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Contrastive Multi-view Kernel Learning
Jiyuan Liu, Xinwang Liu, Senior Member, IEEE, Yuexiang Yang, Qing Liao and Yuanqing
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Abstract—Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be
linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the
views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores
complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view
Kernel — a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly
embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We
validate the method’s effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and
parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also
propose a contrastive multi-view clustering framework and instantiate it with multiple kernel k-means, achieving a promising
performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first
approach to use contrastive learning for a multi-view kernel learning.

Index Terms—Multi-view clustering, multiple kernel clustering, contrastive learning, kernel method, kernel function.
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1 INTRODUCTION

K ERNEL technique is a fundamental paradigm in ma-
chine learning that has received considerable attention

in real-world applications, such as image processing [1], [2],
object detection [3], [4] and gene prediction [5]. To group
the nonlinear-separable data, it defines an implicit kernel
mapping which maps them into a high-dimensional Hilbert
space where a clear decision boundary can be found [6].
Over the years, many kernel-based learning methods have
been developed. The representatives are Kernel Support
Vector Machines [6], Gaussian Processes [7] and Kernel k-
means Clustering [8].

One obvious drawback of the methods mentioned above
is that they can only handle data with a single kernel.
However, in most practical settings, the data are collected
from different sources/views. It would not make sense (nor
would it be possible in most cases) to perform prediction
without using all available information. For instance, lung
patients are often diagnosed with a combination of nucleic
acid test, blood test, and CT scan. In order to deal with
these multi-view data problems, plenty of methods have
been proposed [9], [10], with multiple kernel learning (MKL)
being one of the most popular methodologies [11], [12].
MKL first computes one or several kernel matrices for each
view and then aggregates the kernel matrices optimally for
the learning task.

Current multiple kernel algorithms can be roughly
grouped into three categories. Algorithms in the first cat-
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egory (known as early-fusion methods) directly learn a con-
sensus kernel or graph for the subsequent clustering or clas-
sification process [11], [13], [14], [15], [16]. Frequently, both
steps are unified into a single objective formulation, which
can be solved using alternating optimization. For instance,
Huang and Kloft et al. assume that the consensus kernel
can be parameterized into a weighted linear combination
of the pre-specified ones [13], [14], [17]. On this basis, Liu
et al. propose a matrix-induced regularization to dynami-
cally adjust the weights along with optimization, achieving
satisfactory performance improvement [15]. Then, Liu et al.
claim that the optimal kernel can be found in the proximity
of the weighted kernel combination [16]. Meanwhile, some
researchers propose to push the consensus kernel close
to each pre-specified kernel [18], [19]. Since kernel matrix
stores the pairwise similarities of the samples, it makes sense
to transform the kernel matrix into a graph, in which a
graph algorithm can be employed subsequently [20], [21].
Upon this assumption, Ren et al. compute candidate affinity
graphs from pre-specified kernels and learn the consensus
kernel and graph coherently [22]. Another category of MKL
methods (called late-fusion) first imputes multiple base parti-
tions from each kernel (e.g., using kernel k-means) and then
integrates the partitions into a unified one [23]. For instance,
Wang et al. maximize the alignment between the consensus
partition and the weighted combination of base partitions
[24]. In addition, we group the rest into the third category,
in which a hierarchical method also achieves promising
performance [25].

All the above methods concentrate on how to fuse pre-
specified kernels, but ignore that the kernel quality is a
performance bottleneck. In contrast, instead of using tra-
ditional kernel functions, we propose the Contrastive Multi-
view Kernel (CMK), a novel unsupervised kernel generation
paradigm to compute quality kernels by leveraging comple-
mentary information from the data views. It is inspired by
the paradigm of contrastive learning, and the key idea is
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Fig. 1. Generation paradigm of the Contrastive Multi-view Kernel on images. For ease of expression, we consider only RGB and Depth images as
the two data views. At the very beginning, the data xi and x′i are encoded into a unified space with two mapping functions fW1

(·) and fW2
(·).

Then, they are projected into a Hilbert space with an implicit kernel mapping ϕ(·). Here, two representations of each data sample are considered
as ’positive pairs’ (for which we want a high kernel similarity < φi,φ

′
i >) while disjointed data samples are considered as ’negative pairs’ (for which

we want low kernel similarity < φj ,φ
′
i >, thus promoting the diversity of the learned mappings). Note that the correlations between the samples

are partially plotted for simplicity of the picture. Finally, the kernel matrices of each view can be obtained as K1 and K2.

to promote a high similarity across views for a given data
sample while learning diverse and heterogeneous views.
The approach is illustrated in Fig. 1. First, we separately
encode the multi-view data into a unified (semantic) space
using their respective learned mapping functions. Second,
the obtained data representations are further projected into
an implicit Hilbert space. Here, the representations of any
two views of one (and the same) data sample are considered
as positive pairs, so their kernel similarities are maximized.
Meanwhile, the representations associated with two data
samples are treated as negative pairs, so their kernel sim-
ilarities are minimized. With updating the mapping func-
tions, the proposed contrastive multi-view kernel function
and corresponding kernel matrix of each data view can be
obtained finally.

In a large experimental study, we compare the CMK with
multiple types of traditional kernels, observing a promising
performance improvement. Note that the proposed kernel
functions share the types and parameters with traditional
ones, making them fully compatible with existing kernel
theory and applications. In other words, once the associated
variables are optimized, the CMK is able to be applied in
existing kernel methods, such as kernel SVM and kernel
k-means, without any extra cost. Nevertheless, we find it
can largely improve the performance of Multiple Kernel
Clustering (MKC) algorithms to jointly optimize the CMK
loss and theirs. On this basis, we propose a Contrastive
Multi-view Clustering framework and instantiate it with the
widely used Multiple Kernel k-means (MKKM), surpassing
state-of-the-art methods in experiment. To the best of our
knowledge, this is the first attempt at leveraging contrastive
learning for multi-view kernel learning and of exploring
kernel generation in a multi-view setting. Our work opens
the door to new avenues in future research on using con-
trastive learning in multi-view and kernel learning.

The rest paper is organized as follows. Section 2 in-
troduces two parts of closely related researches, including
traditional kernel generation and contrastive learning. Sec-
tion 3 presents the proposed CMK generation paradigm,
its implementation, instance, complexity analysis and large-

scale solution. In Section 4, we propose the Contrastive
Multi-view Clustering framework and instantiate it with
Multiple Kernel k-means. Experiment details, such as pa-
rameter setting, performance comparison and insights of
model building, are introduced and analyzed in Section 5.
At last, we make the conclusion in Section 7.

2 RELATED WORK

Since the proposed CMK leverages contrastive learning on
kernel generation, we briefly review the closely related
researches of the two domains.

2.1 Kernel generation

For a set of data samples {xi}Ni=1 drawn from a space
X ⊆ Rdx , a kernel method encodes them into a Reproducing
Kernel Hilbert Space H ⊆ RdH with an implicit kernel
mapping ϕ(·). Since the dimension of Hilbert spaceH could
be infinite, the mapping function ϕ(·) is hard to define
explicitly, making it impossible to compute corresponding
embeddings. Thanks to Mercer’s theorem [26], we can mea-
sure the product of vectors in space H with the kernel
function k(·, ·) in space X as

K [i, j] = ϕ(xi)
>ϕ(xj) = k(xi,xj), (1)

where [i, j] refers to the value in i-th row and j-th column
of target kernel matrix K. As a supplement, the widely used
kernel functions are partially listed in Table 1.

