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Abstract

While classic video anomaly detection (VAD) requires
labeled normal videos for training, emerging unsupervised
VAD (UVAD) aims to discover anomalies directly from fully
unlabeled videos. However, existing UVAD methods still
rely on shallow models to perform detection or initializa-
tion, and they are evidently inferior to classic VAD meth-
ods. This paper proposes a full deep neural network (DNN)
based solution that can realize highly effective UVAD. First,
we, for the first time, point out that deep reconstruction
can be surprisingly effective for UVAD, which inspires us
to unveil a property named “normality advantage”, i.e.,
normal events will enjoy lower reconstruction loss when
DNN learns to reconstruct unlabeled videos. With this prop-
erty, we propose Localization based Reconstruction (LBR)
as a strong UVAD baseline and a solid foundation of our
solution. Second, we propose a novel self-paced refine-
ment (SPR) scheme, which is synthesized into LBR to con-
duct UVAD. Unlike ordinary self-paced learning that injects
more samples in an easy-to-hard manner, the proposed SPR
scheme gradually drops samples so that suspicious anoma-
lies can be removed from the learning process. In this way,
SPR consolidates normality advantage and enables better
UVAD in a more proactive way. Finally, we further design
a variant solution that explicitly takes the motion cues into
account. The solution evidently enhances the UVAD per-
formance, and it sometimes even surpasses the best clas-
sic VAD methods. Experiments show that our solution not
only significantly outperforms existing UVAD methods by a
wide margin (5% to 9% AUROC), but also enables UVAD to
catch up with the mainstream performance of classic VAD.

1. Introduction
Video anomaly detection (VAD) [29, 58] has constantly

been a valuable topic in computer vision, as it aims to au-
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Figure 1. Comparison of classic VAD and UVAD.

tomatically discover abnormal events (i.e., anomalies) that
deviate from frequently-seen normal routine in surveillance
videos. With a great potential to be applied to realms like
public security and city management [53,90], VAD enjoys a
continuous interest from both academia and industry. How-
ever, VAD remains open and unsolved. The underlying rea-
son is that anomalies are typically rare and novel, and such
characteristics make anomalies hard to be foreseen or enu-
merated in practice. As a result, a sufficient and comprehen-
sive collection of anomaly data can be particularly difficult
or even impossible, which makes the fully supervised clas-
sification paradigm not directly applicable to VAD.

Thus, classic VAD follows a semi-supervised setup,
which labels a training set that contains only normal videos
to train a normality model (see Fig. 1a). During inference,
video events that do not fit this normality model are viewed
as anomalies. Although such a classic semi-supervised
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VAD paradigm avoids the thorny issue to collect anomaly
data, it still requires human efforts to label a training set
with pure normal events. The labeling process can also
be particularly tedious and labor-intensive, especially when
faced with surging surveillance videos. To alleviate this
problem, a natural idea is to perform unsupervised VAD
(UVAD), which aims to discover anomalies directly from
fully unlabeled videos in an unsupervised manner (see Fig.
1b). In this way, UVAD no longer requires labeling nor-
mal videos to build a training set, which can significantly
reduce the cost of time and labor. Therefore, several recent
works [8,39,53,74] have explored this topic as a promising
alternative to classic VAD (reviewed in Sec. 2.1).

Despite some progress, we notice that existing UVAD
solutions suffer from two prominent limitations: (1) Exist-
ing UVAD methods typically rely on shallow models to per-
form detection or initialization, and most of them still in-
volve hand-crafted feature descriptors. To be more specific,
the core idea of representative UVAD methods [8, 39, 74]
is to detect drastic changes as anomalies, which often in-
volves learning a shallow detection model (e.g., logistic re-
gression) with descriptor (e.g., 3D gradients) based video
representations. However, the expressive power of both the
shallow model and hand-crafted descriptors can be limited.
The latest work [53] for the first time introduces deep neu-
ral networks (DNNs) to avoid hand-crafted descriptors, but
it must resort to an initialization step that involves an iso-
lation forest [36] model to obtain initial results. (2) The
performance of existing UVAD methods is evidently infe-
rior to classic VAD methods. Taking the commonly-used
UCSDped1 and UCSDped2 dataset for an example, recent
classic VAD methods usually lead existing UVAD methods
by about 10% AUROC. Meanwhile, existing UVAD meth-
ods typically report their performance on earlier datasets,
while their applicability and effectiveness on recent bench-
mark dataset like ShanghaiTech [38] are also unknown.

