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Abstract—Albeit great success has been achieved in image defocus blur detection, there are still several unsolved challenges, e.g.,

interference of background clutter, scale sensitivity andmissing boundary details of blur regions. To deal with these issues, we propose a

deep neural networkwhich recurrently fuses and refinesmulti-scale deep features (DeFusionNet) for defocus blur detection.We first fuse

the features fromdifferent layers of FCNas shallow features and semantic features, respectively. Then, the fused shallow features are

propagated to deep layers for refining the details of detected defocus blur regions, and the fused semantic features are propagated to

shallow layers to assist in better locating blur regions. The fusion and refinement are carried out recurrently. In order to narrow the gap

between low-level and high-level features, we embed a feature adaptationmodule before feature propagating to exploit the complementary

information aswell as reduce the contradictory response of different feature layers. Since different feature channels are with different

extents of discrimination for detecting blur regions, we design a channel attentionmodule to select discriminative features for feature

refinement. Finally, the output of each layer at last recurrent step are fused to obtain the final result. We collect a newdataset consists of

various challenging images and their pixel-wise annotations for promoting further study. Extensive experiments on two commonly used

datasets and our newly collected one are conducted to demonstrate both the efficacy and efficiency of DeFusionNet.

Index Terms—Defocus blur detection, multi-scale features, feature fusing, channel attention

Ç

1 INTRODUCTION

AS a common phenomenon, defocus blur occurs when
objects in a scene are not within the camera’s depth of

focus. Defocus blur detection, which aims to detect the out-
of-focus regions from an image, has gained much attention
due to its wide range of potential applications such as image
quality assessment [36], [44], salient object detection [10],

[40], image deblurring [21], [29], defocus magnification [2],
[37] and image refocusing [52], [53], just list a few.

In the past decades, a variety of defocus blur detection
methods have been proposed. Based on the used image fea-
tures, thesemethods can be generally classified into two cate-
gories, i.e., traditional hand-crafted features based methods
and deep learning based methods. As to the former kind of
methods, they often extract features such as gradient and fre-
quency tomodel the edge changes since defocus blur usually
blunts object edges in an image[18], [23], [25], [28], [29], [33],
[41], [43], [54], [61], [62]. Although great advances have been
made by using traditional hand-craft features, thesemethods
are affected by a number of challenges. First, traditional low-
level features cannot distinguish well blurred regions which
do not contain structural information from in-focus smooth
regions. Second, these methods do not utilize global seman-
tic information which is critical for detecting low-contrast
focal regions (as shown in the red rectangular region of
Fig. 1a) and dealing with cluttered background (as shown in
the yellow rectangular region of Fig. 1a). In addition, the
edge information between in-focus regions and blurry
regions has not been well preserved (as shown in the green
rectangular region of Fig. 1a).

Recently, due to their strong feature extraction and learn-
ing capability, deep convolutional neural networks (CNNs)
have made remarkable advances in various computer vision
tasks, such as image classification [14], [32], object detection
[12], [17], object tracking [16], [27], [34], scene semantic seg-
mentation [19], [22], [56], image de-noising [11], [50] and
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super-resolution [4], [31]. As a result, CNNs have been used
for the detection of image defocus blur regions [38], [39]. In
[47], a pre-trained deep neural network and a general regres-
sion neural network are proposed to classify the types of
blurring and then estimate their parameters. By systemati-
cally analyzing the effectiveness of different defocus detec-
tion features, Park et al. [25] extracted deep and hand-crafted
features in image patches which contain sparse strong edges.
However, low-contrast focal regions are still not well distin-
guished. In addition, a series of spatial pooling and convolu-
tion operations result in losing much of the fine details of
image content. In [58], Zhao et al. proposed a multi-stream
bottom-top-bottom fully convolutional network (BTBNet),
which is the first attempt to develop an end-to-end deep net-
work for defocus blur detection. In BTBNet, low-level cues
and high-level semantic information are integrated to pro-
mote the final results and amulti-stream strategy is leveraged
to handle the sensitivity of defocus degree to image scales.
Although significant improvement has been attained by
BTBNet, it uses a forward stream and a backward stream to
integrate features from different levels at each image scale,
this leads to high computational complexity for both network
training and testing, and the complementary information of
different layers cannot been fully exploited. Consequently,
cluttered background cannot be dealt with properly. In
addition, some low-contrast focal areas are still mistakenly
detected as defocus blur regions. In this work, we propose a
novel efficient pixel-wise fully convolutional network for
defocus blur detection via recurrently fusing and refining
multi-scale deep features (DeFusionNET). Particularly, we
recurrently fuse and refine the discriminative deep features
across deep and shallow layers in an alternate and cross-layer
manner, then the complementary information of features
from different layers can be fully exploited for boosting defo-
cus blur detection performance.

This manuscript is a significant extension of the confer-
ence version [42], and it differs [42] with following addi-
tional contributions:

� Compared with the conference version, we newly
designed a channel attention module and integrated

it into the DeFusionNET for selecting discriminative
features to further boost the feature refining process.

� Considering that most of previous deep neural net-
works mainly integrate multiple level deep features
indiscriminately by commonly used operations such
as addition, concatenation and multiplication while
ignore the gap between different feature layers, we
introduce a feature adaptation module and embed it
into our network before feature propagating, which
is designed to exploit the complementary informa-
tion as well as reduce the contradictory response of
different layers.

� More experiments were conducted with new evalua-
tion criteria to evaluate and analyze the proposed
network. Results of the benchmarking methods on
different datasets will be publicly released for aca-
demic usage.

� A new dataset which consists of 150 challenging
images and their corresponding pixel-level annota-
tions was collected. The proposed network has been
successfully validated using both previous datasets
and our newly collected one. The newly collected
dataset will be made publicly available for further
academic research and evaluation.