TABLE 1
Representatives of traditional kernel function.

Kernel Type Formulation

Gaussian exp(−‖xi − xj‖2/2σ2)

Linear ax>i xj + c

Polynomial (ax>i xj + c)d

Sigmoid tanh(ax>i xj + c)
Cauchy (‖xi − xj‖2/σ + 1)−1
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To deal with multi-view data, current multiple kernel
methods generate one or more kernels on each data view.
They usually focus on improving performance via exploring
more effective way to fuse discriminative information from
these kernels [11], [13], [14], [15], [16], but overlook the
fact that kernel quality is a bottleneck. There are also some
researches about how to choose the parameters in kernel
functions, such as [27]. However, they are out of our scope,
since the proposed CMK provides a new kernel generation
paradigm and shares the same types and parameters with
traditional kernel functions.

2.2 Contrastive learning

Contrastive learning is first proposed in [28] to address
deep visual representation learning problem. By substan-
tially promoting the representation capability of neural
networks, it attracts lots of interest from industry and the
research community [29], [30], [31], [32]. The idea beneath
contrastive learning is to learn discriminative embeddings
via maximizing the similarities between two random data
augmentations.

For data {xi}Ni=1, two separate data augmentation op-
erators are randomly selected from an augmentation fam-
ily T . As a result, 2N augmented samples are derived.
Then, a base encoder network f(·) is employed to map
them into latent representations {hi}2Ni=1. Subsequently, a
projection head g(·), which only consists of multiple linear
layers, is adopted to obtain {zi}2Ni=1. Denoting xj(i) as the
augmentation of the i-th data sample, contrastive learning
treats them as positive pair but the rest as negative pairs.
By maximizing the similarities between positive pairs and
minimizing those between negative pairs, it defines the
Normalized Temperature-scaled Cross Entropy Loss (NT-
Xent) as follows:

`i,j(i) = − log
exp(sim(zi, zj(i))/τ)∑2N

k=1 1k 6=i exp(sim(zi, zk)/τ)
, (2)

where 1k 6=i ∈ {0, 1} is the indicator function, τ denotes a
temperature parameter and

sim(zi, zj) =
z>i zj
‖zi‖‖zj‖

. (3)

Apart from NT-Xent, other types of loss function are tested
but achieve worse performances. In addition, Yeh et al.
propose to remove the positive pair in the denominator
of Eq. (2) and achieve better results [33]. By introducing
supervisory signals, Khosla et al. refine the loss in Eq. (2) by
labeling samples of the same class and their augmentations
as positive pairs [32].

3 CONTRASTIVE MULTI-VIEW KERNEL

We leverage the contrastive learning paradigm to multi-
view kernel learning. In the beginning, the CMK generation
paradigm and its implementation are described. Then, we
introduce five common instances of our general paradigm.
Finally, CMK’s complexity and large-scale solution are ana-
lyzed in detail.

3.1 Generation paradigm
Given a set of multi-view data {xv

i }
N,V
i,v=1 where xv

i ∈ Rdv ,
we first eliminate the dimension differences by encoding
them into a unified latent space Xh ⊆ Rd with mapping
functions fWv (·) via

hv
i = fWv (x

v
i ) = xv

i Wv, (4)

in which Wv ∈ Rdv×d. Denoting L2(·) as the L2-norm of a
vector, the normalized data representations can be obtained
via

zvi = fN (hv
i ) = hv

i / L2(h
v
i ). (5)

With ϕz(·) being an implicit but known kernel mapping,
such as Gaussian mapping, we project the representations
{zvi }

N,V
i,v=1 into corresponding Hilbert space H. As a con-

sequence, the overall kernel mapping of the v-th view is
obtained as

ϕv
c (x

v
i ) = ϕz(z

v
i ) = ϕz(fN (fWv

(xv
i ))), (6)

in which the resulting kernel function is

kvc (x
v
i ,x

v
j ) = kz(z

v
i , z

v
j )

= kz(fN (fWv
(xv

i )), fN (fWv
(xv

j ))),
(7)

where kz(·, ·) refers to the kernel function defined by kernel
mapping ϕz(·), shown as

kz(u,v) = ϕz(u)
>ϕz(v). (8)

Also, it is obvious that the kernel matrix of v-th view should
be

Kv
c [i, j] = kvc (x

v
i ,x

v
j ). (9)

As an arbitrary data view can be regarded as augmenta-
tion of the others semantically, we can naturally leverage
contrastive learning loss on multi-view theory [34], [35].
Similar to the unsupervised setting in [28], {xv

i }Vv=1 are
regarded as a positive pair, leaving the remaining pairs as
negative pairs. Thus, the loss of the i-th data sample in the
v-th view can be written as

`i,v =
1

V − 1

V∑
v′=1,v′ 6=v

− log
exp(kz(z

v
i , z

v′

i ))∑
j,v′′∈Ai,v

exp(kz(zvi , z
v′′
j ))

,

(10)
where

Ai,v = {1, 2, · · · , N} × {1, 2, · · · , V } \ {(i, v)}. (11)

It can be observed that we measure the similarity of sample
pairs with kernel function and directly maximize these of
positive pairs while minimize the rest. The overall loss is
implemented as

`c =
1

NV

N,V∑
i,v=1

`i,v. (12)

By minimizing the loss in Eq. (12), only variables {Wv}Vi=1

will be optimized, determining a unique kernel mapping
ϕv(·) in Eq. (6) and kernel matrix Kv in Eq. (9) for the v-
th view. Besides, we visualize the generation paradigm of
CMK in Fig. 1.

It is worth to note that the CMK refers to a unified
kernel paradigm and differs from each other by adopting
a different kernel mapping ϕz(·) in Eq. (6) and kernel
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Algorithm 1 The Contrastive Multi-view Kernel Generation
Paradigm

Input: Data {xv
i }

N,V
i,v=1

Output: Kernel mapping ϕv
c (·) and kernel function kvc (·, ·)

1: Initialize the mapping weights {Wv}Vv=1 randomly;
2: t = 0;
3: while t < epochs do
4: # forward
5: Compute the loss value `c in Eq. (12);
6: # back propagation
7: Compute the loss gradients ∂`c/∂Wv via Eq. (13);
8: Update {Wv}Vv=1 via Eq. (23);
9: t = t+ 1;

10: end while
11: Obtain the updated weights {Wv}Vv=1;

function kz(·, ·) in Eq. (7). For example, a Gaussian CMK
can be obtained when instantiating ϕz(·) and kz(·, ·) with
Gaussian kernel. More instantiation details are thoroughly
described in Section 3.4. Due to this pairwise correlation,
the CMK is proposed to compete with traditional kernels
correspondingly, such as Gaussian CMK v.s. Gaussian ker-
nel. Therefore, it can be utilized into a large set of kernel
methods to improve their performance, enjoying a promis-
ing application prospect.

