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Abstract—Incomplete multi-view clustering optimally integrates a group of pre-specified incomplete views to improve clustering

performance. Among various excellent solutions, multiple kernel k-means with incomplete kernels forms a benchmark, which redefines

the incomplete multi-view clustering as a joint optimization problem where the imputation and clustering are alternatively performed

until convergence. However, the comparatively intensive computational and storage complexities preclude it from practical applications.

To address these issues, we propose Late Fusion Incomplete Multi-view Clustering (LF-IMVC) which effectively and efficiently

integrates the incomplete clustering matrices generated by incomplete views. Specifically, our algorithm jointly learns a consensus

clustering matrix, imputes each incomplete base matrix, and optimizes the corresponding permutation matrices. We develop a three-

step iterative algorithm to solve the resultant optimization problem with linear computational complexity and theoretically prove its

convergence. Further, we conduct comprehensive experiments to study the proposed LF-IMVC in terms of clustering accuracy, running

time, advantages of late fusion multi-view clustering, evolution of the learned consensus clustering matrix, parameter sensitivity and

convergence. As indicated, our algorithm significantly and consistently outperforms some state-of-the-art algorithms with much less

running time and memory.

Index Terms—Multiple kernel clustering, multiple view learning, incomplete kernel learning

Ç

1 INTRODUCTION

MULTI-VIEW clustering (MVC) optimally integrates fea-
tures from different views to improve clustering per-

formance [1]. It has been intensively studied during the last
few decade [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14] and widely used in various applications, including
object segmentation [15], [16], object pose estimation [17],
image re-ranking [18], saliency detection [19], information
retrieval [20], Cancer Biology [21], to name just a few.

A common assumption adopted by the aforementioned
MVC algorithms is that all the views are complete. However,
it is not uncommon to see that some views of a sample are
absent in some practical applications such as Alzheimer’s dis-
ease prediction [22] and cardiac disease discrimination [23].
The research along this line is termed as incomplete multi-
view clustering (IMVC), which can be roughly grouped into
two categories. The first category first fills the incomplete
views with an imputation algorithm and then applies a stan-
dardMVCalgorithm to these imputed views,which is termed
“two-stage” algorithm. The widely used imputation algo-
rithms include zero-filling, mean value filling, k-nearest-
neighbor filling and expectation-maximization (EM) filling
[24]. Some advanced algorithms have recently been proposed
to perform matrix imputation [25], [26], [27], [28]. For exam-
ple, the work in [25] constructs a full kernel matrix for the
other incomplete view with the help of one complete view.
The work in [26] proposes an algorithm to accomplish multi-
view learning with incomplete views by exploiting the
connections of multiple views, where different views are
assumed to be generated from a shared subspace. A multi-
incomplete-view clustering (MIC) algorithm and its online
variant are proposed in [27], [29]. It first fills the missing
instances in each incomplete view with average feature val-
ues, and adopts a joint weighted NMF algorithm to learn not
only a latent feature matrix for each view but also minimize
the disagreement between the latent feature matrices and the
consensus matrix. By giving missing instances from each
view lower weights, MIC minimizes the negative influences
from the missing instances. In addition, the approach in [28]
proposes to predict missing rows and columns of a base ker-
nel by modelling both within-view and between-view rela-
tionships among kernel values. By observing that the above-
mentioned “two-stage” algorithms disconnect the processes
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of imputation and clustering, the other category, termed as
“one-stage”, puts forward to unify imputation and clustering
into a single optimization procedure and instantiate a cluster-
ing-oriented algorithm termed as multiple kernel k-means
with incomplete kernels (MKKM-IK) algorithm [30]. Specifi-
cally, the clustering result at the last iteration guides the impu-
tation of absent kernel elements, and the latter is used in turn
to conduct the subsequent clustering. By this way, these two
procedures are seamlessly connected, with the aim to achieve
better clustering performance.