2 RELATED WORK

As a sub-field of computer vision, defocus blur detection
has been widely investigated due to its important role in
many practical applications. Therefore, a variety of defocus
blur detection methods have been put forward, which can
be roughly categorized into two classes, i.e., hand-crafted
features based methods and deep learning based methods.
Following we give a brief review about these methods.

2.1 Hand-Crafted Features Based Methods

Since defocus blur usually degenerates object edges in an
image, traditional methods often extract features such as
gradient and frequency which can describe the change of
edges [3], [5], [35], [36], [37], [62]. Based on the observation
that the first few most significant eigen-images of a blurred
image patch usually have higher weights (i.e., singular val-
ues) than an image patch with no blur, Su et al. [33] detected
blur regions by examining the singular values for each
image pixel. Shi et al. [29] studied a series of blur feature
representations such as gradient and data-driven local fil-
ters features to enhance discriminative power for differenti-
ating blurred and unblurred image regions. In [23], Pang
et al. developed a kernel-specific feature to detect blur
regions of an image, the blur regions and in-focus regions
are classified using SVM. Considering that feature descrip-
tors based on local information cannot distinguish the just
noticeable blur reliably from unblurred structures, Shi et al.
[30] proposed a simple yet effective blur feature via sparse
representation and image decomposition. Yi and Eramian
[48] designed a sharpness metric based on local binary pat-
terns and the in- and out-of-focus image regions are sepa-
rated by using the metric. Since the blur can affect the
spectrum of an image, Tang et al. [41] designed a log aver-
aged spectrum residual metric to estimate the blur amount
of edge pixels, then an iterative updating mechanism is

Fig. 1. Some challenging cases for defocus blur detection. (a) Input
image, defocus blur detection map obtained by (b) LBP [48], (c) HiFST
[1], (d) BTBNet [58], (e) our DeFusionNet, and (f) ground truth (GT).
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proposed to refine the blur map from coarse to fine based on
the intrinsic relevance of similar neighbor image regions.
Golestaneh and Karam [1] proposed to detect defocus blur
maps based on a novel high-frequency multiscale fusion
and sort transform of gradient magnitudes. Xu et al. [46]
presented a fast yet effective approach to estimate the spa-
tially varying amounts of defocus blur at edge locations
based on maximizing the ranks of the corresponding local
patches, then the complete defocus map is generated by a
standard propagation procedure.

Hand-crafted feature based methods work well for
images with simple structures but are not effective enough
for scenes with complex contents. Therefore, extracting high
level andmore discriminative features are necessary.

2.2 Deep Learning Based Methods

Due to their ability in learning to extract hierarchical features,
deep CNNs based methods have refreshed the records of
many computer vision tasks [12], [16], [31], [32], [56], includ-
ing defocus blur detection [8], [13], [15], [20], [25], [57], [58],
[60]. In [25], high-dimensional deep features are first extracted
by using a CNN, then these features and traditional hand-
crafted features are concatenated together and fed into a fully
connected neural network for determining the degree of defo-
cus. Purohit et al. [26] proposed to train two sub-networks to
learn global context and local features respectively, then the
pixel-level probabilities estimated by the two networks are
aggregated and feed into a MRF based framework for blur
region segmentation. Zhang et al. [51] proposed a dilated fully
convolutional neural network with pyramid pooling and
boundary refinement layers to generate blur response maps.
In [20], Ma et al. demonstrated that the high-level semantic
information is critical for defocus identification. Considering
that the degree of defocus blur is sensitive to scales, Zhao et al.
[58] proposed a multi-stream bottom-top-bottom fully convo-
lutional network to integrate low-level cues with high-level
semantic information for defocus blur detection. Feature
aggregation [42] and ensemble networks [60] are also pro-
posed for this task. Lee et al. [15] produced a novel depth-of-
field dataset with synthetically blur for network training.
Although significant improvement has been obtained by
existing deep neural networks, there are still several issues
which make the detected results not satisfactory enough for
some subsequent tasks. First, most of previous deep neural
networks directly integrate multiple level deep features by

commonly used operations such as addition, concatenation
and multiplication, but ignore the gap between different lev-
els of features. Second, the high-level context features which
are critical for discriminating in-focus smooth regions may be
diluted as they pass on the top-down flow stream. Third but
not last, the redundancy existed in the high-level features is
not sufficiently suppressed while the channel-wise attention
is notwell exploited.

In this work, we propose an effective and efficient defo-
cus blur detection deep neural network via recurrently fus-
ing and refining multi-scale discriminative deep features
(DeFusionNET). Instead of directly refining the detection
score map as many previous deep CNNs based detection
methods do, we recurrently fuse and refine the features of
different layers in DeFusionNET. Particularly, a feature fus-
ing and refining module (FFRM) is designed to exploit the
complementary information of low-level cues and high-
level semantic features in a cross-level manner, i.e., features
from low-level layers are fused and used to refine features
extracted from high-level layers, and vice versa. Consider-
ing that directly integrating features from multiple layers
could ignore the gap between different feature layers, we
introduce a feature adaptation module and embed it into
our network to avoid the contradictory response of different
layers. Since different scales of receptive views produce the
features with different extents of discrimination, we design
and integrate a channel attention module after the feature
fusing at each step to select more discriminative features to
refine the layer-wise features. Note that different layers of a
CNN extract features at different scales of an image and the
degree of defocus blur is sensitive to image scales, we fuse
the detection score maps estimated from different network
layers at the last recurrent step to generate the final defocus
blur map. Experimental results demonstrate that the pro-
posed DeFusionNET performs better than other state-of-
the-art methods in terms of both accuracy and efficiency.

3 PROPOSED DEFUSIONNET

The proposed DeFusionNet takes an image as input and
output a defocus blur detection map with the same resolu-
tion as the input image. Fig. 2 shows the entire architecture
of DeFusionNET.