3.2 Implementing the critic
In order to optimize the proposed model, we adopt the Gra-
dient Descent (GD) algorithm and compute the gradients on
variables {Wv}Vv=1 with chain rule as

∂`c
∂Wv

=
N∑
i=1

(
∂`c
∂zvi
· ∂zvi
∂hv

i

· ∂hv
i

∂Wv
). (13)

By utilizing Eq. (12), the gradient of `c with respect to zvi
can be decomposed into

∂`c
∂zvi

=
1

NV

N,V∑
i′,v′=1

∂`i′,v′

∂zvi
. (14)

For any target i0 and v0, we separate the sub-losses of Eq.
(12) into three groups, including `i0,v0

, {`i0,v}Vv=1,v 6=v0
and

{`i,v}N,V
i=1,v=1,i6=i0

. Correspondingly, Eq. (14) can be rewritten
as

∂`c
∂zv0i0

=
1

NV
(
∂`i0,v0
∂zv0i0

+
V∑

v=1,v 6=v0

∂`i0,v
∂zv0

i0

+

N,V∑
i=1,v=1,i6=i0

∂`i,v
∂zv0i0

).

(15)
Denoting

Bi,v =
∑

i′,v′∈Ai,v

exp(kz(z
v
i , z

v′

i′ )), (16)

Each item of Eq. (15) can be computed as follows:

1) For ∂`i0,v0
/∂zv0i0 , it holds that

∂`i0,v0
∂zv0i0

= − 1

V − 1

V∑
v=1,v 6=v0

∂kz(z
v0
i0
, zvi0)

∂zv0i0

+
∑

i,v∈Ai0,v0

exp(kz(z
v0
i0
, zvi ))

Bi0,v0
·
∂kz(z

v0
i0
, zvi )

∂zvi

(17)

2) For ∂`i0,v/∂zv0i0 , we can get

∂`i0,v
∂zv0i0

= − 1

V − 1
·
∂kz(z

v
i0
, zv0i0 )

∂zv0i0

+
exp(kz(z

v
i0
, zv0i0 ))

Bi0,v
·
∂kz(z

v
i0
, zv0i0 )

∂zv0i0

(18)

3) For ∂`i,v/∂zv0i0 , it is obvious that

∂`i,v
∂zv0i0

=
exp(kz(z

v
i , z

v0
i0
))

Bi,v
·
∂kz(z

v
i , z

v0
i0
)

∂zv0i0
(19)

Furthermore, denoting zj′ and hi′ as the j′-th and i′-th
element of zvi and hv

i , we can obtain

∂zvi
∂hv

i

= [
d∑

j′=1

∂zj′

∂h1
, · · ·

d∑
j′=1

∂zj′

∂hi′
, · · · ,

d∑
j′=1

∂zj′

∂hd
], (20)

where

∂zj′

∂hi′
= 1i′=j′(

d∑
k=1

h2k)
−1/2 + hi′hj′(

d∑
k=1

h2k)
−3/2 (21)

Additionally, the gradient of hv
i on Wv can be computed as

∂hv
i

∂Wv
= xv>

i (22)

By setting the learning rate to α, the updating of Wv is
written as

Wv = Wv − α
∂`c
∂Wv

. (23)

In summary, we present an overview of the CMK generation
paradigm in Algorithm 1.

3.3 Complexity and large-scale solution

In this section, we analyze the computation complexity
of the proposed CMK. Since the weights {Wv}Vv=1 are
optimized with the GD algorithm, the complexity is only
dependent on the gradient computation. To compute the
gradient ∂`c/∂Wv , one should compute Eq. (13), (15), (20)
and (22). Note that, the computation complexity of Eq.
(20) and (22) are only related to the dimension d of latent
representations, and therefore are ignored here. At the very
beginning, we pre-compute and store {Ci,v}N,V

i,v=1 with each
being

Ci,v =

N,V∑
i′,v′=1

exp(kz(z
v
i , z

v′

i′ )). (24)

Corresponding complexity is O(V 2N2). It is obvious that

Bi,v = Ci,v − exp(kz(z
v
i , z

v
i )), (25)

which prevents from duplicated computation of Bi,v in
Eq. (17), (18) and (19). In this way, the computation of
Eq. (15) by utilizing Eq. (17), (18) and (19) only requires
O(V N) complexity. Since ∂`c/∂Wv of Eq. (13) is the sum
of N items with each consisting of Eq. (15), its complexity
is O(V N2). To optimize the whole model, one needs to
compute {∂`c/∂Wv}Vv=1, resulting in the O(V 2N2) com-
plexity. Considering the aforementioned pre-computation,
the overall complexity is O(2V 2N2) which can be rewritten
as O(V 2N2).
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The aforementioned quadratic complexities prevent
CMK from handling with large-scale data. A direct and ef-
fective solution is to employ the Stochastic Gradient Descent
(SGD) strategy in the optimization where data are split into
batches. In specific, given a random batch of multi-view
data {xv

i }
Nb,V
i,v=1, corresponding loss can be accumulated in

Eq. (10) and (12) in which

Ai,v = {1, 2, · · · , Nb} × {1, 2, · · · , V } \ {(i, v)}. (26)

In this way, the computation complexity for each data batch
is O(V 2N2

b ). With t denoting the number of epochs, tN/Nb

data batches will be used in the model training. Therefore,
the overall complexity is O(tV 2NbN) = O(V 2N2

b · tN/Nb).
Since Nb << N in most neural network researches, we can
train the CMK model within a linear time.

Moreover, two techniques will also help mitigate the
large-scale problem. First, several deep learning packages
(including PyTorch and TensorFlow) can accelerate the Gra-
dient Descent algorithm using GPU computations. Second,
we can separate data into two splits and use one part to
train CMK’s parameters and the other part or all of them to
compute the kernel matrices.

3.4 Instantiation

It is obvious from Eq. (6) and (7) that the proposed CMK
mapping function ϕv

c (·) and kernel function kvc (·, ·) are
defined on the given ϕz(·) and kz(·, ·) which can be in-
stantiated with the widely-used traditional kernels. Here,
five common ones are concerned, including Gaussian, Lin-
ear, Polynomial, Sigmoid and Cauchy. Due to the implicit
property of mapping function, only the kernel function
definitions are presented in Table 1. Taking the Gaussian
kernel as an example, the instantiated CMK kernel function
of v-th view is

kvc (x
v
i ,x

v
j ) = exp(

−‖fN (fWv
(xv

i ))− fN (fWv
(xv

j ))‖2

2σ2
).

(27)
For the computation of Eq. (17), (18) and (19), we also

list gradients of the five kernel types in the following.

1) Gaussian:

∂kz(xi,xj)

∂xi
=

exp(−‖xi − xj‖2/2σ2)

σ2
· (xj − xi)

(28)
2) Linear:

∂kz(xi,xj)

∂xi
= xj (29)

3) Polynomial:

∂kz(xi,xj)

∂xi
= a(ax>i xj + c)d−1 · xj (30)

4) Sigmoid:

∂kz(xi,xj)

∂xi
= a(1− tanh2(ax>i xj + c)) · xj (31)

5) Cauchy:

∂kz(xi,xj)

∂xi
=

2

σ(‖xi − xj‖2/σ + 1)2
· (xi − xj)

(32)

4 CONTRASTIVE MULTI-VIEW CLUSTERING

Apart from the kernel generation paradigm, we propose to
unify the CMK generation into downstream kernel tasks
for the sake of improving their performance. Here, one
considers the Multiple Kernel Clustering (MKC) setting. At
the beginning, the proposed framework is introduced. Then,
we instantiate it with the widely used Multiple Kernel k-
means. Finally, an alternate strategy is designed to optimize
the resultant problem.