Of the above-mentioned IMVC algorithms, the “one-
stage” methods form a benchmark, where the incomplete
views are optimized to best serve clustering. The main con-
tribution of these methods is the unification of imputation
and clustering, so that the imputation would be meaningful
and beneficial for clustering. It has been well known that
the “one-stage” methods can achieve excellent clustering
performance [30], but they also suffer from some non-ignor-
able drawbacks. First, the high time and space complexities
prevent them from being applied to large-scale clustering
tasks. Second, existing “one-stage” methods directly impute
multiple incomplete similarity matrices, in which the num-
ber of variables increases quadratically with the number of
samples for each view. This could make the whole optimi-
zation over-complicated and also considerably increase the
risk of falling into a low-quality local minimum. Third, note
that a clustering result is determined by a whole similarity
matrix in [30]. As a result, the imputation to an incomplete
similarity matrix has impact to the clustering of all samples,
no matter whether a sample is complete or not. When an
imputation is not of high quality, it could adversely affect
the clustering result of all samples, especially for those with
complete views.

All of the above issues signal that directly imputing the
incomplete similarity matrices seems to be problematic and
that a more efficient and effective approach shall be taken.
We argue that multiple view clustering is essentially a task
of information fusion. It is known that information fusion
can be performed at different levels. From bottom to up,
they are raw data level, feature level and decision level,
respectively. Although performing at lower levels could
lead to promising result, working at higher levels has the
advantage of reduced computational complexity and less
interference to the individual decision made from each
information channel.

In light of this, we propose to impute each incomplete base
clusteringmatrixwhich is a partitionmatrix generated by per-
forming clustering on each individual incomplete similarity
matrix, instead of itself. This algorithm is termed as Late
Fusion Incomplete Multi-view Clustering (LF-IMVC) in this
paper. These base clustering matrices are then optimally uti-
lized to learn a common clustering partition matrix, termed
consensus clustering matrix. It is then employed to impute
each incomplete base clustering matrix. These two steps are
alternatively performed until convergence. Specifically, we
maximize the alignment between the consensus clustering
matrix and an uniformly weighted base clustering matrices
with an optimal permutation, together with an extra term
which constraints each base clustering matrix not far from its
incomplete one.We design a simple and efficient algorithm to
solve the resultant optimization problem by three singular

value decomposition (SVD) per iteration, and analyze its
computational and storage complexities and theoretically
prove its convergence. After that, we conduct comprehensive
experiments on eleven benchmark datasets to study the prop-
erties of the proposed algorithm, including the clustering
accuracy with the various missing ratios, the running time
with the various number of samples, the evolution of the
learned consensus matrix with iterations, the clustering accu-
racy with the variation of hyper-parameter and the objective
value with iterations. As demonstrated, LF-IMVC signifi-
cantly and consistently outperforms the state-of-the-art meth-
ods in terms of clustering accuracy with much less running
time.

We end up this section by clarifying the difference between
the proposed LF-IMVC and some recent late fusionMVC [14],
[31]. The work in [31] proposes a multi-view clustering
ensemble algorithm based on multi-view clustering and clus-
tering ensembles. Specifically, a Gaussian kernel with a pre-
specified parameter s is applied into each view data to con-
struct multiple kernel matrices. They are taken as the input of
multiple kernel k-means algorithms to generate a clustering
partition, which is a partition of given samples. By this way,
one can obtain more clustering partitions by taking different
s, which are integrated by a clustering ensemble algorithm.
The difference between this work and ours is that it cannot be
able to handle clustering ensembles with incomplete cluster-
ing partitions. A Multi-View Ensemble Clustering (MVEC)
framework is proposed in [14] to solve multi-view clustering
in an ensemble clustering way. It generates basic partitions
(BPs) for each view individually and seeks for a consensus
partition among all the BPs. The low-rank and sparse decom-
position are employed to explicitly consider the connection
between different views and detect the noises in each view.
Moreover, the spectral ensemble clustering task is also
involved to achieve the final consensus partition. As seen,
MVEC [14] and the proposed LF-IMVC clearly differ from the
motivation, formulation, computational complexity and abil-
ity in handling incomplete views.