To move beyond the above limitations, we propose a
novel DNN based solution that can perform UVAD in a
highly effective and fully end-to-end manner. Specifically,
this paper contributes to UVAD in terms of three aspects:

• We, for the first time, point out that deep reconstruction
is actually surprisingly effective for UVAD, while such
effectiveness further motivates us to unveil the prop-
erty named “normality advantage”. Based on such a
property, we design Localization based Reconstruction
(LBR), which serves as a strong deep UVAD baseline
and the solid foundation of our deep UVAD solution.

• We design a novel self-paced refinement (SPR)
scheme, which is synthesized into LBR to consoli-
date normality advantage and enable more proactive
UVAD. Unlike ordinary self-paced learning (SPL) that
gradually injects training samples from easy to hard,

the proposed SPR scheme aims to drop suspicious
samples, so as to remove anomalies and focus on learn-
ing with normality. To our best knowledge, this is also
the first attempt to tailor SPL for addressing VAD.

• We further design a motion enhanced solution that ex-
plicitly takes the motion cues into account. The variant
solution can consistently enhance the detection capa-
bility, and sometimes even allows our UVAD solution
to outperform state-of-the-art classic VAD methods.

Experiments demonstrate the remarkable advantage of
our solution against its UVAD counterparts. Furthermore, it
for the first time achieves readily comparable performance
to recent classic VAD methods on mainstream benchmarks.

2. Related Work

2.1. Video Anomaly Detection (VAD)

Classic VAD. Early classic VAD methods usually con-
sist of two steps: First, they utilize hand-crafted feature de-
scriptors (e.g., trajectory [56], dynamic texture [48], his-
togram of optical flow [7], 3D gradients [41]) to represent
original training videos. Then, the extracted features are fed
into a shallow normality model for training and inference,
such as sparse reconstruction models [7,41,98], probabilis-
tic models [6, 48], one-class classifiers [77] and nature in-
spired models [50, 70]. As manual descriptor design can
be troublesome and inflexible, recent works are naturally
motivated to introduce DNNs for automatic representation
learning and end-to-end VAD. Thus, DNN based classic
VAD methods have enjoyed a surging interest and explo-
sive development [26, 31, 49, 51, 59–62, 66, 91]. Due to the
absence of anomalies in training, they usually build a DNN
normality model by training the DNN to perform some sur-
rogate learning tasks, such as reconstruction [73, 82, 87, 88]
and prediction [5, 9, 35, 42, 63, 97]. To improve representa-
tion learning and normality modeling, various DNN mod-
els have been explored such as recurrent neural networks
[45, 46] and generative adversarial network [62, 64, 92]. A
more detailed review on classic VAD can be found in [58].
Besides, note that deep VAD in this paper refers to directly
learning from pixel-level video data by DNNs for VAD.

UVAD. Compared with thoroughly-studied classic VAD,
only limited works have explored this emerging topic: Del
et al. [8] pioneer the exploration of UVAD by detecting
drastic changes as anomalies. Specifically, they describe
each video frame by hand-crafted descriptors, and then train
a shallow classifier to differentiate two temporally consec-
utive set of features. Afterwards, an easy classification in-
dicates a drastic change, while shuffling is used to make
the classification order-independent; Ionescu et al. [74] fol-
low the direction of [8], but improve change detection by a
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(a) Average reconstruction loss (RL) of normal and abnormal frames.
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(b) Frame-level Area Under ROC Curve (AUROC) during training.

Figure 2. A demonstration of normality advantage by FBR on the testing set of UCSDped1 and UCSDped2 dataset.

more sophisticated unmasking scheme: With features cal-
culated by hand-crafted descriptor and pre-trained DNN,
they iteratively remove the most discriminative feature in
classification. Frames that are still easy to classify after
several rounds of removal are viewed as anomalies; Liu et
al. [39] study the connection between unmasking and sta-
tistical learning, and further enhance the performance by a
history sampling method and a new frame-level motion fea-
ture. Unlike above methods that are essentially based on
the change detection paradigm, the latest work from Pang
et al. [53] first obtain the preliminary detection results by
leveraging a pre-trained DNN and an isolation forest [36].
Results are then refined by performing a two-class ordinal
regression in a self-trained fashion.

Weakly-supervised VAD (WVAD). WVAD has been
another heated topic [12, 32, 37, 57, 68, 72, 81, 93, 101] in
current research. Unlike classic VAD or UVAD, WVAD
utilizes video-level annotations for training, so as to reduce
the cost of labeling [68]. Since WVAD usually adopts a
different setup and benchmarks from most classic VAD and
UVAD works, we will not discuss WVAD in this paper.