4.1 Framework
Existing MKC methods assumes the kernel matrices are
computed in advance and fixed during the clustering pro-
cess. Denote m ready-made kernels {Kp}mp=1, they prefer to
minimize a loss like

`K = gΘ({Kp}mp=1, F), s.t. gΘ ∈ G, (33)

where G is a class of objective functions and Θ represents
the extra temporary variables. Meanwhile, F is the target
hard label (RN×1) [36] or soft label (RN×k with k being the
number of class) [15], [19] and obtained via optimization.
Here, we propose to perform kernel clustering along with
CMK generation by defining the overall loss as

` = `c + λ`K. (34)

In Eq. (34), the two processes contribute to each other, i.e. the
CMK paradigm generates kernel matrices for the latter MKC
model to achieve a better performance; as a feedback, a
better MKC model motivates the generation of more specific
CMK matrices. In the experiments, we will show this unified
learning mode outperforms the separated one.

4.2 Instantiation
Without loss of generality, we instantiate the aforemen-
tioned contrastive multi-view clustering framework with
Multiple Kernel k-means (MKKM) [37], whose objective
function gΘ should be

m∑
p=1

βpTr
[
Kp(IN − FF>)

]
, s.t. F>F = Ik, (35)

in which βp is the weight of p-th kernel, Ik refers to the
identity matrix of size k and F ∈ RN×k is the target soft la-
bel. Therefore, we can obtain the model, named Contrastive
Multiple Kernel k-means (CMKKM) for brevity, as

` =
1

NV

N,V∑
i,v=1

`i,v + λ
1

N

V∑
v=1

βvTr
[
Kv

c (IN − FF>)
]

s.t. F>F = Ik,

(36)

where `i,v represents the loss of Gaussian CMK1. Here, we
consider the kernel function learning and Multiple Kernel
k-means task as two equally important parts and set λ = 1.
Also, βv is globally set to 1/V in order to balance the kernel
information from each data view. Note that, a large set
of MKC algorithms, apart from Multiple Kernel k-means,
can be unified in the proposed framework, showing its
generality.

1. In the following, we use Gaussian CMK in CMKKM by default.
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Algorithm 2 Contrastive Multiple Kernel k-means

Input: Data {xv
i }

N,V
i,v=1

Output: Data cluster assignment Y

1: Obtain the updated weights {Wv}Vv=1 via Algorithm 1;
2: t = 0;
3: while t < epochs do
4: # kernel clustering
5: Compute the kernel matrix {Kv

c}Vv=1 via Eq. (9);
6: Update the soft label F via Eq. (40);
7: # kernel function learning
8: Compute the loss value ` in Eq. (36);
9: Compute the loss gradients ∂`/∂Wv via Eq. (37);

10: Update {Wv}Vv=1 via Eq. (38);
11: t = t+ 1;
12: end while
13: Obtain the soft label F;
14: Obtain Y by performing k-means on F;

4.3 Optimization

In the optimization problem of Eq. (36), there are two
independent sets of variables, i.e. the weights {Wv}Vv=1 in
kernel functions {kvc (·, ·)}Vv=1 and the target soft label F. To
solve them, we design an alternate strategy in which one
variable is computed while the others are fixed.

For {Wv}Vv=1 with fixed F, Gradient Descent (GD) algo-
rithm is adopted, where their gradients are computed with
chain rule as

∂`

∂Wv
=

N∑
i=1

∂`

∂zvi
· ∂zvi
∂hv

i

· ∂hv
i

∂Wv
. (37)

Due to the space limit, we omit the detailed derivation here.
With setting the learning rate to α, the updating is shown as

Wv = Wv − α
∂`

∂Wv
. (38)

Once fixing {Wv}Vv=1, the CMK matrices {Kv
c}Vv=1 are

available and the problem can be transformed to

maxF Tr

[
V∑

v=1

Kv
cFF>

]
, s.t. F>F = Ik. (39)

Suppose ui and σi be the i-th pairwise eigen-vector and
eigen-value of matrix

∑V
v=1 Kv

c , the solution of F, by fol-
lowing [25], should be the horizontal concatenation of k
eigen-vectors as

F∗ = [ui′1
;ui′2

; · · · ;ui′k
]

s.t. {i′t}kt=1 ⊂ {1, 2, · · · , N},
(40)

where the corresponding {σi′t}
k
t=1 are the k largest out of N

eigen-values. Moreover, we present the overall optimization
strategy in Algorithm 2.

5 EXPERIMENT

In the following, we first introduce the used datasets and
then design experiments to validate effectiveness of the pro-
posed CMK generation paradigm and CMKKM algorithm.

TABLE 2
Details of the used datasets.

Dataset Type Number of
Samples Views Clusters

BBC multi-feature 2012 2 5
BBCSport multi-feature 554 2 5
CiteSeer multi-modal 3312 4 6
Cora multi-modal 2708 4 7
Movies multi-modal 617 2 17
AwA multi-feature 30475 2 50
CCV multi-modal 6773 3 20
NusWide multi-feature 23953 5 31
YtVideo multi-modal 101499 3 31
CropLand multi-modal 325834 2 7

5.1 Datasets
At the very beginning, we roughly define the two types of
multi-view data mentioned in the question as follows:

1) Multi-feature: This kind of data originates from a
single modality of target samples. In most cases,
they are extracted by designing multiple features.
For example, Scale-Invariant Feature Transform
(SIFT) and Histogram of Oriented Gradient (HOG)
features (two data views) can be extracted from a
RGB image (one modality).

2) Multi-modal: This kind of data consists of multiple
modalities of target samples. In most cases, they are
collected from multiple sensors, sources, etc., such
as the data comprised of x-rays plus blood tests
which is mentioned in this question.

Note that, apart from multi-modal, multi-feature is an another
classical type of multi-view concept. This can be proved by
the wide application of multi-feature datasets [10], [38], [39]
in multi-view literature.

In the following, we briefly introduce the view meanings
of the used datasets:

1) BBC2 [40] (multi-feature) is processed from docu-
ments of the BBC news website corresponding to
stories in five topics, i.e. business, entertainment,
politics, sport and technology. Each data view cor-
responds to a segment of the documents3.

2) BBCSport2 [40] (multi-feature) is processed from
documents of the BBC Sport website corresponding
to sport news in five topics, i.e. athletics, cricket,
football, rugby and tennis. Each data view corre-
sponds to a segment of the documents3.

3) CiteSeer4 [41] (multi-modal) contains four views, i.e.
content, inbound, outbound and cites, of the docu-
ments. There are 3707 words in content view and
4732 links in the other views.

4) Cora4 [41] (multi-modal) contains four views, i.e.
content, inbound, outbound and cites, of the doc-
uments. There are 1433 words in content view and
5492 links in the other views.

2. http://mlg.ucd.ie/datasets/bbc.html
3. http://mlg.ucd.ie/datasets/segment.html
4. https://lig-membres.imag.fr/grimal/data.html
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TABLE 3
Accuracy comparison of traditional kernel and CMK on kernel k-means. Trad. is the abbreviation of Traditional and Avg. refers to the average

kernel of all data views. At the same time, the best results are marked in bold.