2 RELATED WORK

Multiple kernel k-means (MKKM) provides an elegant
framework for multi-view clustering. In this section, we
briefly review MKKM and its variants of handling incom-
plete multi-view clustering.

2.1 Multiple Kernel k-means (MKKM)

Let fxigni¼1 � X be a collection of n samples, and fpð�Þ : x 2
X 7! Hp be the pth feature mapping that maps x onto a
reproducing kernel Hilbert space Hp ð1 � p � mÞ. In the

multiple kernel setting, each sample is represented as

fbbðxÞ ¼ ½b1f1ðxð1ÞÞ>; . . . ;bmfmðxðmÞÞ>�>, where xðpÞ denotes

the pth ð1 � p � mÞ view of x; bb ¼ ½b1; . . . ;bm�> consists of

the coefficients of the m base kernels fkpð�; �Þgmp¼1. These
coefficients will be optimized during learning.

Based on the definition of fbbðxÞ, a kernel function can be
expressed as

kbbðxi; xjÞ ¼ fbbðxiÞ>fbbðxjÞ ¼
Xm
p¼1

b2
pkpðxðpÞi ; x

ðpÞ
j Þ: (1)
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A kernel matrix Kbb is then calculated by applying the kernel
function kbbð�; �Þ into fxigni¼1. Based on the kernel matrix Kbb,
the objective of MKKM can be written as

min
H;bb

TrðKbbðIn �HH>ÞÞ

s:t: H 2 Rn�k; H>H ¼ Ik; bb>1m ¼ 1; bp 	 0; 8p:
(2)

where Ik is an identity matrix with size k� k.
The optimization problem in Eq. (2) can be solved by

alternatively updatingH and bb:

i) Optimizing H given bb. With the kernel coefficients bb

fixed, H can be obtained by solving a kernel k-means
clustering optimization problem shown in Eq. (3);

max
H

TrðH>KbbHÞ s:t: H 2 Rn�k;H>H ¼ Ik; (3)

The optimal H for Eq. (3) can be obtained by taking
the k eigenvectors having the larger eigenvalues of
Kbb [32].

ii) Optimizing bb given H. With H fixed, bb can be opti-
mized via solving the following quadratic program-
ming with linear constraints,

min
bb

Xm
p¼1

b2
pTrðKpðIn �HH>ÞÞ

s:t: bb>1m ¼ 1; bp 	 0:

(4)

2.2 MKKM with Incomplete Kernels (MKKM-IK)

The recent work in [30] has extended the existing MKKM to
enable it to handle incomplete multi-view clustering. In spe-
cific, it unifies the imputation and clustering procedure into
a single optimization objective and alternatively optimizes
each of them. That is, i) imputing the absent kernels under
the guidance of clustering; and ii) updating the clustering
with the imputed kernels. The above idea is mathematically
fulfilled as follows,

min
H; bb;fKpgmp¼1

TrðKbbðIn �HH>ÞÞ

s:t: H 2 Rn�k;H>H ¼ Ik;

bb>1m ¼ 1;bp 	 0;

Kpðsp; spÞ ¼ KðccÞ
p ; Kp 
 0; 8p;

(5)

where sp ð1 � p � mÞ denote the sample indices for which
the pth view is present and KðccÞ

p be used to denote the ker-
nel sub-matrix computed with these samples. The con-
straint Kpðsp; spÞ ¼ KðccÞ

p is imposed to ensure that Kp

maintains the known entries during the course. As seen, the
ultimate goal of Eq. (5) is clustering, while the imputation of
incomplete kernels can be treated as a by-product of
learning.