2.2. Self-Paced Learning

Self-paced learning (SPL) is a branch of curriculum
learning (CL) [67,79]. Motivated by the beneficial learning
order in human curricula, CL introduces a learning strat-
egy that trains the model with samples in an easy-to-hard
manner [2]. To avoid the manual design of difficulty mea-
sures in classic CL, SPL is proposed to automatically mea-
sure the difficulty of samples based on the training losses
[30]. Specifically, given a leaning objective, SPL embeds
learnable sample weights and a self-paced (SP) regular-
izer into the objective. The SP regularizer enables SPL
to learn a proper weight for each sample, so as to con-
trol the curriculum of learning. As a center issue of SPL,
the design of SP regularizer has been extensively studied
[10, 20, 27, 28, 30, 34, 86, 99], and the plug-and-play nature
of SPL enables it to be widely applied to various tasks, such
as classification [71, 85], object segmentation [95], domain

adaptation [96], object detection [65,94], clustering [18,21],
object re-identification [15]. However, to our best knowl-
edge, none of existing works has explored SPL for VAD.

3. The Proposed UVAD Solution
3.1. Reconstruction in Classic VAD

Although our goal is to develop a deep UVAD solution,
it will be helpful to recall how DNN addresses classic VAD
in the first place. Owing to the lack of anomalies in training,
DNN cannot learn representations directly by supervised
classification. Instead, reconstruction has been a frequently-
used deep learning paradigm for classic VAD. Typically, the
reconstruction paradigm learns to embed the normal train-
ing video x into a low-dimensional embedding by an en-
coder network fe(·), and then reconstruct the input video
from the embedding by a decoder network fd(·). This goal
is often realized by solving the objective below:

min
θ

∑
x

LR(fd(fe(x)),x|θ) +R(θ) (1)

where θ denotes all learnable parameters of the encoder
and decoder, and LR(·, ·|θ) is a loss function that measures
the reconstruction loss (RL) under parameters θ. R(θ) is
a regularization term that prevents overfitting. By Eq. (1),
DNN is expected to learn normality patterns and reconstruct
normal events well, while large RL is produced for unseen
anomalies. As a straightforward deep learning paradigm,
reconstruction is extensively applied to classic VAD [58].

3.2. Normality Advantage in UVAD

Despite the popularity of DNN based reconstruction in
classic VAD, it has not been explored as a deep solution
to UVAD. Seemingly, learning by unlabeled videos mixed
with anomalies also enables DNN to reconstruct anomalies,
which disables it from discriminating anomalies. However,
we argue that it may not be true: In most cases, anomalies
are unusual events that occur at a low probability, while the
majority of events in videos are still normal. When DNN
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Figure 3. Localizing foreground to build spatio-temporal cube.

learns to reconstruct unlabeled videos that contain anoma-
lies, the imbalanced nature of normality/anomaly tends to
bias the DNN model towards the majority class (normal-
ity), which offers us a chance to differentiate normality and
anomalies. Besides, we also notice that such bias is reported
in simulated outlier image removal experiments [76, 84].

Motivated by such an intuition, we conduct some ba-
sic experiments to test whether DNN based reconstruction
can be a feasible deep solution to UVAD: Following most
UVAD works [8, 39, 74], we directly use the testing set of
a VAD benchmark dataset as unlabeled videos with anoma-
lies, while both the training set and testing set labels are
strictly unused when training the DNN. To perform recon-
struction, we train a multi-layer fully convolutional autoen-
coder (CAE) network to reconstruct the frames of unlabeled
videos. To evaluate the reconstruction of normal and abnor-
mal frames, we compute the average RL of normal frames
and abnormal frames respectively. As an example, we vi-
sualize the logarithm of the average RL on UCSDped1 and
UCSDped2 dataset in Fig. 2a, and some interesting obser-
vations can be drawn: Initially, the averaged RL of normal
and abnormal events are very close. Afterwards, a loss gap
gradually appears between normal and abnormal frames,
which suggests that DNN prioritizes the reconstruction of
normality. Moreover, the gap persists to exist as the train-
ing continues. Such observations lead to an interesting con-
clusion: Normality tends to play a more advantageous role
(i.e., enjoys a lower reconstruction loss) when DNN learns
to reconstruct both normality and anomalies in unlabeled
videos, which is named as normality advantage of UVAD.