Dataset View Gaussian Linear Polynomial Sigmoid Cauchy
Trad. CMK Trad. CMK Trad. CMK Trad. CMK Trad. CMK

BBC
1 86.48 93.99 86.63 94.43 86.53 93.79 86.88 93.24 86.33 93.89
2 86.23 93.89 86.38 93.79 86.23 93.04 86.48 92.20 85.88 94.14
Avg. 91.45 93.99 91.00 94.23 91.50 93.99 91.30 93.89 91.35 93.89

BBCSport
1 89.89 93.01 90.44 82.35 89.71 88.60 92.46 82.17 89.15 94.30
2 73.53 93.01 87.50 91.54 74.08 88.60 87.13 81.99 86.03 94.49
Avg. 90.07 93.01 90.07 91.54 89.89 88.60 91.36 81.80 90.44 94.49

CiteSeer

1 26.54 52.69 34.42 55.34 27.11 53.32 27.72 51.33 26.75 51.75
2 44.96 54.53 45.11 57.04 45.11 53.56 44.69 52.60 45.08 53.96
3 22.68 38.62 23.88 38.44 22.13 38.50 22.52 37.80 21.35 37.71
4 27.39 43.21 28.77 42.33 27.32 43.63 25.09 39.22 24.18 41.03
Avg. 27.32 54.05 43.45 56.37 45.86 53.29 43.90 53.02 23.16 53.53

Cora

1 32.79 56.06 44.24 58.27 32.75 59.34 46.05 63.66 32.90 57.16
2 34.31 61.48 34.45 66.06 34.34 54.73 34.49 64.03 34.31 61.30
3 31.09 41.36 30.06 41.47 31.28 38.40 31.94 36.34 24.00 42.10
4 32.98 55.02 37.11 51.26 33.09 57.53 39.25 44.09 32.94 51.77
Avg. 28.66 62.11 45.20 58.83 43.54 54.65 47.97 64.73 28.40 61.41

Movies
1 27.07 29.01 28.53 26.74 26.58 29.98 27.88 30.31 28.53 29.50
2 19.94 29.34 20.26 26.74 20.75 29.50 22.69 27.07 20.42 29.66
Avg. 26.26 29.82 25.45 29.34 26.09 31.28 27.71 29.17 28.36 29.98

AwA
1 6.59 7.26 6.63 6.69 6.65 7.42 6.43 6.47 6.61 6.51
2 6.22 7.07 6.09 6.53 6.14 7.22 6.00 6.00 6.62 6.37
Avg. 6.72 7.79 6.42 7.06 6.42 7.74 6.77 6.96 6.77 6.63

CCV

1 19.40 21.66 18.13 19.15 19.09 17.58 16.89 17.82 19.19 23.68
2 21.38 23.45 20.40 22.86 20.79 21.70 20.91 24.02 21.51 26.03
3 18.19 23.52 17.89 17.73 17.89 18.96 16.85 17.84 17.76 23.08
Avg. 24.36 25.93 24.38 24.58 24.39 22.65 23.87 23.43 23.53 27.52

NusWide

1 12.55 18.40 11.09 12.66 12.67 13.79 11.13 10.98 12.77 12.32
2 11.28 20.23 9.91 10.69 10.58 11.84 9.54 9.99 10.94 11.26
3 10.72 17.01 9.96 11.14 10.09 11.92 9.74 10.88 10.95 11.15
4 11.47 22.15 10.95 11.40 11.08 12.14 10.39 12.01 11.33 10.27
5 10.32 10.60 9.90 10.96 9.94 11.59 9.41 11.32 10.09 9.91
Avg. 14.35 14.11 13.64 12.85 13.91 14.17 13.36 14.07 14.01 12.21

YtVideo

1 10.81 20.98 10.85 22.94 10.49 31.18 7.73 14.94 11.23 18.57
2 52.70 61.44 53.63 61.82 52.17 64.29 37.06 54.90 38.72 62.43
3 11.50 30.48 11.65 33.65 11.63 40.43 11.21 23.43 11.63 23.90
Avg. 32.06 55.50 37.61 52.47 33.29 67.67 8.87 54.04 27.92 52.71

CropLand
1 43.59 57.97 43.60 58.11 43.58 67.59 43.12 37.65 43.57 57.35
2 50.20 58.41 50.20 62.07 50.21 59.08 40.22 59.93 50.20 56.91
Avg. 59.19 68.03 58.90 70.90 59.09 72.09 47.62 66.39 59.92 63.55

5) Movies4 [41] (multi-modal) is extracted form IMDb5

to have two data matrices with the first describing
the movie keywords while the second describing the
movie actors.

6) AwA6 [42] (multi-feature) consists of animal images
with pre-extracted feature representations. Note we
only use the Color Histogram and Local Self-
Similarity features here.

5. https://www.imdb.com
6. https://cvml.ist.ac.at/AwA/

7) CCV7 [43] (multi-modal) consists of three popular
data features, including SIFT, Spatial-Temporal In-
terest Points (STIP), and Mel-Frequency Cepstral
Coefficients (MFCC), where the first two are ex-
tracted from visual modality and the last is from
audio modality.

8) NusWide8 [44] (multi-feature) extracts five features,
including Color Histogram (CH), Color Correlo-

7. https://www.ee.columbia.edu/ln/dvmm/CCV/
8. https://lms.comp.nus.edu.sg/wp-content/uploads/2019/

research/nuswide/NUS-WIDE.html
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gram (CORR), Edge Direction Histogram (EDH),
Wavelet Texture (WT) and Color Moments (CM),
from a large set of web images.

9) YtVideo9 [45] (multi-modal) extracts a set of visual,
audio and text features from Youtube game videos.
Here, we use HOG (visual), MFCC (audio), Latent
Dirichlet Allocation (LDA) [46] (text) features.

10) CropLand10 [47] (multi-modal) collects a large vol-
ume of images by RapidEye satellites (optical) and
the Unmanned Aerial Vehicle Synthetic Aperture
Radar (UAVSAR) system (Radar) over an agricul-
tural region near Winnipeg, Manitoba, Canada on
2012. Correspondingly, two features are extracted.

Overall, we summarize the dataset specifications in Table 2.

5.2 CMK: kernel quality improvement
To evaluate the kernel quality, we adopt three common
clustering metrics by applying standard kernel k-means on
the generated kernels. The metrics are Accuracy (ACC),
Normalized Mutual Information (NMI) and Purity. Their
definitions are detailed in Appendix. We also generate tra-
ditional kernels and CMK with the same set of parameters
as shown in Table 4 to ensure the fairness of comparison.
Additionally, the dimension of latent representations d and
the learning rate α are set to 128 and 1.0 globally 11.

TABLE 4
Parameters of traditional kernel and CMK.

Kernel Type Parameter setting

Gaussian σ = 1
Linear a = 1, c = 0
Polynomial a = 1, c = 1, d = 2
Sigmoid a = 1, c = 1
Cauchy σ = 1

For the small-scale datasets, including BBC, BBCSport,
CiteSeer, Cora and Movies, we adopt the GD optimization
strategy, while SGD strategy with batch size 1024 is em-
ployed on AwA, CCV, NusWide, YtVedio and Cropland. In
experiment, we apply kernel k-means on both traditional
kernel and CMK of the ten datasets. Note that, for YtVideo
and CropLand, Nyström technique [48] is employed to pre-
vent from memory error. In specific, corresponding accuracy
comparison is presented in Table 3, where the best results
are marked in bold. We make the following observations.

