34.27 52.61 51.90 54.49 34.02 33.89 36.68 174.77 1133.74 24.90

CCV 27.44 26.73 27.93 21.57 21.59 23.30 29.96 30.26 31.40 56.13 2408.20 0.60

Flower102 37.18 43.19 46.29 51.99 56.98 60.85 42.77 49.66 53.11 165.48 2667.56 5.60

Football-9view 85.95 73.35 85.03 90.13 79.57 88.89 88.75 76.59 87.58 0.69 30.52 0.12

Scene15_mtv 44.97 42.97 47.66 43.20 38.92 44.59 50.52 45.78 52.28 18.14 1204.55 0.33

SensITVehicle 50.40 40.93 72.33 8.93 5.77 31.34 50.40 42.07 72.33 1.48 229.40 0.02

Reuters 45.60 43.26 46.54 30.66 19.73 30.01 65.00 64.94 65.67 220.16 6533.68 1.00
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Figure 1: Time comparison on twelve benchmark kernel datasets.

(a) BBCSport_2view (b) Caltech101-30 (c) CCV

Figure 2: The target value of each iteration of the proposed method on three datasets.

Table 5: Information of five large-scale datasets

Dataset Sample View(Kernel) Cluster Feature

CCV 6773 3 20 20,20,20

ALOI-100 10800 4 100 77,13,64,125

AWA 30475 6 50

2688,2000,252

2000,2000,2000

Cifar100 50000 3 10 512,2048,1024

MNIST 60000 3 10 342,1024,64

also outperforms the other two algorithms in computing speed. In

particular, our method can achieve 99.08% ACC in less than 3 sec-

onds by clustering MNIST dataset with 60000 samples. Because the

dimensions of the original samples are much larger than those of

the base partitions, our late fusion algorithm has more advantages

in large-scale data than other large-scale methods.

4.7 Convergence Analysis
In Section 3, we have proved the convergence of the algorithm in

theory. In this subsection, to further illustrate the convergence of
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(a) BBCSport-2view(iter=1) (b) BBCSport-2view(iter=5) (c) BBCSport-2view(iter=15)

Figure 3: Consensus partition Z shown by t-SNE method when iterations are 1, 5, 15 on the BBCSport-2view dataset.

the algorithm, we first record the variation of the target value of

iterations on 3 datasets in Figure 2. Then, the consensus partition

matrix Z updated of each iteration on the BBCSport-2view is visu-

alized using the t-SNE [34] method, and the results are shown in

Figure 3. From Figure 2 we can see that the target value increases

monotonically as the number of iterations increases. Observing

from Figure 2 and Figure 3, it takes less than 15 iterations to con-

verge in general.

4.8 Quantitative Analysis of Anchor Point
In our experimental setup, the number of anchors was fixed at

𝑚 = 𝑘 . We increase the search space for the number of anchors and

set𝑚 = [𝑘, 2𝑘, ..., 6𝑘]. The accuracy of the algorithm on Reuters

dataset is shown in Figure 4. From the figure, we can find the

optimal number of anchors is𝑚 = 4𝑘 , and ACC is over 50% in this

case. Therefore, in future work, we will research the choice of the

number of anchors.

5 CONCLUSION
In this paper, we propose a novel late fusion method – Efficient An-

chor Learning-based Multi-view Clustering (AL-MVC) to enhance

the performance and efficiency of multi-view clustering. We multi-

ply the anchor matrix of each view by the consensus reconstruction

matrix to reconstruct the base partition. Then maximum alignment

partitions and their estimated versions are designed to learn the

optimal anchor points and consensus reconstruction matrix. The

orthogonal constraint is applied to the consensus reconstruction

matrix to enhance its ability of feature representation and further

improve its clustering performance. Based on the integration of

anchor learning and clustering in a unified framework design, our

algorithm not only shows excellent clustering performance but also

has only linear computing and storage complexity without hyper-

parameter. In the future, we will explore the optimal number of

anchors and apply the algorithm to missing multi-view clustering

based on the complementary information of multiple views.
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Table 6: Comparison with two latest large-scale algorithms

Dataset Metric FPMSC SMC Ours

ACC(%) 21.97 21.39 27.93

NMI(%) 16.65 16.71 23.29

Purity(%) 24.35 24.07 31.36

CCV

Time(s) 87.44 13.90 0.60

ACC(%) 33.97 35.37 67.98

NMI(%) 65.14 58.15 79.07

Purity(%) 34.92 36.30 69.82

ALOI-100

Time(s) 451.08 224.09 8.14

ACC(%) 9.06 9.33 9.95

NMI(%) 10.66 9.97 11.27

Purity(%) 9.46 10.47 12.01

AWA

Time(s) 2060.00 2285.66 12.03

ACC(%) 67.32 72.33 91.92

NMI(%) 90.67 88.18 97.93

Purity(%) 67.86 73.30 93.98

Cifar100

Time(s) 3457.74 2792.46 22.98

ACC(%) 98.84 98.84 99.08

NMI(%) 96.51 96.49 97.17

Purity(%) 98.84 98.84 99.08

MNIST

Time(s) 1012.81 438.63 2.98

Figure 4: The effect of anchor number on proposed algorithm
accuracy on Reuters dataset.
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