A three-step alternative algorithm is then developed to
solve the optimization problem in Eq. (5):

i) Optimizing H with fixed bb and fKpgmp¼1. Given bb and

fKpgmp¼1, the optimization in Eq. (5) for H reduces to

a standard kernel k-means problem, which can be
efficiently solved as Eq. (3);

ii) Optimizing fKpgmp¼1 with fixed bb and H. Given bb and
H, the optimization in Eq. (5) with respect to each Kp

is equivalent to the following optimization problem,

min
Kp

Tr KpðIn �HH>Þ� �
s:t: Kpðsp; spÞ ¼ KðccÞ

p ; Kp 
 0:
(6)

It is shown that the optimal Kp in Eq. (6) has the
closed-form expression as in Eq. (7), where U ¼ In�
HH> and UðcmÞ is obtained by taking the entries of U
corresponding to the complete and incomplete sam-
ple indices. Interested readers are referred to [30].

iii) Optimizing bb with fixed H and fKpgmp¼1. Given H and
fKpgmp¼1, the optimization in Eq. (5) for bb is a qua-
dratic programming with linear constraints, which
can be efficiently solved as in Eq. (4).

KðccÞ
p �KðccÞ

p UðcmÞðUðmmÞÞ�1

�ðUðmmÞÞ�1UðcmÞ>KðccÞ
p ðUðmmÞÞ�1UðcmÞ>KðccÞ

p UðcmÞðUðmmÞÞ�1x

" #
:

(7)
Although the recently proposed MKKM-IK demonstrates

excellent clustering performance in various applications [30],
it also suffers from the following non-ignorable drawbacks.
First, from the above optimization procedure, we observe that
its computational complexity is Oðn3þ Pm

p¼1 n
3
p þm3Þ per

iteration, where n;np ðnp � nÞ and m are the number of all
samples, observed samples of pth view and views. During the
learning procedure, it requires to storem base kernel matrices
with size n. Therefore, its storage complexity is Oðmn2Þ. The
relatively high computational and storage complexities pre-
clude it frombeing applied to large-scale clustering tasks. Fur-
thermore, as seen fromEq. (7), there are 1

2 ðn� npÞðnþ np þ 1Þ
elements to be imputed for the pth incomplete base kernel
matrixKpð1 � p � mÞ. It unnecessarily increases the complex-
ity of the optimization and the risk of being trapped into a
low-quality local minimum. In addition, the imputation on
fKpgmp¼1 would affect the clustering of all samples, no matter
whether they are complete. This improperly increases the
impact of imputation on all samples, especially for those with
complete views. As a result, instead of imputing incomplete
similarity matrices fKpgmp¼1, we propose to impute the incom-
plete base clustering matrices to address the aforementioned
issues. Moreover, we argue that this way of imputation could
be more natural and reasonable since all of them reside in the
space of clustering partition, which would produce better
imputation and finally boost the clustering.

3 LATE FUSION INCOMPLETE MULTI-VIEW

CLUSTERING (LF-IMVC)

3.1 The Proposed Formulation

According to the above discussion, we turn to fill incom-
plete base clustering matrices fHð0Þ

p gmp¼1 with Hð0Þ
p 2

Rnp�k ð1 � p � mÞ, which can be obtained by solving kernel
k-means in Eq. (5) with m incomplete base kernel matrices
fKpðsp; spÞgmp¼1. Note that other similarity based clustering
algorithms such as spectral clustering can also be used to
generate fHð0Þ

p gmp¼1.
LF-IMVC proposes to simultaneously perform clustering

and the imputation of missing elements among base clu-
stering matrices fHpgmp¼1 with Hp 2 Rn�k ð1 � p � mÞ.
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Specifically, it first finds a consensus clustering matrix H
from fHpgmp¼1, and then imputes the incomplete parts of
them with the learned consensus matrix. By this way, the
above two learning processes can be seamlessly coupled
and they are allowed to negotiate with each other to achieve
better clustering. The above idea can be fulfilled as follows,

max
H;fHp;Wpgmp¼1

Tr H> Xm
p¼1

HpWp

 !" #

s:t: H 2 Rn�k; H>H ¼ Ik;