1) CMK generation paradigm improves the kernel
quality to a large extent. For example, it promotes
about 5%, 6%, 20%, 23%, 3%, 1%, 3%, 5%, 15% and
10% accuracy of Gaussian kernel on ten datasets,
respectively.

2) The results on some datasets and settings decrease,
especially for the small-scale datasets, i.e. BBCSport
and Movies. This may be caused by the random

9. https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+
Video+Games+Dataset

10. https://archive.ics.uci.edu/ml/datasets/Crop+mapping+
using+fused+optical-radar+data+set

11. We do not tune any parameter in experiment for practicality.

initialization of mapping weights Wv in Eq. (4). In
the optimization, we use the Gradient Descent algo-
rithm which may stop on bad local minimums. This
problem can be eased by adopting a more robust
optimization strategy, such as Adam [49]. Moreover,
this may also be affected by the over-fit problem
as discussed in section 5.4. Some performance de-
creases are also observed on Cauchy CMKs on AwA
and NusWide. But it can be observed that they
are much smaller than the improvements in other
settings.

3) Accuracies of Gaussian and Linear CMKs consis-
tently outperform those of traditional kernels, while
the others are not. We leave this in future research.

4) The average kernel (average of several traditional
kernels) has often been observed to be a simple
yet tough baseline in kernel learning [35]. The rea-
son is that averaging kernels integrates cross-view
information. Nevertheless, CMK outperforms the
traditional average kernel in most cases.

Nevertheless, the NMI and Purity values follow a similar
trend and are shown in Appendix. Overall, we can conclude
that the proposed CMK generation paradigm can improve
kernel quality compared with traditional kernel generation
approaches.

5.3 CMK: downstream task

Since the proposed method is a kernel generation paradigm,
we also validate its effectiveness via comparing the per-
formances of multiple kernel methods on CMKs and tra-
ditional kernels. The competing methods are:

1) MKKM [13] extends the well-known fuzzy c-means
algorithm with multiple kernel learning framework,
where the weights among kernels are adjusted au-
tomatically.

2) RMKC [18] proposes to clean the noise of input
kernels and then aggregates them into a robust and
low-rank consensus one.

3) RMKKM [50] performs robust k-means with an
appropriate consensus kernel which is learned from
a linear combination of input kernels. Meanwhile,
all the variables are encapsulated by the non-smooth
L2,1-norm.

4) MKCMR [15] proposes a matrix-induced regular-
ization to reduce the redundancies among kernels
and improve the kernel diversity.

5) ONKC [51] finds that the representation capability
of consensus kernel is limited by decomposing it
into a linear weighted kernel combination. Thus, it
locates the optimal kernel in the neighborhood area.

6) LFAM [24] first computes the base partition of each
data view, then aligns them with a consensus parti-
tion, at last applies k-means to obtain the labels.

In addition, we use the codes which are publicly available
on authors’ websites. Also, corresponding parameters are
grid-searched in the recommended ranges, and the best
results are reported. Moreover, we inherit the settings in
section 5.2 to generate kernel matrices.
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TABLE 5
Accuracy comparison of traditional kernel and CMK on classical multiple kernel methods. Trad. is the abbreviation of Traditional. At the same time,

the best results are marked in bold.

Dataset Alg. Gaussian Linear Polynomial Sigmoid Cauchy
Trad. CMK Trad. CMK Trad. CMK Trad. CMK Trad. CMK

BBC

MKKM 91.45 93.99 91.00 94.23 91.55 93.99 91.30 93.84 91.35 93.89
RMKC 91.45 93.99 91.00 94.23 91.55 93.99 91.30 93.89 91.35 94.14
RMKKM 91.80 92.94 91.90 93.89 91.95 93.69 90.76 92.64 92.54 93.39
MKCMR 91.45 94.04 91.00 94.23 91.55 93.99 91.40 93.99 91.35 93.94
ONKC 91.60 94.04 91.00 94.23 91.55 93.99 91.40 93.99 91.35 93.94
LFAM 91.80 94.23 91.25 94.23 91.55 93.99 91.35 93.89 91.35 93.89

BBCSport

MKKM 90.07 93.01 90.07 91.36 89.89 88.60 91.36 81.80 90.44 94.49
RMKC 90.07 93.01 90.07 91.54 89.89 88.60 92.46 82.17 90.44 94.49
RMKKM 88.42 96.32 95.59 96.32 90.07 96.51 97.24 94.85 77.02 96.32
MKCMR 90.07 93.01 90.07 91.54 90.07 88.60 91.36 81.80 90.44 94.49
ONKC 90.26 93.01 90.07 91.54 90.07 88.60 91.36 81.80 90.44 94.49
LFAM 90.81 93.01 90.81 91.54 90.26 88.60 91.54 81.80 90.44 94.49

CiteSeer

MKKM 23.22 54.05 47.89 57.19 44.72 53.41 43.42 53.35 23.16 53.05
RMKC 45.35 54.53 43.33 56.37 45.92 53.35 43.93 53.08 49.82 54.11
RMKKM 25.69 58.27 58.33 55.68 49.12 52.81 59.78 52.11 23.22 58.15
MKCMR 46.62 54.44 47.86 57.40 45.65 53.35 44.69 53.44 46.04 53.80
ONKC 34.72 54.50 49.40 57.49 49.37 53.32 49.82 54.35 27.87 54.08
LFAM 43.45 54.05 43.60 56.37 46.59 53.35 43.96 53.26 33.06 53.74

Cora

MKKM 28.43 57.39 46.20 66.62 44.13 65.14 48.45 64.44 28.58 59.08
RMKC 34.49 58.97 45.90 59.01 43.61 59.27 47.78 64.81 36.41 57.20
RMKKM 30.10 67.43 46.05 68.32 46.20 70.72 41.88 66.25 29.69 61.41
MKCMR 44.24 61.89 46.16 66.62 43.39 66.17 48.97 64.51 42.76 60.93
ONKC 35.56 62.78 51.62 66.58 46.82 66.06 54.84 65.77 33.27 63.00
LFAM 30.98 62.19 45.68 66.43 43.57 66.29 48.26 65.69 32.75 61.71

Movies

MKKM 28.20 29.34 29.50 28.53 27.88 28.04 27.39 28.69 25.77 30.47
RMKC 27.23 30.31 25.45 29.98 28.36 31.12 25.93 31.12 27.23 31.28
RMKKM 25.28 32.58 27.71 34.85 25.77 30.96 31.93 31.28 25.93 33.55
MKCMR 26.58 30.63 28.04 30.15 28.04 29.98 29.17 31.60 28.36 30.47
ONKC 29.01 31.77 29.01 31.60 28.53 33.39 30.63 31.28 28.85 32.09
LFAM 26.09 30.15 26.26 30.47 26.74 30.96 26.26 30.96 28.20 31.12

Since the aforementioned multiple kernel methods are
of cubic complexity, we only test them with the traditional
kernels and CMKs of BBC, BBCSport, CiteSeer, Cora and
Movies. Corresponding accuracies are presented in Table 5.
Three observations can be obtained as follows:

1) Multiple kernel methods on Gaussian, Linear and
Cauchy CMKs consistently outperform those on
traditional kernels. For Gaussian CMKs, about 2%,
4%, 21%, 26% and 3% accuracy improvements are
observed, demonstrating its effectiveness.