For an effective defocus blur detection network, it
should require both low-level cues and high-level semantic

Fig. 2. The pipeline of our DeFusionNET. The dark gray block represents the proposed FFRM module. For a given image, we first extract its
multi-scale features by using the basic VGG network. Then the features from shallow layers and deep layers are fused as FSHF and FSEF, respec-
tively. Considering the complementary information between FSHF and FSEF, we use them to refine the features of deep and shallow layers in a
cross-layer manner. The feature fusion and refinement are performed step by step in a recurrent manner to alternatively refine FSHF, FSEF and the
features at each layer (the times of recurrent step is empirically set to 3 in our experiments). In addition, the deep supervision mechanism is imposed
at each step and the prediction result of each layer are fused to obtain the final defocus blur map.
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information for generating the final accurate detected defo-
cus blur map. The low-level features can help refine the
sparse and irregular detection regions, while the high-level
semantic features can serve to locate the blurry regions as
well as suppress the impact of background clutters. In addi-
tion, there are often some smooth in-focus regions within an
object, the high-level semantic information produced by the
deep layers can avoid these regions being detected as blurry
regions. Furthermore, since the degree of defocus is sensitive
to image scales, the network should be capable of making
use of multi-scale features to improve the final results.
Finally, the network should be easily fine-tuned because
there are often no sufficient labeled defocus blur images for
training such a deep network.

Specifically, we choose the VGG network [32] as the
backbone feature extraction network and use the pre-
trained VGG16 model to initialize the network. First, we use
our network to extract a set of hierarchical features which
encode the low-level details and high-level semantic infor-
mation at different scales of an image. On the one hand,
since a series of spatial pooling and convolution operations
progressively reduce the spatial resolution of the initial
image, the fine details of image structure are inevitably
gradually lost, which is harmful for densely distinguishing
in-focus and out-of-focus image regions. On the other hand,
the high-level semantic features extracted by deep layers
can help to locate defocus blur regions. Therefore, how to
exploit the complementary information extracted from shal-
low layers and deep layers is critical for the detection of
defocus regions. As to the low-level and high-level feature
maps, they are both upsampled to the same size of the input
image by using the deconvolution operation and concate-
nate them together to form fused shallow features (FSHF)
and fused semantic features (FSEF), respectively. In order to
refine the detailed information of features at deep layers,
we aggregate the FSHF with each deep layer as FSHF
encompasses more details of image contents. In order to
facilitate the defocus blur region location information of fea-
tures at shallow layers, we also aggregate the FSEF with
each shallow layer as FSEF captures more semantic infor-
mation of image contents. The feature fusing and aggregat-
ing are recurrently carried out in a cross-layer manner.
Since features extracted from different layers are of different
spatial scales and the degree of defocus blur is sensitive to
image spatial scales, the detection score maps from different
layers are fused at the last recurrent step to generate the
final defocus blur detection map.

3.1 Feature Fusing and Refining Module (FFRM)

The success of deep CNNs owes to its strong capacity of
hierarchically extracting abundant semantic as well as fine
details information from different layers. As discussed afore-
mentioned, features from both shallow and deep layers are
important for defocus blur region detection. Therefore, we
need to integrate multi-level features to enhance the discrimi-
nation ability for defocus blur detection. In deep CNNs, deep
layers can capture highly semantic informationwhich describe
the attributes of image contents as a whole, while shallow
layers focus more on subtly fine details which represent
delicate structures of objects, directly fusing the features from
different layers for generating final detection results may not

be appropriate due to the noisy and redundant information. In
this work, we propose a feature fusing and refining module
which integrates high-level semantic features and low-level
shallow features separately and refines them in a cross-layer
manner. Fig. 3 shows the architecture of the proposed FFRM
model. In addition, there exist redundancy, complement as
well as contradictory response from the features extracted
from different layers, refining deep features by using com-
monly used operations such as addition, concatenation and
multiplication could ignore these information between differ-
ent layers. Therefore, we introduce and embed a feature adap-
tation module (FAM) before feature propagating to exploit the
complementary information as well as reduce the contradic-
tory response of different feature layers.

Supposing there are n total layers in the network, the first
m layers are regarded as shallow layers and the rest ones as
deep layers. For the feature maps generated from each shal-
low layer, we upsample them to the size of the input image
by using the deconvolution operation and concatenate them
together. Since different scales of receptive views produce
the features with different extents of discrimination, a chan-
nel attention module (CAM) which will be introduced in
the next subsection is added after the concatenated feature
maps to select more discriminative features. Then a convo-
lution layer with 1� 1 kernel is employed to to the discrimi-
native concatenated feature maps is used to generate FSHF.
The FSHF can be mathematically defined as follows:

FSHF ¼ ReLUðWl � CatðFw
1 ;F

w
2 ; . . . ;F

w
mÞÞ þ blÞ; (1)

where Fw
i 2 W �H � C denotes the weighted upsampled

feature maps from the ith layer with C channels; W �H is
the resolution of input image; Cat represents the concatena-
tion operation across channels; � represents convolution
operation; Wl and bl are the weights and bias of the convo-
lution that need to be learned during training and ReLU is
the ReLU activation function [14].

Similarly, the high-level semantic features are fused to
form FSEF as follows:

FSEF ¼ ReLUðWh � CatðFw
mþ1;F

w
mþ2; . . . ;F

w
n ÞÞ þ bhÞ:

(2)

Since FSHF encodes the fine details while FSEF captures
more semantic information of image contents, one can
directly fuse them to generate defocus blur maps. However,
this strategywould leadmany in-focus regions beingwrongly
detected as defocus regions. This is because the fused FSHF

Fig. 3. The architecture of the proposed feature fusing and refining
module (FFRM).
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still contains some in-focus details and FSEF also contains
some noisy semantic information. Directly using FSHF and
FSEF not only provides wrong guidance for defocus blur
region detection, but also harms the useful information origi-
nally contained in individual layers. To this end, we propose
to recurrently fuse and refine the layer-wise features in a
cross-layermanner.