Wp 2 Rk�k; W>
p Wp ¼ Ik;

Hp 2 Rn�k; Hpðsp; :Þ ¼ Hð0Þ
p ;H>

p Hp ¼ Ik;

(8)

where H and Hp are the consensus clustering matrix and the
pth base clusteringmatrix, respectively, andWp is the pth per-
mutation matrix in order to optimally match Hp and H. The
constraintHpðsp; :Þ ¼ Hð0Þ

p is imposed to ensure thatHp main-
tains the known entries during the course. The orthogonal
constraints are imposed onH;Hp andWp since they are clus-
teringmatrices and permutationmatrix, respectively.

Compared with MKKM-IK [30], the objective function of
LF-IMVC in Eq. (8) has the following nice properties: (1)
Less imputation variables: The number of elements needs to
be filled for the pth view is ðn� npÞ � k, which is much less
than 1

2 ðn� npÞ � ðnþ np þ 1Þ required by MKKM-IK
because k � 1

2 ðnþ np þ 1Þ in practice. This could dramati-
cally simplify the model and usually reduce the risk of
being trapped into a local minimum. As a result, our optimi-
zation would be more robust to the initialization during
optimization. (2) Less vulnerable to low-quality imputation:
In LF-IMVC, clustering on samples with complete views
will not be affected by the imputation. However, it is not
this case for MKKM-IK because it needs to fill all incomplete
elements and conduct eign-decomposition on the whole
imputed similarity for clustering. This is helpful to make
the proposed model be more robust in the whole course of
optimization.

Although the objective in Eq. (8) is not difficult to under-
stand, the equality and orthogonal constraints on Hp make
the optimization intractable. To address this issue, we
remove the equality constraint on Hp and instead require it
to maximally align with Ĥð0Þ

p . This leads to the follow opti-
mization problem in Eq. (9).

max
H;fWp;Hpgmp¼1

Tr H> Xm
p¼1

HpWp

 !" #
þ �

Xm
p¼1

Tr
�
H>

p Ĥ
ð0Þ
p

�
s:t: H 2 Rn�k; H>H ¼ Ik;

Wp 2 Rk�k; W>
p Wp ¼ Ik;

Hp 2 Rn�k; H>
p Hp ¼ Ik;

(9)

where Ĥð0Þ
p ðsp; :Þ ¼ Hð0Þ

p with other elements being zeros and
� is a regularization parameter to trade of clustering and
imputation.

Though the model in Eq. (9) is simple, it admits the fol-
lowing advantages: 1) our objective function is more direct
and well targets the ultimate goal, i.e., clustering, by inte-
grating imputation and clustering into one unified learn-
ing framework, where the imputation is treated as a by-
product; 2) our formulation utilizes H to complete each

incomplete base clustering matrix rather than the incom-
plete base kernels matrices as in [30], which is more natural
since both H and fHpgmp¼1 reside in clustering partition
space; 3) our algorithm is able to naturally deal with a large
number of base clustering matrices and adaptively comb-
ine them for clustering; 4) our algorithm does not require
any views to be completely observed, which is however
necessary for some of the existing imputation algorithms
such as [25].

3.2 Alternative Optimization

Simultaneously optimizing H; fHpgmp¼1 and fWpgmp¼1 in
Eq. (9) is difficult. In the following, we design a simple and
computationally efficient three-step algorithm to solve it
alternatively. At each step, the resultant optimization is
reduced to a SVD, which can be efficiently solved by off-
the-shelf packages.