2) Although CMK shows weaker performances on a
few settings (such as BBCSport + Polynomial), the
gaps are relatively small. Meanwhile, CMK exceeds
the traditional kernels in most Polynomial and Sig-
moid settings.

3) The results of multiple kernel methods establish a
similar tendency with kernel quality evaluation in
Table 3, especially for the decreases of Linear CMK
on Movies, Polynomial CMK on BBCSport, and
Sigmoid CMK on BBCSport. This may be improved
by adopting other optimization strategies.

Overall, CMK generation paradigm can effectively promote

the performance of downstream tasks. Furthermore, the
NMI and Purity values follow a similar trend and are
presented in Appendix due to space limit.

5.4 CMK: insights of model building

In this section, we explore two extra properties of the CMK
generation paradigm in the kernel learning process. Specif-
ically, we apply kernel k-means on the generated kernels
and record corresponding performances by epoch. For ease
of expression, performance of the average Gaussian CMK on
BBC, along with the loss value, is shown on the left of Fig. 2.
It can be observed that the loss value continuously decreases
in the training process. Meanwhile, accuracy, NMI, and
purity increase with an opposite tendency. We can conclude
that minimizing the loss function helps improve the kernel
quality, demonstrating the consistency between loss design
and our motivation.

We also visualize the differences among kernels and
latent representations at each epoch in the middle of Fig. 2.
Similarly, Gaussian CMK on BBC is taken for an instance.
We can discover that their differences dramatically drop
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Fig. 2. Temporary measurements in model building, including loss value, performances, kernel difference and representation difference, by the
example of Gaussian CMK on BBC and BBCSport, respectively.

Epoch 1 Epoch 3 Epoch 5 Epoch 100

Fig. 3. Visualization of the Gaussian CMK on the 1st view of BBC dataset in the learning process before 100 epochs.

TABLE 6
Accuracy comparison among classical MKC methods, CMK+ and CMKKM. Here, CMK+ refers to conducting kernel k-means on average

Gaussian CMK. At the same time, the best results are marked in bold.

Dataset MKKM RMKC RMKKM MKCMR ONKC LFAM CMK CMKKM

BBC 91.45 91.45 91.80 91.45 91.60 91.80 93.99 95.08
BBCSport 90.07 90.07 88.42 90.07 90.26 90.81 93.01 96.88
CiteSeer 23.22 45.35 25.69 46.62 34.72 43.45 54.05 60.93
Cora 28.43 34.49 30.10 44.24 35.56 30.98 62.11 68.28
Movies 28.20 27.23 25.28 26.58 29.01 26.09 29.82 33.06

from the top, then remain stable at constants, which can
be explained in two-folds:

1) The decrease illustrates that minimizing the CMK
loss motivates mapping functions to push the latent
representations of different data views towards a
consensus.

2) The stability at constants demonstrates that the
learned latent representations keep view-specific in-
formation.

The decrease and stability are two consistent, instead of
opposite, concepts in multi-view learning. In the fusion of
multi-view data, we expect to not only enhance discrimi-
native information of the shared part, but also encourage
each view to hold view-specific information as a supplement
for the shared. Results on BBC in Fig. 2 well achieve this
expectation, indicating an effective learning state.

One potential problem of CMK may be that CMK can
overfit on small-scale datasets. To further analyze this risk,
we plot the kernel and representation differences of Gaus-
sian CMK on BBCSport (shown on the right of Fig. 2). We
observe that the differences decrease to zero. This means

that the mapping functions encode multiple data views
into the same latent representations, failing to balance the
learning of shared information and the preservation of view-
specific information, as discussed in section 5.4. But it is
noteworthy that CMK outperforms traditional kernels even
in this setting, as shown in Tables 3 and 5. We leave the more
detailed study of this problem to future work.

We also visualize the Gaussian CMKs on the 1st view
of BBC dataset before 100 epochs in Fig. 3. Since the ele-
ment of CMK measures the similarity between latent data
representations, we can see that the cluster structure of data
samples are gradually enhanced along with model learning,
verifying the effectiveness of CMK design.

5.5 CMKKM: performance improvement

To validate the benefits of jointly conducting CMK gen-
eration and kernel clustering (`c and `K in Eq. (34)), we
compare the accuracies between CMKKM and CMK+ in
Table 6. Note that CMK+ refers to conducting kernel k
-means on average Gaussian CMK, which differs from
CMKKM only at whether MKKM loss `K are employed
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Fig. 4. Accuracy variations respect to the dimension d of latent representations. The solid line represents different CMK types, while the black dotted
line refers to the best result of traditional kernels.
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Fig. 5. Temporary measurements in model building, including loss value
and performances, by the example of Contrastive Multiple Kernel k-
means with Gaussian CMK on BBC and CiteSeer, respectively. The
dashed line indicates corresponding loss is plotted for better under-
standing but not employed in the optimization.

in optimization. It can be seen that CMKKM outperforms
CMK+ by 1.09%, 3.87%, 6.88%, 6.17% and 3.24% on five
benchmark datasets, respectively. This ablation study well
verifies our proposal of CMKKM and contrastive multi-
view clustering framework.

Nevertheless, we compare the experiment results of
CMKKM with that of six representative MKC methods. It
can be observed in Table 6 that CMKKM exceeds the best of
comparative methods by 3.28%, 6.07%, 14.31%, 22.04% and
4.05%, demonstrating its effectiveness. By the way, CMK+

also achieves promising results compared with the nine
methods, which well illustrates the quality improvement of
CMK.

5.6 CMKKM: insights of model building

By exploring the phenomenons in CMKKM model building,
we, in the following, try to explain why unifying CMK
generation with MKC task can help improve the cluster-
ing performance. In specific, two temporary measurements,
including loss value and accuracy, are recorded in CMKKM
optimization and the ones on BBC and CiteSeer are shown
in Fig. 5. The model building is separated into two stages,
i.e. CMK generation of the first 100 epochs (minimizing only
`c in Eq. (34)) and CMKKM model learning of the last 200
epochs (minimizing both `c and `Kin Eq. (34)), correspond-
ing to line 1 and line 2-12 in Algorithm 2, respectively.

From the subplot of BBC, we can see CMK loss `c
decreases dramatically at first, and then keep stable in the
first 100 epochs. At the same time, the accuracy rises to the
top at around 40-th epoch. These validate our proposal that
minimizing the CMK loss can help improve the quality of
resultant kernels. Also, two more observations are obtained:
1) The accuracy decreases from 40-th to 100-th epoch; 2) The
MKKM loss `K first falls at a large scale but then increases
gradually. The two points illustrate that minimizing the
CMK loss blindly would result in the kernel quality loss.
When imposing MKKM loss on optimization in the last
200 epochs, it drops quickly. Meanwhile, the CMK loss
rises slowly and keeps stable at last. So does the accuracy,
indicating the MKKM loss can help improve kernel quality.
Moreover, the results on CiteSeer share similar observations
with that on BBC, but one can observe the accuracy im-
provement resulting from MKKM loss more clearly.

Overall, it can be concluded that CMK generation (min-
imizing CMK loss `c) and MKC task (minimizing MKKM
loss `K) are two independent but supplementary processes
to each other. Jointly optimizing them in a unified frame-
work would achieve an ideal learning state, leading to
promising performance.