To further validate whether normality advantage can be
utilized to discriminate anomalies, we simply use RL as the
anomaly score of each video frame, and calculate frame-
level AUROC [48] to quantitatively evaluate the VAD per-
formance during the learning process: As shown in Fig. 2b,
whilst the VAD performance is poor at the beginning, it will
be rapidly improved in 3-5 starting epochs. Afterwards,
the AUROC tends to increase slowly and gradually levels
off. As a consequence, those observations demonstrate the
possibility to exploit normality advantage for deep UVAD.
In addition, we would like to make the following remarks:
(1) Normality advantage stems from the dominant role of
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Figure 4. Average RL of normal/abnormal STCs (left) and frame-
level AUROC (right) of LBR on UCSDped2 dataset.

normal events in videos. This role is essentially decided
by the nature of anomalies, which are supposed to be rare
events that divert from the majority. Actually, when a cer-
tain anomaly becomes frequent, they should be viewed as
the new normality. Thus, we simply assume that normal-
ity advantage usually holds in the context of UVAD. (2) In
Sec. 4.3, we will show that other deep learning paradigms
(e.g., prediction) can also exploit this property to perform
UVAD. This paper will focus on reconstruction as it is one
of the most frequently-used deep paradigms in VAD.

3.3. Localization based Reconstruction (LBR)

Normality advantage renders frame based reconstruction
(FBR) a feasible deep solution to UVAD, but its perfor-
mance is still inferior to existing UVAD methods. For ex-
ample, the RL gap of FBR on UCSDped2 dataset is rela-
tively small (see Fig. 2a), while its AUROC is also unsatis-
factory. Actually, there is an important reason for its unsat-
isfactory performance: In many cases, only a small region
of a video frame is anomalous, while the remaining part is
still normal. Thus, FBR is obviously not the optimal way
to manifest normality advantage, since video events cannot
be precisely represented on a per-frame basis. Inspired by
recent works [23,25,90] that explore localization for classic
VAD, we propose to introduce localization as a remedy to
the drawback of FBR. Although localization is first intro-
duced by classic VAD, we must point out that localization
brings one unique benefit to UVAD: Localization is able to
magnify the normality advantage when performing UVAD.
An example is shown in Fig. 3: Consider a video frame with
four walking pedestrians (normality) and one fence jumper
(anomaly). For frame based analysis, the entire frame will
be viewed as one abnormal event. By contrast, localization
enables us to extract four normal events and one abnormal
event. In this way, more normal events will exhibit a larger
advantage against the anomalies in reconstruction.

Following this idea, we propose localization based Re-
construction (LBR) as a new deep baseline for UVAD: As
to localization, we follow the localization scheme proposed
in [90], which is shown to achieve both precise and com-
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Figure 5. AUROC comparison between FBR/LBR and existing
UVAD methods (DF [8], UM [74], CTS [39], OR [53]).

prehensive localization (the procedure is detailed in supple-
mentary material). For each localized object on the frame,
we extract D patches from the current and adjacent (D−1)
frames. Extracted patches are resized into H×W , and then
stacked into a H × W × D spatio-temporal cube (STC),
which is used to represent a video event (illustrated in Fig.
3). The DNN is then trained to reconstruct extracted STCs,
while RL of STCs are also used as anomaly scores. To
perform frame-level evaluation, the maximum of all STCs’
scores on a frame is considered as the score of this frame.
To illustrate how LBR magnifies normality advantage, we
visualize LBR’s average RL of normality/anomaly and AU-
ROC in training on UCSDped2 dataset, on which FBR per-
forms poorly. As shown in Fig. 4, LBR enjoys a remarkably
larger RL gap than FBR, while the frame-level AUROC also
grows to over 90%. In Fig. 5, we further compare frame-
level AUROC of FBR and LBR (detailed in Sec. 4.1) with
existing UVAD methods on several commonly-used VAD
benchmarks, and find that LBR is surprisingly effective:
As a straightforward baseline, LBR has already been able
to outperform all existing UVAD methods on those bench-
marks. Meanwhile, LBR achieves a large performance gain
when compared with FBR, which verifies the importance of
localization for UVAD. Consequently, the proposed LBR is
able to lay a solid foundation for our deep UVAD solution.

3.4. Self-Paced Refinement (SPR)

Although LBR is shown to be a strong UVAD baseline,
it passively relies on normality advantage to detect anoma-
lies, and anomalies are constantly reserved in training. Nev-
ertheless, the proactive removal of anomalies is obviously
more preferable. To be more specific, we intend to sort out
suspicious anomalies by RL and actively reduce anomalies’
influence on DNN, so as to refine the DNN model and con-
solidate the normality advantage. To this end, we notice that
self-paced learning (SPL) [30] provides an elegant strategy
to adjust the influence of each individual sample in learning.
However, traditional SPL usually injects harder samples to
training in an incremental manner, but our goal is to grad-
ually remove suspicious anomalies from the given data. To
bridge this gap, we design a novel Self-Paced Refinement
(SPR) scheme for UVAD, which is detailed below:

We first review the ordinary SPL as preliminaries. For-

mally, let D = {(xi, yi)}Ni=1 denote the training set, where
xi and yi represent i-th sample and its learning target re-
spectively. A model f parameterized by θ maps a sample
xi to a prediction f(xi), while the training loss L(f(xi), yi)
is calculated by some loss function L. The learning goal is
usually written as the following objective:

min
θ

N∑
i=1

L(f(xi), yi|θ) (2)

Note that we omit the regularization term R for simplic-
ity. As to SPL, it embeds the learnable sample weights
v = [vi, . . . , vN ] ∈ [0, 1]N and a self-paced (SP) regular-
izer g(v|λ) into the above learning objective, where λ is an
age parameter to control the learning pace. Specifically, the
goal of SPL is to solve the optimization problem below:

min
θ,v

N∑
i=1

viL(f(xi), yi|θ) + g(v|λ) (3)

Eq. (3) can be solved by an alternative search strategy
(ASS) [30], which alternatively optimizes θ or v while
keeping the other fixed. To facilitate optimization of v, the
SP regularizer g(v|λ) is usually designed to be convex, so
when fixing θ the global minimum v∗ can be easily yielded
by setting the partial derivative to be 0. It can be shown that
v∗ is usually determined by the training loss L(f(xi), yi)
and age parameter λ. To enable SPL, λ is usually initialized
by a small value, which produces v∗ that only involves a
few easy samples with small loss at the early training stage.
Then, λ is gradually increased to introduce harder samples
into training until all samples are considered in the end.

As shown above, SPL can adjust the weights of samples
by considering their hardness and the current learning stage.
Such desirable abilities make SPL perfectly eligible for en-
larging normality advantage, which can be realized by as-
signing smaller weights to suspicious anomalies with large
RL. Thus, we develop SPR from SPL: Concretely, given a
sampled batch of STCs {ci}ni=1 (ci denotes the i-th STC),
SPR minimizes an objective LSPR w.r.t. the DNN parame-
ters θ and sample weights v, while LSPR is defined by:

LSPR =

n∑
i=1

viLi(θ) + g(v|λ) (4)

where Li(θ) = LR(fd(fe(ci)), ci|θ) represents the RL of
ci, and the regularization term R(θ) is also omitted for sim-
plicity. As mentioned above, Eq. (4) is optimized by ASS:
When v is fixed, the objective can be transformed into:

min
θ

n∑
i=1

viLi(θ) (5)

The goal in Eq. (5) can be optimized by gradient descent.
In fact, it assigns a weight to each STC when DNN learns
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to reconstruct STCs, which encourages DNN to place more
emphasis on reconstructing the STC with larger weight vi.
When θ is fixed, the optimal v∗i can be obtained by solving:

min
vi∈[0,1]

n∑
i=1

viLi(θ) + g(v|λ) (6)

Qualitatively, our SPR expects the optimal sample weight
v∗i yielded by Eq. (6) to meet the following requirements:
When the loss of a STC is very large/small among its peers,
it is highly likely to be abnormal/normal. Accordingly, its
sample weight vi should be directly set to 0/1. Otherwise,
the sample weight should be negatively correlated with its
likelihood to be abnormal, which is embodied by its RL.
Such requirements motivate us to leverage a mixture SP reg-
ularizer [27] for SPR, which is in the following form:

g(v|λ, λ′) = −ρ

n∑
i=1

ln(vi +
ρ

λ
) (7)

where λ′ is an additional parameter that satifies λ > λ′ > 0,
and ρ = λλ′

λ−λ′ . As the mixture SP regularizer is convex, v∗i
to Eq. (6) can be derived by setting the partial derivative of
LSPR w.r.t vi to zero, which yields:

∂LSPR

∂vi
= Li(θ)−

ρ

vi +
ρ
λ

= 0, i = 1, · · · , n (8)

Based on Eq. (8) and the constraint vi ∈ [0, 1], a closed-
formed solution to Eq. (6) can be derived as follows:

v∗i =


0, Li(θ) ≥ λ

ρ

Li(θ)
− λ′

λ− λ′ , λ′ < Li(θ) < λ

1, Li(θ) ≤ λ′

(9)

From Eq. (9), we can see how SPR consolidates normality
advantage and excludes anomalies in an active way: When
the RL of a STC Li(θ) is larger than a upper threshold λ,
its weight vi will be directly set to 0, which suggests that
this STC will be directly dropped from the current iteration.
Similarly, the weight of STC will be directly set to 1 when
its RL is smaller than a lower threshold λ′, which enables it
to fully participate in learning. For those STCs that are less
certain (λ′ < Li(θ) < λ), their weights are inversely pro-
portional to their RL. Next, the most important issue is to
determine λ and λ′, and we propose a self-adaptive strategy
to calculate them by the statistics of RL: At the t-th iteration
of model updating, the lower threshold λ′ = µ(t) + σ(t),
where µ(t) and σ(t) denote the mean and standard devia-
tion of STCs’ RL in the current batch. The design of λ′(t)
indicates that we expect the majority of events to be normal.
As to the upper threshold λ, we set it as follows:

Algorithm 1 Self-Paced Refinement
Input: A DNN f with parameters θ, the set C of N STCs collected from

unlabeled videos, batch size n, training epoch T , warm-up epoch T ′

Output: The updated parameters θ
1: Initialize θ, t = 0
2: for i = 1 → T do
3: for j = 1 → ⌈N

n
⌉ do

4: Randomly sample a batch of n data from C
5: if i ≤ T ′ then
6: Update θ by Eq. (1)
7: else
8: Compute λ′ = µ(t) + σ(t) and λ by Eq. (10)
9: t = t+ 1

10: Update v by Eq. (9)
11: Updata θ by Eq. (5)
12: end if
13: end for
14: end for

λ = max{µ(t) + (4− t · r) · σ(t), λ′} (10)

where r is the shrink rate that usually takes a small value.
The intuition behind λ is also straightforward: At the be-
ginning, we only view STCs with very high RL (Li(θ) ≥
µ(t) + 4σ(t)) as certain anomalies. As the learning con-
tinues, the normality advantage becomes more evident and
allows us to exclude more anomalies. Thus, as t increases,
Eq. (10) enables us to gradually shrink the coefficient of
σ(t) until λ decreases to λ′, so as to exclude a larger por-
tion of suspicious anomalies. Since the initial RL is not in-
formative, SPR is introduced after a few warm-up epochs,
which allows normality to establish the preliminary advan-
tage. The whole SPR scheme is presented in Algorithm 1.

3.5. Motion Enhanced UVAD Solution

Many VAD works have pointed out the importance of
motion cues [40, 52, 90]. Hence, we also design a motion
enhanced UVAD solution, which consists of the following
steps: First, to represent motion in videos, we adopt the
dense optical flow [14], which depicts pixel-wise motion
by estimating the correspondence between two frames. The
optical flow map of each video frame can be computed effi-
ciently by a pre-trained DNN model (e.g., FlowNet v2 [24]).
Then, based on the location of each foreground object, we
extract D optical flow patches from the optical flow maps
that correspond to the current and (D − 1) neighboring
frames. Similar to the construction of STC, D optical flow
patches are resized and stacked into a H ×W ×D optical
flow cube (OFC). Then, we introduce a separated motion
encoder f (m)

e and decoder f (m)
d , which are trained to recon-

struct the OFC by taking its corresponding STC as input:

min
θ′

n∑
i=1

LR(f
(m)
d (f (m)

e (ci)), c
(o)
i |θ′) +R(θ′) (11)
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where c
(o)
i represents the OFC for input STC ci. θ′ is the

set of parameters for f (m)
e and f

(m)
d . After training, the RL

of an OFC is computed as the motion anomaly scores S(m).
The final anomaly score S is computed as follows:

S(ci) = ωa
S(a)(ci)− µ(a)

σ(a)
+ ωm

S(m)(ci)− µ(m)

σ(m)
(12)

where S(a) is the appearance anomaly score obtained by RL
of STCs, and µ(a), σ(a), µ(m), σ(m) are means and stan-
dard deviations of appearance/motion anomaly scores for
all STCs/OFCs. µ(a), σ(a), µ(m), σ(m) are computable as
UVAD handles all testing videos in a transductive manner.

4. Empirical Evaluations
4.1. Experimental Settings

We evaluate the proposed UVAD solution (LBR-SPR) on
the following commonly-used public VAD datasets: UCS-
Dped1/UCSDped2 [48], Avenue [41] and ShanghaiTech
[38]. To perform UVAD, we adopt two types of UVAD se-
tups in previous UVAD works: (1) Partial mode [8,39,74]:
Only the original testing set of a dataset is used for learning,
while the original training set is discarded. (2) Merge mode
[53]: The original training set and testing set are merged
into one unlabeled set for learning. For both modes, labels
are strictly unused in learning. Note that performance eval-
uation is only conducted on the original testing set of each
benchmark, so as to enable comparison with existing VAD
methods in the literature. For quantitative evaluation, we
adopt the most commonly-used frame-level AUROC [48] in
recent VAD works, while we also introduce and report other
metrics like equal error rate (EER) and pixel-level AUROC
in supplementary material. To construct STCs and OFCs,
we adopt the localization scheme in [90] and set H = W =
32 and D = 5. The reconstruction is performed by a
7-layer fully convolutional autoencoder network, which is
optimized by the default Adam optimizer in PyTorch tool-
box [55]. The batch size in training is 256, while RL is
computed by mean square error (MSE). For the shrink rate
r, we adopt 0.0001 for UCSDped1/Avenue and 0.005 for
UCSDped2/ShanghaiTech. The number of training epochs
is set by T = 30, while T ′ = 5 epochs are typically
used for warm-up. As to motion enhanced solution, we set
(ωa, ωm) to be (0.5, 1) for UCSDped1/UCSDped2/Avenue,
and (0.1, 1) for ShanghaiTech. Note that more details are
provided in supplementary material due to page limit.