3.2.1 SolvingH with Fixed fWpgmp¼1 and fHpgmp¼1

Given fWpgmp¼1 and fHpgmp¼1, the optimization w.r.t H in
Eq. (9) is equivalent to

max
H

Tr H>T
� �

s:t: H 2 Rn�k; H>H ¼ Ik; (10)

where T ¼Pm
p¼1 HpWp. It is a singular value decomposition

problem and can be efficiently solved with computational
complexity Oðnk2Þ, where k is the number of clusters.

3.2.2 Solving fWpgmp¼1 with Fixed fHpgmp¼1 andH

Given fHpgmp¼1 and H, the optimization w.r.t permutation
matrix Wp in Eq. (9) equivalently reduces to the following
one,

max
Wp

Tr W>
p Qp

� �
s:t: Wp 2 Rk�k; W>

p Wp ¼ Ik; (11)

where Qp ¼ H>
p H. Again, it is a SVD optimization problem

with computational complexity Oðk3Þ.

3.2.3 Solving fHpgmp¼1 with FixedH and fWpgmp¼1

Given H and fWpgmp¼1, the optimization w.r.t Hp in Eq. (9) is
equivalent to

max
Hp

Tr H>
p Zp

� �
s:t: Hp 2 Rn�k; H>

p Hp ¼ Ik; (12)

where Zp ¼ HW>
p þ �Ĥð0Þ

p . Once again, it is a SVD problem
and can be efficiently solved with computational complex-
ityOðnk2Þ.

In sum, our algorithm for solving Eq. (9) is outlined in
Algorithm 1, where the absent entries of fĤð0Þ

p gmp¼1 are ini-
tially imputed with zeros and objðtÞ denotes the objective
value at the tth iteration. The following Theorem 1 shows
Algorithm 1 is guaranteed to converge.

Theorem 1: Algorithm 1 is guaranteed to converge to a local
optimum.

Proof: Note that for 1 � p; q � m;Tr
�ðHpWpÞ>ðHqWqÞ

�
� 1

2 Tr
�ðHpWpÞ>

�
ðHpWpÞ

�þ Tr
�ðHqWqÞ>ðHqWqÞ

�Þ ¼ k.
Based on this inequality, we derive the upper bound of
the objective in Eq. (9). Note that Tr

�
H>Pm

p¼1 HpWp

� �
1
2 ½Tr½H>H� þ Tr½ðPm

p¼1 HpWpÞ>ð
Pm

p¼1 HpWp

��� ¼ 1
2
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�
Tr
�
H>H

�þPm
p;q¼1 Tr

�
HpWp

�> �
HqWq

�� ¼� k
2 ðm2 þ 1Þ.

Also,
Pm

p¼1 Tr
�
H>

p Ĥ
ð0Þ
p

� � 1
2

Pm
p¼1

�
TrðH>HÞ þ TrððĤð0Þ

p Þ>

Ĥð0Þ
p Þ� ¼ 1

2

Pm
p¼1

�
kþ TrððĤð0Þ

p Þ>Ĥð0Þ
p Þ�. Therefore, the

objective in Eq. (9) is upper bounded. Meanwhile, it is

worth pointing out that the optimization with one vari-

able while keeping the other two is a SVD, which is a

strictly convex optimization and the optimum can be

achieved. Therefore, the objective of Algorithm 1 is

guaranteed to be monotonically increased when optimiz-

ing one variable with others fixed at each iteration. At the
same time, the objective is upper-bounded by k

2 ðm2 þ 1Þþ
�
2

Pm
p¼1

�
kþ TrððĤð0Þ

p Þ>Ĥð0Þ
p Þ�. As a result, our algorithm is

guaranteed to converge to a local minimum. tu

Algorithm 1. The Proposed LF-IMVC

1: Input: fĤð0Þ
p gmp¼1; k; � and �0.

2: Output:H and bb.
3: Initialize fWð0Þ

p gmp¼1; fHð0Þ
p gmp¼1 and t ¼ 1.

4: repeat
5: UpdateHðtÞ by solving Eq. (10) with fWðt�1Þ

p gmp¼1 and

fHðt�1Þ
p gmp¼1 (An SVD problem).