5.7 Parameter analysis

We conduct an ablation study on the dimension of the latent
representation zvi to explore its effect on kernel quality.
Keeping the learning rate constant (i.e. α = 1.0), we vary the
dimension from 22 to 29. As a result, performances on five
types of CMK are obtained and the average accuracies are
plotted in Fig. 4. Note that the black dotted line represents
the best result achieved by traditional kernels. It can be
seen that the accuracy starts increasing from a relatively
low position. Especially, Polynomial CMK gets an error on
Cora when the dimension is set to 4. This is caused by
kernel k-means only separating the data into less than 7
clusters, contradictory to the ground truth. Meanwhile, all
types of CMK increase dramatically and then stay relatively
stable at wide ranges. Nevertheless, we observe that CMK
outperforms the best traditional kernel when the dimension
is larger than 32. Therefore, it can be concluded that the pro-
posed paradigm is able to generate kernels of high quality
even with a large dimension of the latent representation hv

i .
We recommend setting the dimension to 128 or larger. At the
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TABLE 7
Accuracy comparison of CMK (evaluating with kernel k-means) on the 1st view of BBC dataset. Note that, ”-” indicates that the optimization

reports an error, while ’Norm.’ is the short for ”Normalization”.

Type Norm. Learning Rate
1e-5 1e-4 1e-3 0.01 0.1 1.0 10 100

Gaussian False 66.45 67.15 71.72 - - - - -
True 73.91 74.25 77.53 91.60 94.09 93.99 93.74 92.25

Linear False 69.93 70.83 81.06 - - - - -
True 72.37 73.21 81.01 93.04 94.28 94.18 93.29 92.59

Polynomial False - - - - - - - -
True 73.96 75.60 88.42 94.28 59.99 93.99 92.89 91.60

Sigmoid False 72.17 73.71 86.93 - - - - -
True 72.07 74.01 87.52 93.04 91.40 93.89 92.59 92.59

Cauchy False - - - - - - - -
True 74.35 74.40 76.59 90.01 93.79 93.89 93.84 92.79

TABLE 8
Accuracy comparison of CMK (evaluating with kernel k-means) and

CMKKM on BBC dataset.

Method Epoch Learning Rate
0.01 0.1 1.0 10 100

CMK
50 85.69 93.44 92.20 93.29 92.15
100 91.60 94.09 93.99 93.74 92.25
150 92.74 94.43 94.48 93.94 92.45

CMKKM
150 92.35 94.09 94.48 93.84 92.35
300 93.49 94.28 95.08 93.99 92.74
450 93.84 94.53 95.03 94.23 93.29

same time, CMK establishes a stable quality improvement
on traditional kernels, verifying its effectiveness again.

By grid-searching the epoch number and learning rate,
we present the accuracy results in Table 8. It can be seen
that both the CMK and CMKKM models achieve better
performances with a larger training epoch number. Mean-
while, a large or small learning rate results in a visible
performance decrease. The NMI and Purity results follow
a similar trend and are shown in Appendix. Therefore, we
recommend setting the learning rate, the epoch number of
CMK and CMKKM models to 1.0, 150 and 450.

6 DISCUSSION

In this section, we first discuss the connection and differ-
ences between the proposed CMK loss and the widely-used
contrastive loss [28], [35] as follows.

Connection. Disregarding of the generation method of la-
tent representation zvi , the contrastive loss in the Normalized
Temperature-scaled Cross Entropy (NT-Xent) form is a special
case of the proposed Linear CMK loss, where both of them
intend to maximize the similarities between positive pairs
and minimize those between negative pairs. When limiting
the view number V of the proposed CMK loss in Eq. (10) to

2, it is obvious that

Eq. (10) = − log
exp(kz(z

v
i , z

v′

i ))∑
j,v′′∈Ai,v

exp(kz(zvi , z
v′′
j ))

= − log
exp(kz(zi, zj(i)))∑2N

k=1 1k 6=i exp(kz(zi, zk))
,

(41)

where the first column adopts zvi and zv
′

i to represent the
positive sample pair, while the second uses zi and zj(i)
to do so. Nevertheless, from Table 1 of the manuscript,
kz(xi,xj) = ax>i xj + c for the linear CMK, resulting in

Eq. (41) = − log
exp(az>i zj(i) + c)∑2N

k=1 1k 6=i exp(az>i zj(i) + c)

= − log
exp(az>i zj(i))∑2N

k=1 1k 6=i exp(az>i zj(i))
.

(42)

By setting a = 1/τ , we can get

Eq. (42) = − log
exp(z>i zj(i)/τ)∑2N

k=1 1k 6=i exp(z>i zj(i)/τ)

= − log
exp(sim(zi, zj(i))/τ)∑2N

k=1 1k 6=i exp(sim(zi, zk)/τ)

(43)

where sim(xi,xj) = x>i xj/‖xi‖‖xj‖, and the last step
holds for zi is normalized in the proposed CMK. We can
see Eq. (43) is exactly the contrastive loss of [28], [35].

Difference. We identify the novelty of the proposed
CMK loss from three aspects:

1) Motivation. The contrastive loss of [28], [35] is de-
signed to learn discriminative representations of im-
ages, while CMK tends to improve the kernel qual-
ity of multi-view data (the output is corresponding
kernel matrices), which is novel in kernel learning
but ignored by existing researches.

2) Loss design. The method [28], [35] is partially lim-
ited by the finite loss functions, such as NT-Xent,
Margin Triplet, etc. Meanwhile, the proposed CMK
loss is more flexible, where all types of kernel func-
tions can be integrated by simply instancing kz(·, ·).

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3253211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 07,2023 at 02:07:46 UTC from IEEE Xplore.  Restrictions apply. 



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MAY 2022 13

This also makes it compatible with the literature
of kernel theory, such as kernel learning, kernel
approximation, etc.

3) Encoding structure. Contrastive learning proposes
to encoding images with an encoder f(·) and sub-
sequent projection head g(·). However, it is based
on images and not practical for data of vectors.
Therefore, CMK simplifies the encoding design
and projects multi-view data with V independent
weights {Wv}Vv=1.

Nevertheless, we explore the necessity of the normaliza-
tion of latent representations in Eq. (5). By removing the
normalization, we obtain the experiment results in Table 7.
It can be observed that the CMK generation paradigm with-
out normalization often reports an error, especially when
learning rate is bigger than 0.01 or Polynomial and Cauchy
kernel functions are adopted. In such cases, we find the
CMK’s values are always ”NaN” or ”Inf”, illustrating a triv-
ial solution. Meanwhile, for Gaussian, Linear and Sigmoid
CMK generation paradigms with learning rate smaller than
0.01, the accuracies decrease rapidly once the normalization
is removed. In sum, the normalization is essential in the
proposed CMK.

7 CONCLUSION

Current multiple kernel learning methods compute kernels
independently for each data view, ignoring the complemen-
tary information across views. We propose the Contrastive
Multi-view Kernel generation paradigm, which integrates
the views into a quality kernel with a high concordance
across views while ensuring their diversity and hetero-
geneity. The experiments show that CMK generates more
quality kernels than traditional methods. We also propose
a Contrastive Multi-view Clustering framework and instan-
tiate it with Multiple Kernel k-means, achieving promising
performance. To our best knowledge, this is the first attempt
to explore kernel generation and contrastive learning in
multi-view setting, providing a new direction for future
research.
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