In order to leverage the complementary advantages of
both shallow layers and deep layers, we aggregate FSHF to
each individual deep layer and aggregate FSEF to each indi-
vidual shallow layer. In such a cross-layer manner, the fea-
tures extracted from each layer can be refined step by step.
Specifically, since the features of shallow layers focus on the
fine detail information but lack of semantic information of
defocus blur regions, the FSEF can provide the needed high-
level information for the localization of defocus blur regions.
Similarly, as the features of deep layers capture semantic
information but lack of fine details, the FSHF can be used to
promote the fine details preservation. In the recurrent aggre-
gation process, the refined feature maps from shallow layers
and deep layers are fused again to generate refined FSHF
and FSEF, respectively. Then the refined FSHF and FSEF are
aggregated respectively to the feature maps from shallow
layers and deep layers in the next recurrent step.

In order to select the useful multi-level information with
respect to the features of each individual layer and reduce
the number of feature channels to the original number
before next aggregation, a convolutional layer is added to
the aggregated feature maps for each layer. The refined fea-
ture maps of each layer at the jth recurrent step can be for-
mulated as follows:

Fj
i ¼ ReLUðWj

i � CatðFj�1
i ; FSHFjÞ þ bj

iÞ i ¼ mþ 1; . . . ; n

ReLUðWj
i � CatðFj�1

i ; FSEFjÞ þ bj
iÞ i ¼ 1; . . . ; m

�
;

(3)

where Fj
i represents the feature maps for the ith layer at the

jth recurrent step. FSEFj and FSHFj represent the FSEF
and FSHF at the jth recurrent step, respectively. Wj

i and bj
i

represent the convolutional kernel and bias of the ith layer at
the jth recurrent step. In order to narrow the gap between
shallow and deep layers, we pass the FSEF and FSHF to a fea-
ture adaptation module at each recurrent step. The details of
FAMwill be presented in the Section 3.3.

3.2 Channel Attention Module (CAM)

Previous deep learning based defocus blur detection meth-
ods [25], [26], [51], [58], [59] ignore the possible bias of differ-
ent feature channels and regard different feature channels
contributing equally to the final result, which is not effective
in dealing with various types of information. In Figs. 4c and
4e, we show the first 36 channel-wise feature maps of the
concatenated low level shallow features and high level
semantic features in the first fusing step, respectively. As can
be seen, different feature channel contributes significantly
differently to the defocus blur detection task. On the one
hand, most of the feature channels in Fig. 4c capture the fine
details of image contents, e.g., the edges of the petals. On the
other hand, the feature maps in Fig. 4e usually focus on the
semantic information of the image, including in-focus areas
and the rest blurry parts, which can help discriminate low-

contrast in-focus regions. In addition, in both Figs. 4c and 4e,
there are many features that would contribute little to or
even impair the detection.

Therefore, we design a channel attention module to learn
the weights for adaptively rescaling channel-wise features
and integrate the CAM into DeFusionNet to boost the feature
refining process. Different to previous channel attention
model [49], [55] which only uses global average pooling to
capture the global statistics of feature maps, we use both
global average pooling (GAP) and global maximum pooling
(GMP) to aggregate global information, and design the CAM
in a dual manner. Fig. 5 briefly presents the architecture of
the proposed CAM. Given multiple channel-wise feature
maps, we first leverage GAP and GMP to convert channel-

Fig. 4. An intuitive representation of channel-wise feature maps their cor-
responding channel weights learned by the proposed CAM. (a) Input
image, (b) the ground truth of defocus blur detection map, (c) the first 36
channel-wise feature maps of the concatenated low level shallow fea-
tures in the first fusing step, (d) the corresponding channel weights of
the feature maps in (c), (e) the first 36 channel-wise feature maps of the
concatenated high level semantic features in the first fusing step, and (f)
the corresponding channel weights of the feature maps in (e), (g), and
(h) are the weighted feature maps of (c) and (e), respectively.
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wise global spatial features into vector descriptors, respec-
tively. In such a manner, the whole image can be represented
by the vector descriptors [6]. In our CAM, the GAP captures
the size of blurry regions, while GMP focuses on the defocus
intensity. Denoting F ¼ ½F1;F2; . . . ;FC � as the concatenated
feature maps with C channels, and the size of different chan-
nels isW �H. Then the channel-wise statistics (sga 2 RC and
sgm 2 RC) obtained through the GAP and the GMP opera-
tions. Specifically, the cth element of sga and sgm can be calcu-
lated as

sgac ¼ GAP ðFcÞ ¼ 1

H �W

XH
i¼1

XW
j¼1

Fcði; jÞ; (4)

and

sgmc ¼ GMP ðFcÞ ¼ maxfFcði; jÞg: (5)

Then, we merge the two attention vectors using element-
wise summation and leverage a simple gating mechanism
[6], [55] with a sigmoid function and the final channel
weights can be expressed as follows:

w ¼ fðWU � ðReLUðWD � sgaÞ þReLUðWD � sgmÞÞÞ;
(6)

where fð�Þ is the sigmoid gating function.WD andWU are the
convolution coefficients of channel-downscaling layer and
channel-upscaling layer, respectively (see Fig. 5). Then, the
finalweighted channel-wise featuremaps can bewritten as

Fw
c ¼ wc � Fc: (7)

In Figs. 4d and 4f, we intuitively show the channel weights of
the feature maps of Figs. 4c and 4e, respectively. As can be
seen, the proposed CAM can effectively learn different
weights for different feature channels. In Figs. 4g and 4h, we
show the weighted feature maps of Figs. 4c and 4e, which
validate that the learned channel weights can strengthen the
role of some important feature channels as well as weaken
the influence of some useless channels.