6: Update fWðtÞ
p gmp¼1 withHðtÞ and fHðt�1Þ

p gmp¼1 by Eq. (11)
(An SVD problem).

7: Update fHðtÞ
p gmp¼1 withHðtÞ and fHðtÞ

p gmp¼1 by Eq. (12)
(An SVD problem).

8: t ¼ tþ 1.
9: until

�
objðtÞ � objðt�1Þ

�
=objðt�1Þ � �0

3.3 Discussion and Extension

We end up this section by first analyzing the computational
and storage complexities, initialization of Ĥð0Þ

p , and then dis-
cussing some potential extensions of LF-IMVC.

Computational Complexity. As seen from Algorithm 1, the
computational complexity of LF-IMVC is Oðnk2 þm ðk3 þ
nk2ÞÞ per iteration, where n;m and k are the number of sam-
ples, views and clusters, respectively. Therefore, LF-IMVC
has a linear computational complexity with number of sam-
ples, which enables it more efficiently to handle large scale
clustering tasks when compared with MKKM-IK [30].

Storage Complexity. During the learning procedure, Algo-
rithm 1 needs to store H and fHp;Wp; Ĥ

ð0Þ
p gmp¼1. Its storage

complexity is Oðnkþ 2mnkþmk2Þ, which is much less
than that of MKKM-IK with Oðmn2Þ since n � k.

Initialization of fHp;Wpgmp¼1. In our implementation, each
Hp is generated by solving a conventional kernel k-means
with Kpðsp; spÞ, where Kpðsp; spÞ 2 Rnp�np is a kernel matrix
calculated with np observed samples of the p-view. Its
computational complexity is Oðn3

pÞ. Note that this procedure
is required to perform only once. As a result, the computational
cost in this initialization can be treated as a constant. Note that
any technique that can boost the scalability of kernel k-
means (or spectral clustering) such as [33] can be directly
applied to ours to shorten this initialization. We simply ini-
tialize the incomplete part of fHð0Þ

p gmp¼1 as zeros, and
fWð0Þ

p gmp¼1 as identity matrix. This initialization has well
demonstrated superior clustering performance of LF-IMVC
in our experiments.

Extentions. LF-IMVC inherits the advantage of MKKM-IK
[30] which unifies the imputation and clustering into a single
procedure. Instead of completing kernel matrices, LF-IMVC
imputes the incomplete base clustering matrices which are
generated by performing kernel k-means with incomplete
base kernel matrices. The algorithm in this work can be
extended from the following aspects. First, LF-IMVC could be
further improved by sufficiently considering the correlation
among fHpgmp¼1. For example, we may build this correlation
by other criteria such as Kullback-Leibler (KL) divergence
[34], maximummean discrepancy [35], Hilbert-Schmidt inde-
pendence criteria (HSIC), to name just a few. This prior
knowledge could provide a good regularization on mutual
base clustering matrix completion, and would be helpful to
improve the clustering performance. Second, the weights of
base clusteringmatrices fHpgmp¼1 could be adaptively adjusted
in order to find the better consensus clusteringmatrixH, mak-
ing it better serve for clustering. Third, the way in generating
fHð0Þ

p gmp¼1 could be readily extendable to other similarity
based clustering algorithms, such us spectral clustering [36],
[37]. It could further improve the clustering performance.
Last but not least, the idea of joint imputation and clustering
is so natural that can be generalized to other learning task
such as classification, feature selection/extraction, etc.

4 EXPERIMENTS

4.1 Experimental Settings

The proposed algorithm is experimentally evaluated on
eleven widely used multiple kernel benchmarkdata sets sho-
wn in Table 4, where each kernel matrix corresponds to one
view. They are Oxford Flower17 and Flower102,1 Caltech102,2

UCI-Digital,3 Protein Fold Prediction4 and Columbia Con-
sumer Video (CCV).5 For these datasets, all kernel matrices
are pre-computed and can be publicly downloaded from the
above websites. Meanwhile, Caltech102-5 means the number
of samples belonging to each cluster is 5, and so on.