4.2. Comparison with State-of-the-art Methods

In Table 1, we compare the performance of LBR-SPR
with state-of-the-art UVAD solutions. The performance of

‡As micro AUROC is used, we reported results from the official page
of [16] (https://github.com/lilygeorgescu/AED-SSMTL).

Table 1. Frame-level AUROC comparison. Note that LBR-SPR∗

indicates the performance of LBR-SPR under partial mode, while
LBR-SPR+ indicates the performance under merge mode (ex-
plained in Sec. 4.1). ME denotes motion enhancement.

Setup Method Ped1 Ped2 Avenue SHTech

C
la

ss
ic

VA
D

CAE [22] 81.0% 90.0% 70.2% -
ST-CAE [100] 92.3% 91.2% 80.9% -

sRNN [45] - 92.2% 81.7% 68.0%
WTA-CAE [73] 91.9% 96.6% 82.1% -
LSTM-AE [44] 75.5% 88.1% 77.0% -
AM-GAN [62] 97.4% 93.5% - -

Recounting [23] - 92.2% - -
FFP [38] 83.1% 95.4% 85.1% 72.8%

AnoPCN [89] - 96.8% 86.2% 73.6%
Attention [103] 83.9% 96.0% 86.0% -

PDE-AE [1] - 95.4% - 72.5%
Mem-AE [19] - 94.1% 83.3% 71.2%
AM-Corr. [52] - 96.2% 86.9% -

AnomalyNet [102] 83.5% 94.9% 86.1% -
Object-Centric [25] - 97.8% 90.4% 84.9%

MLAD [75] 82.3% 99.2% 71.5% -
BMAN [33] - 96.6% 90.0% 76.2%

Clustering-AE [4] - 96.5% 86.0% 73.3%
r-GAN [43] 86.3% 96.2% 85.8% 77.9%

DeepOC [83] 83.5% 96.9% 86.6% -
SIGNet [11] 86.0% 96.2% 86.8% -

Multipath-Pred. [78] 83.4% 96.3% 88.3% 76.6%
Mem-Guided [54] - 97.0% 88.5% 70.5%

CAC [80] - - 87.0% 79.3%
Scene-Aware [69] - - 89.6% 74.7%

VEC [90] - 97.3% 90.2% 74.8%
BAF [17] - 98.7% 92.3% 82.7%

AMMCN [3] - 96.6% 86.6% 73.7%
SSMTL‡ [16] - 97.5% 91.5% 82.4%

MPN [47] 85.1% 96.9% 89.5% 73.8%
HF2 [40] - 99.3% 91.1% 76.2%

CT-D2GAN [13] - 97.2% 85.9% 77.7%

U
VA

D

DF [8] 59.6% 63.0% 78.3% -
UM [74] 68.4% 82.2% 80.6% -
CTS [39] 71.8% 87.5% 84.4% -
OR [53] 71.7% 83.2% - -

LBR-SPR∗ (w/o ME) 81.1% 93.3% 88.5% 71.1%
LBR-SPR∗ (w/ ME) 81.1% 95.7% 92.8% 72.1%

LBR-SPR+ (w/o ME) 79.4% 97.0% 89.7% 71.9%
LBR-SPR+ (w/ ME) 80.9% 97.2% 90.7% 72.6%

recent classic VAD methods is also included, while they are
listed here as a reference. From Table 1, we can draw the
following conclusions: (1) The proposed LBR-SPR solu-
tion consistently outperforms state-of-the-art UVAD meth-
ods by a notable margin under all configurations. Even for
the basic LBR-SPR without motion enhancement (ME), it
is able to achieve 4%-9% AUROC gain when only videos
from the testing set are used (partial mode). (2) Meanwhile,
LBR-SPR successfully bridges the gap between UVAD and
classic VAD. On these benchmarks, LBR-SPR can achieve
comparable or even superior performance to latest classic
VAD methods in most cases. (3) Taking motion cues into
consideration typically strengthens the performance of the
proposed method. In particular, motion enhancement (ME)
brings about 4.3% AUROC gain on Avenue dataset under
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Table 2. Influence of SPR on frame-level AUROC.