3.3 Feature Adaptation Module (FAM)

As done in our previous work [42], the FSEF and FSHF are
used to refine the features of shallow layers and deep layers,
respectively by directly using concatenation. Since features
extracted from shallow layers focus more on fine details of
an image while features extracted from deep layers capture
more semantic information, directly concatenating them
could ignore the gap between different feature layers since
the redundancy can not be sufficiently suppressed while the
complementary can not be effectively exploited. In addition,
there are some contradictory response of different layers,

which will dilute the semantic information by adding the
FSHF to deep layers, as well as damage the details by adding
the FSEF to shallow layers. Therefore, we design a FAM to
adjust FSEF and FSHF before feature refining. Since the oper-
ation for both FSEF and FSHF is symmetrical, we use the
same structure for FSEF and FSHF. Fig. 6 briefly presents the
architecture of the proposed FAM. The two convolution
layersmarked in the light green box are used to learn the fea-
ture weight of each position, and the FSEF/FSHF are
weighted by the learned weight maps. The first convolution
layer in the upper left of the light green box is a traditional
convolution operation for feature extraction, while the sec-
ond convolution layer in the lower right of the light green
box is used to learn the feature weight of each position. In
such manner, the FSEF/FSHF can be re-scaled, i.e., the com-
plementary information between different feature layers can
be enhanced, while the contradictory information can be
effectively reduced, by using the element-wise production.
After that, the adjusted features are added to original FSEF/
FSHF for generating the output of FAM, which is used for
cross-layer feature refining. The efficacy of FAMwill be vali-
dated in the experiments section.

3.4 Defocus Maps Fusing

Since the degree of defocus blur is sensitive to image scales,
multi-scale information is required for accurate defocus
blur detection. In [58], Zhao et al. proposed a multi-stream
strategy by fusing the detection results from different image
scales. However, this inevitably increase the computational
burden of the whole network. In this work, by considering
that different layers just extract features of the original
image in different scales, we impose a supervision signal to
each layer by using the deeply supervised mechanism [45]
at each recurrent step, then the output score maps of all the
layers at the last step are fused to generate the final defocus
blur map.

Specifically, we first concatenate the defocus blur maps
predicted from n different layers, then a convolution layer
is applied on the concatenated maps to obtain the final out-
put defocus blur mapB, which can be formulated as

B ¼ ReLUðWB � CatðBt
1;B

t
2; . . . ;B

t
nÞ þ bBÞ; (8)

where t denotes the last recurrent step; Bt
i denotes the pre-

dicted defocus blur map from the ith layer at the tth step;
WB and bB are the weight and bias of the convolution layer
on the concatenated defocus blur maps to learn the relation-
ship among these maps. Note that Hu et al. [7] used a similar
manner to aggregate deep features for saliency detection,

Fig. 5. The architecture of the proposed channel attention module
(CAM).

Fig. 6. The architecture of the proposed feature adaptation module
(FAM).
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but they did not distinguish features of shallow layers and
deep layers.

3.5 Model Training and Testing

Our network uses the VGG [32] as backbone and we imple-
ment it by Caffe [9]. We use conv1_2, conv2_2, conv3_3,
conv4_3, conv5_3 and pool5 of the VGG network to represent
the features of each individual layer, i.e., n ¼ 6 in DeFusion-
NET. The first three layers are regarded as shallow layers,
and the rest ones are set as deep layers, i.e.,m ¼ 3. In addition,
in order to enhance the discrimination capability of feature
maps at each layer, two more convolutional layers are
appended.More details will be found in the released code.

Training. The cross-entropy loss is used for each output of
this network during the training process. For the ith layer at
the jth recurrent step, the pixel-wise cross entropy loss
betweenBj

i and the ground truth blurmaskG is calculated as

Lj
iðuuÞ ¼ �

XW
x¼1

XH
y¼1

X
l2f0;1g

log PrðBj
i
ðx;yÞ¼ljuuÞ

�1ðGðx;yÞ¼lÞ

� �
; (9)

where 1ð�Þ is the indicator function. The notation l 2 f0; 1g
indicates the out-of-focus or in-focus label of the pixel at
location ðx; yÞ and PrðBj

iðx; yÞ ¼ ljuuÞ represents its corre-
sponding probability of being predicted as blurry pixel or
not. uu denotes the parameters of all network layers.

Based on Eq. (9), the final loss function is defined as the
loss summation of all immediate predictions

L ¼ �fLf þ
Xn
i¼1

Xt

j¼1

�j
iL

j
iðuuÞ; (10)

where Lf is loss for the final fusion layer; �f is the weight
for the fusion layer and �j

i represents the weight of the ith
layer at the jth recurrent step. In our experiments, we
empirically set all the weights to 1.

Our model is initialized by the pre-trained VGG-16
model and fine tuned on part of Shi et al.’s public blurred
image dataset [29], which consists of 1,000 blurred images
and their manually annotated ground truths. 704 of these
images are partially defocus blurred and the rest 296 ones
are motion blurred. We divide the 704 defocus blurred
images into two parts, i.e., 604 for training and the remain-
ing 100 ones for testing. Since the number of training images
is not enough to train a deep neural network, we perform
data augmentation by randomly rotating, resizing and hori-
zontally flipping all of the images and their corresponding
ground truths, and finally the training set is enlarged to
9,664 images. We train our model on a machine equipped
with an Intel 3.4 GHz CPU with 128G memory and 2 GPUs
(one Nvidia GTX 1080Ti and one Nvidia Titan Xp). We

optimize the whole network by using Stochastic gradient
descent (SGD) algorithm with the momentum of 0.9 and the
weight decay of 0.0005. The learning rate is initially set to
1e-8 and reduced by a factor of 0.1 at 5k iterations. The train-
ing batch size is set to 4 and the whole learning process
stops after 10k iterations. The training process is completed
after approximately 11.7 hours.

Inference. In the testing phase, for each input image, we
feed it into our network and obtain the final defocus blur
map. Only approximately 0.056s is needed for generating the
final defocus blur map for a testing image with 320� 320
pixels by using a single Nvidia Titan Xp GPU, which is very
efficient.

4 EXPERIMENTS

4.1 Datasets

As far as we know, there are only two public datasets avail-
able for evaluating the performance of pixel-level defocus
blur detection algorithms, they are as follows:

Shi et al.’s dataset [29] contains 704 partially defocus
blurred images with manually annotated ground truths.
Except for the first 604 images of this dataset used for train-
ing our network, the rest 100 ones are used for testing.

DUT [58] is a new defocus blur detection dataset which
consists of 500 images and their pixel-wise annotations.
This is a very challenging dataset since a large number of
images contain homogeneous regions, low contrast focal
regions and background clutter.

Based on our observations, in most of the images of
above mentioned two datasets, the foreground objects are
usually in-focus while the background is usually blurry,
which leads to the fact that the blur detection methods may
be biased to object regions and reduce to foreground/back-
ground segmentation. In reality, foreground objects with
strong semantic meaning may also be defocused. In addi-
tion, the content contained in the images of previous data-
sets are easy, nearly no complex background or foreground.
With these points in mind, we collect a new dataset
(referred to as CTCUG) which contains 150 images with
manual pixel-wise annotations. We invite five students to
manually annotate the defocus areas from each image and
the final annotated ground truths are obtained by averaging
the results from the five independently labelled masks. In
Fig. 7, we present some example images and their manually
annotated ground truths of our dataset. In the process of
collecting our dataset, we take the following challenging
settings into consideration:

1) In most of images, the background is in-focus while
the foreground regions are blurry (see the first three
columns of Fig. 7);

Fig. 7. Some example images and their annotated ground truths of the CTCUG dataset.
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2) For some scenes, we take a pair of images with dif-
ferent defocus areas. One of the image is with in-
focus background and out-of-focus foreground. The
other image is with out-of-focus background and in-
focus foreground (see the forth and fifth columns of
Fig. 7);

3) For the same class of objects, some of them are in-
focus while the others are out-of-focus (see the sixth
to eighth columns of Fig. 7);

4) The images are with complex background and the
in-focus area has low contrast (as shown by the last
two columns of Fig. 7).

These challenges will be validated in the latter subsec-
tion. Our newly collected dataset will be made publicly
available for further defocus blur detection researches.

4.2 Evaluation Metrics

Six widely-used metrics are used to quantitatively evaluate
the performance of the proposed model: precision-recall (PR)
curves, F-measure curves, the receiver operating characteris-
tic (ROC) curve, area under the ROC curve (AUC), F-measure
scores (Fb) andmean absolute error (MAE) scores. As an over-
all performancemeasurement, the F-measure is defined as

Fb ¼ 1þ b2
� � � precision � recall

b2 � precisionþ recall
; (11)

where b2 is set to 0.3 to emphasize precision. As neither pre-
cision nor recall measure evaluate the true negative saliency
assignments, we also use the mean absolute error as a com-
plementary. The MAE score calculates the average differ-
ence between the detected defocus blur map B and the
ground truthG, it is computed as

MAE ¼ 1

W �H

XW
x¼1

XH
y¼1

jBðx; yÞ �Gðx; yÞj; (12)

where H and W are the height and width of the input
image, respectively.

4.3 Comparison With the State-of-the-Art Methods

We compare our method against other 11 state-of-the-art
algorithms, including 5 deep learning-based methods, i.e.,
multi-scale deep and hand-crafted features for defocus esti-
mation (DHDE) [25], multi-stream bottom-top-bottom fully

convolutional network [58], deep blurmapping via exploiting
high-Level semantics (DBM) [20], defocus map estimation
using domain adaptation (DMENet) [15] and our previous
DeFusionNet without CAM and FAM (CVPR19) [42], and 6
classic defocus blur detection methods, including just notice-
able defocus blur detection (JNB) [30], discriminative blur
detection features (DBDF) [29], spectral and spatial approach
(SS) [41], local binary patterns (LBP) [48], classifying discrimi-
native features (KSFV) [24] and high-frequency multi-scale
fusion and sort transform of gradient magnitudes (HiFST) [1].
For all of these methods, we use the authors’ original imple-
mentationswith recommended parameters.

Quantitative Comparison. Table 1 presents the compared
results of MAE, F-measure and AUC scores. It is observed
that our method consistently performs favorably against
other methods on the three datasets, which indicates the
superiority of our method over other ones. In Figs. 8, 9 and
10, we plot the PR curves, F-measure curves and ROC
curves of different methods on different datasets. From the
results, we observe that our method also consistently out-
performs other counterparts.

Qualitative Comparison. Fig. 11 shows a visual comparison
of our method and other ones. As can be seen, our method
generates more accurate defocus blur maps when the input
image contains in-focus smooth regions and background
clutter. In addition, the boundaries of the in-focus objects can
be well preserved in our results. It should be noted that some
previous deep neural network based methods such as DBM
[20], DMENet [15] and BTBNet [58] can not obtain satisfac-
tory results. Since both DBM and BTBNet rely heavily on
high-level semantic information, there results loss a large
amount of fine details of region boundaries. DMENet aims to
estimate the defocus blur amount of different image regions,
therefore, some in-focus regions are wrongly detected as
slight blur regions. As to our DeFusionNet, both high-level
semantic information and low-level details are fully cap-
tured. Therefore, we can obtain better results with complete
blur regions. More visual comparison results can be found in
the online project page.1Running Efficiency.Since the coding
languages (Matlab, Python and C++) and running platforms
(CPU/GPU) are different among different methods, the
directly running timing comparison makes little sense, we

TABLE 1
Quantitative Comparison of F-measure, MAE and AUC Scores (The up-arrow " indicates the Larger Value Achieved,

the Better Performance is, While the down-arrow # indicates the Smaller, the Better)