Mode Method Ped1 Ped2 Avenue SHTech

Partial LBR 79.7% 90.9% 90.4% 71.7%
LBR-SPR 81.1% 95.7% 92.8% 72.1%

Merge LBR 80.1% 91.8% 89.5% 71.7%
LBR-SPR 80.9% 97.2% 90.7% 72.6%

Target

Output
by LBR

Output by
LBR-SPR

Normality Anomaly

Figure 6. Reconstruction results for LBR and LBR-SPR.

partial mode, which even enables LBR-SPR to yield supe-
rior performance (92.8% AUROC) to state-of-the-art clas-
sic VAD methods. (4) The merge mode does not necessarily
produce better performance than the partial mode, e.g., on
UCSDped1 and Avenue. A possible reason is that normal
events in the training set are slightly different from those of
the testing set. Such a distribution shift distracts DNN from
reconstructing normality in the testing set, which may un-
dermine the normality advantage and UVAD performance.

4.3. Discussion

Role of Self-Paced Refinement. To demonstrate the im-
portance of SPR to our UVAD solution, we conduct an ab-
lation study that compares LBR and LBR-SPR under both
partial and merge mode. As suggested by results in Table 2,
SPR constantly brings tangible performance improvement
to the LBR baseline. In particular, SPR improves LBR by
4% to 5% AUROC on UCSDped2, as it contains a rela-
tively high proportion of anomalies. To provide a more in-
tuitive illustration, we further visualize some reconstruction
results of LBR and LBR-SPR in Fig. 6. As shown by the
figure, while LBR and LBR-SPR both reconstruct normal
foreground object and its optical flow satisfactorily, LBR-
SPR reconstructs anomalies in an obviously worse manner
than LBR, which makes anomalies more discriminative.

Sensitivity Analysis. In Fig. 7, we also conduct sensi-
tivity analysis on key parameters in our solution: (1) The
shrink rate r. For demonstration, we evaluate the perfor-
mance of LBR-SPR on UCSDped2 and ShanghaiTech when
r is varied between 0.001 and 0.01. As shown in Fig. 7,
variation of r produces up to 0.5% AUROC fluctuation,
which shows that the performance is not sensitive to r. (2)
Weights of anomaly scores (ωa, ωm). To facilitate analysis,
we simply fix ωm = 1 and vary ωa between 0.1 and 1 in
our experiments: On UCSDped2, LBR-SPR enjoys a stable
performance, while the AUROC drops by at most 1.1% on
ShanghaiTech when ωa increases. However, it is noted that

0.001 0.003 0.005 0.007 0.009
Shrink Rate r

0.90

0.95

1.00

A
U

R
O

C

UCSDped2

0.001 0.003 0.005 0.007 0.009
Shrink Rate r

0.70

0.75

ShanghaiTech

0.1 0.3 0.5 0.7 0.9
a

0.90

0.95

1.00

A
U

R
O

C

0.1 0.3 0.5 0.7 0.9
a

0.70

0.75

Figure 7. Parameter sensitivity analysis.

PRD RR SF LBR

0.6

0.8

1.0

A
U

R
O

C

UCSDped2

PRD RR SF LBR

0.6

0.8

1.0
ShanghaiTech

Figure 8. Other learning paradigms for UVAD.

LBR-SPR without ME still yields satisfactory performance.
Other Learning Paradigms. As we discussed in Sec.

3.2, normality advantage should also be observed in other
learning paradigms. To verify this, we test three additional
paradigms: Prediction (PRD), reverse reconstruction (RR)
and shuffling (SF). PRD aims to predict the final patch of a
STC/OFC by the remaining patches; RR aims to reconstruct
a STC/OFC from its reversed patch sequence; SF aims to
recover a STC/OFC with randomly shuffled patches. We
compare the performance of PRD/RR/SF with raw LBR on
UCSDped2 and ShanghaiTech. As shown in Fig. 8, other
paradigms also yield close or better AUROC, which unveils
the possibility to explore diverse paradigms for UVAD.
More discussion are presented in supplementary material.

5. Conclusion
In this paper, we first reveal the advantageous role of nor-

mality in DNN based reconstruction, which enables us to
propose LBR as a strong UVAD baseline. Based on LBR,
we design a novel SPR scheme to remove anomalies ac-
tively, while motion cues are also exploited to further boost
our solution. Our deep solution not only outperforms previ-
ous UVAD methods by a large margin, but also bridges the
performance gap between UVAD and classic VAD.
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