Datasets Metric JNB DBDF SS LBP KSFV DHDE HiFST DBM DMENet BTBNet CVPR19 DeFusionNet

Shi et al.’s dataset
Fb " 0.797 0.841 0.787 0.866 0.733 0.850 0.856 0.917 0.914 0.892 0.917 0.925

MAE# 0.355 0.323 0.298 0.186 0.380 0.390 0.232 0.155 0.343 0.105 0.116 0.102
AUC" 0.594 0.594 0.613 0.603 0.541 0.613 0.619 0.638 0.637 0.831 0.836 0.844

DUT
Fb " 0.748 0.802 0.784 0.874 0.751 0.823 0.866 0.782 0.932 0.887 0.922 0.952

MAE# 0.424 0.369 0.296 0.173 0.399 0.408 0.302 0.279 0.314 0.190 0.115 0.082
AUC" 0.547 0.573 0.607 0.599 0.547 0.592 0.605 0.564 0.635 0.616 0.632 0.643

CTCUG
Fb " 0.724 0.740 0.741 0.805 0.607 0.811 0.785 0.832 0.845 0.827 0.891 0.899

MAE# 0.347 0.344 0.302 0.242 0.461 0.307 0.267 0.209 0.301 0.177 0.138 0.127
AUC" 0.648 0.626 0.664 0.653 0.573 0.680 0.657 0.678 0.694 0.672 0.693 0.705

1. http://tangchang.net
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only report our running time here. The full training process of
the DeFusionNet took only about 11.7 hours. As to the testing
phase, only one GPU (Nvidia Titan Xp) was used. The aver-
age running time for an image of different methods on the
three different datasets are 0.097s, 0.059s and 0.068s, respec-
tively. Note that nearly 5 days needed for training BTBNet
and approximately 25s is needed to generate the defocus blur
map for a testing image with 320� 320 pixels. By contrast,
our DeFusionNet ismore efficient.

Convergence Property of the Training Process. As stated in
Section 3.5, the whole learning process of the network stops
after 10k iterations. In order to validate the convergence
property of the whole training process, we plot the training
loss with different iteration times in Fig. 12. As can be seen,
the training loss goes stable after about 9,000 iterations.

Therefore, we stop the learning process of the network after
10k iterations for reliable estimation.

4.4 Ablation Analysis

Effectiveness of FFRM. In order to validate the efficacy of
FFRM, we change the network by fusing the feature maps
from all of layers to one group at each recurrent step, then
the fused features are used to refine the features of each
layer. We denote this network as noFFRM for comparison.
The F-measure, MAE and AUC scores on the three datasets
are shown in Table 2. As can be seen, our DeFusionNet with
FFRM module performs better than noFFRM, which dem-
onstrates that the cross-layer feature fusion manner can
effectively capture the complementary information between
shallow features and deep semantic features for improving

Fig. 8. Comparison of precision-recall curves, F-measure curves and ROC curves of different methods on Shi et al.’s dataset.

Fig. 9. Comparison of precision-recall curves, F-measure curves and ROC curves of different methods on DUT dataset.

Fig. 10. Comparison of precision-recall curves, F-measure curves and ROC curves of different methods on CTCUG dataset.
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the final results. In addition, noFFRM also performs better
than other previous methods, this also validates the efficacy
of our proposed network structure.

Effectiveness of CAM and FAM. In order to validate the effi-
cacy of CAM and FAM, we remove the module of CAM and
FAM from DeFusionNet at each recurrent step, then the rest
of the network (CVPR19) is the same as [42]. We also present
the F-measure,MAE andAUC scores of CVPR19 on the three
datasets in Table 2. The corresponding PR curves, F-measure
curves and ROC curves are plotted in Figs. 8, 9 and 10. As

can be seen, without CAM and FAM, the final results are
obviously degraded, which demonstrates the efficacy of the
CAM and FAM. In Fig. 13, we give some visual results with/
without CAM and FAM. As can be seen, with CAM and
FAM,DeFusionNet can focus on themost discriminative fea-
tures and weaken the influence of noisy features, which pro-
duces more pure detected results. In addition, inorder to
validate the efficacy of each single component, we only
remove CAM or FAM from DeFusionNet, and denote the
rest part as “with FAM andwithout CAM” (wFAMwoCAM)

Fig. 11. Visual comparison of detected defocus blur maps generated from different methods. The results demonstrate that our method consistently
outperforms other approaches, and produces defocus blur maps more closer to the ground truth.
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and “with CAM and without FAM” (wCAMwoFAM). The
corresponding F-measure, MAE and AUC scores on differ-
ent datasets are also shown in Table 2.

Effectiveness of GAP and GMP. In fact, both GAP and GMP
associate the feature maps with the final output. However,
GMP just focuses on the most important region of a feature
map while GAP focuses on every region of a feature map.
In practical, for human visual system, the in-focus objects in
an image attract more attention. On the one hand, GMP can

help the network select the most important region which rep-
resent in-focus part of an image. In such a manner, GMP
determineswhether a region is blurry, thus it reflects the defo-
cus intensity. On the other hand, GAP takes all of the regions
into consideration, it helps the network to distinguish differ-
ent blurry regions from an image, even the regions are with
different defocus intensity, therefore, it reflects the size of
blurry regions. In Fig. 14, we give two visual results of DeFu-
sionNet with/without GAP/GMP. As can be seen, our DeFu-
sionNet without GAP (denoted as noGAP) can suppress
some noisy regions, but the defocus blur regions are not com-
plete. On the contrary, our DeFusionNet without GMP
(denoted as noGMP) can detect the complete blurry regions,
but the results are mixed with some noisy regions. By using
bothGMP andGAP,DeFusionNet can detectmore pure defo-
cus blur regions from an image.

Effectiveness of the Final Defocus Maps Fusion. By consider-
ing that the degree of defocus in an image is sensitive to
image scales, we fuse the output of different layers at the
last recurrent step to form the final result. We also per-
form ablation experiments to evaluate the effectiveness of
the final fusing step. The final outputs of all the layers are
represented as DeFusionNet_O1, DeFusionNet_O2, DeFu-
sionNet_O3, DeFusionNet_O4, DeFusionNet_O5, DeFu-
sionNet_O6. We also show the F-measure, MAE and
AUC scores in Table 2. It can be seen that the fusing
mechanism effectively improves the final results.

Effectiveness of the Times of Recurrent Steps. In our DeFu-
sionNet, we fuse and refine the features of each layer in a
recurrent and cross-layer manner, the feature maps can be
improved step by step. In order to validate whether the fea-
tures can be improved in a recurrent manner, we report the
F-measure, MAE and AUC scores by using different times of
recurrent step in Table 3. In Fig. 15, we also give some visual
results of different time steps in Fig. 15. As can be seen from
Table 3 and Fig. 15, the more times of recurrent step, the bet-
ter results can be obtained. In addition, it should be noted
that DeFusionNet can obtain relatively stable results when

Fig. 12. Training loss with different iteration times.

TABLE 2
Ablation Analysis Using F-measure, MAE, and AUC Scores

Methods Shi et al.’s dataset DUT CTCUG

Fb MAE AUC Fb MAE AUC Fb MAE AUC

woFFRM 0.909 0.152 0.830 0.904 0.126 0.631 0.876 0.155 0.676
CVPR19 0.917 0.116 0.836 0.922 0.115 0.632 0.891 0.138 0.689
wFAMwoCAM 0.921 0.110 0.840 0.931 0.106 0.637 0.894 0.132 0.695
wCAMwoFAM 0.922 0.105 0.842 0.943 0.096 0.640 0.896 0.122 0.699
DeFusionNet_O1 0.913 0.115 0.828 0.932 0.114 0.631 0.894 0.133 0.688
DeFusionNet_O2 0.916 0.116 0.829 0.927 0.113 0.635 0.895 0.135 0.688
DeFusionNet_O3 0.917 0.116 0.831 0.928 0.114 0.636 0.893 0.132 0.689
DeFusionNet_O4 0.918 0.122 0.833 0.934 0.121 0.638 0.892 0.131 0.687
DeFusionNet_O5 0.917 0.114 0.829 0.933 0.112 0.632 0.896 0.132 0.693
DeFusionNet_O6 0.916 0.110 0.834 0.938 0.110 0.637 0.895 0.130 0.694
DeFusionNet 0.925 0.102 0.844 0.952 0.082 0.643 0.899 0.127 0.705

Fig. 13. Visual comparison of detected defocus blur maps generated by
DeFusionNet with/without CAM and FAM. The results demonstrate that
DeFusionNet can obtain more accurate results by using CAM and FAM.

Fig. 14. Visual comparison of detected defocus blur maps generated by
DeFusionNet with/without GMP/GAP.

TABLE 3
Ablation Analysis of the Times of Recurrent Steps (Step_k

Represents Using k Times of Recurrent Steps in DeFusionNet)

Recurrent Step Shi et al.’s dataset DUT CTCUG

Fb MAE AUC Fb MAE AUC Fb MAE AUC

Step_1 0.716 0.235 0.772 0.872 0.202 0.585 0.785 0.224 0.621
Step_2 0.899 0.121 0.820 0.913 0.122 0.627 0.859 0.176 0.676
Step_3 0.925 0.102 0.844 0.952 0.082 0.643 0.899 0.127 0.705
Step_4 0.925 0.101 0.845 0.952 0.081 0.644 0.899 0.125 0.706
Step_5 0.926 0.100 0.845 0.954 0.081 0.645 0.901 0.125 0.706
Step_6 0.926 0.100 0.846 0.954 0.080 0.645 0.901 0.125 0.707
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the times of recurrent is 3. Therefore, we empirically set 3
times of recurrent step in our experiments for the tradeoff
between effectiveness and efficiency.

4.5 Challenges of the New Dataset

As introduced in Section 4.1, in order to validate defocus
blur detection algorithms, we collect a new dataset CTCUG
by considering some challenging cases such as complex
background, in-focus areas with low contrast, in-focus back-
ground and out-of-focus foreground, and same class of
objects with different defocus condition. The last four rows
of Fig. 11 show some results obtained by different defocus
blur detection methods. As can be seen, nearly all of the
algorithms fail to well separate the defocus blur regions
from original input images. For example, in the forth row
from the last, some of plant leaves in the input images are
in-focus while some of plant leaves are out-of-focus, and all
of the plant leaves have the same color and texture, which
makes the separation of defocus blur regions difficult. There
are some complex background in the input image of the sec-
ond row from the last, the results of different methods are
also affected by the background clutter.

5 CONCLUSION

In this work, we propose a deep convolutional network
(DeFusionNet) for efficient and accurate defocus blur detec-
tion. First, DeFusionNet combines both shallow-layer fea-
tures and deep-layer features for generating the final high-
resolution defocus blur maps. Second, DeFusionNet fuses
and refines the features from different players in a cross-
layer manner, which can effectively capture the comple-
mentary information between shallow features and deep
semantic features. Finally, DeFusionNet obtains the final
accurate defocus blur map by fusing the outputs from all
the layers. By considering that different scales of receptive
views produce the features with different extents of dis-
crimination, we add a channel attention module after the
feature fusing at each step to select more discriminative fea-
tures to refine the layer-wise features. In order to narrow
the gap between different feature extraction layers, we
embed a feature adaptation module before In addition, in
order to promote further study and evaluation of different
defocus blur detection models, we collect a new dataset
consists of 150 challenging images and their pixel-wise
defocus blur annotations. Extensive experimental results
demonstrate that the proposed DeFusionNet consistently
outperforms other state-of-the-art methods in terms of both
accuracy and efficiency.
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