We compare the proposed algorithm with several com-
monly used imputation methods, including zero filling (ZF),
mean filling (MF), k-nearest-neighbor filling (KNN) and the
alignment-maximization filling (AF) proposed in [25]. The
widely used MKKM [21] is applied with these imputed base
kernels. These two-stage methods are termed MKKM+ZF,
MKKM+MF, MKKM+KNN andMKKM+AF, respectively. In
addition, some recently proposed MKKM based method
MKKM-IK [30], late fusion method [14] and NMF based
method [27] are also incorporated into comparison.

For all data sets, it is assumed that the true number of
clusters k is known and it is set as the true number of clas-
ses. We follow the approach in [30] to generate the missing
vectors fspgmp¼1 as follows. We first randomly select
roundð"  nÞ samples, where roundð�Þ denotes a rounding
function. For each selected sample, a random vector
v ¼ ðv1; . . . ; vmÞ 2 ½0; 1�m and a scalar v0 ðv0 2 ½0; 1�Þ are then

1. http://www.robots.ox.ac.uk/~vgg/data/flowers/
2. http://files.is.tue.mpg.de/pgehler/projects/
iccv09/

3. http://ss.sysu.edu.cn/~py/
4. http://mkl.ucsd.edu/dataset/protein-fold-
prediction/

5. http://www.ee.columbia.edu/ln/dvmm/CCV/
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generated, respectively. The pth view will be present for this
sample if vp 	 v0 is satisfied. In case none of v1; . . . ; vm can
satisfy this condition, we will generate a new v to ensure
that at least one view is available for a sample. Note that
this does not mean that we require a complete view across
all the samples. After the above step, we will be able to
obtain the index vector sp listing the samples whose pth
view is present. The parameter ", termed missing ratio in
this experiment, controls the percentage of samples that
have absent views, and it affects the performance of the
algorithms in comparison. In order to show this point in
depth, we compare these algorithms with respect to ". Spe-
cifically, " on all the datasets is set as ½0:1 : 0:1 : 0:9�.

The widely used clustering accuracy (ACC), normalized
mutual information (NMI) and purity are applied to evalu-
ate the clustering performance. Specifically, ACC is defined
as follows,

ACC ¼
Pn

i¼1 dðyi;mapðciÞÞ
n

; (13)

where ci and yi represent the obtained cluster label and the
provided ground-truth label of xi ð1 � i � nÞ, n is the num-
ber of samples, dðu; vÞ is the delta function that equals one if
u ¼ v and equals zero otherwise, and mapðciÞ is the permu-
tation mapping function that maps each cluster label ci to
the equivalent label from data. The best mapping can be
found by using the Kuhn-Munkres algorithm [38]. Simi-
larly, NMI is defined as follows. Let y and c denote the set
of clusters obtained from the ground truth and a clustering
algorithm, respectively. Their mutual information metric
MIðy; cÞ is defined as follows:

MIðy; cÞ ¼
X

yi2y;cj2c
pðyi; cjÞlog 2

pðyi; cjÞ
pðyiÞpðcjÞ ; (14)

where pðyiÞ and pðcjÞ are the probabilities that a sample
arbitrarily selected from data belongs to the clusters yi and
cj, respectively, and pðyi; cjÞ is the joint probability that the
arbitrarily selected samples belongs to the clusters yi and cj
at the same time. The normalized mutual information is
then defined as follows:

NMIðy; cÞ ¼ MIðy; cÞ
maxðHðyÞ;HðcÞÞ ; (15)

where HðyÞ and HðcÞ are the entropies of y and c,
respectively.

For all algorithms, we repeat each experiment for 50 times
with random initialization to reduce the affect of randomness
caused by k-means, and report the best result. Meanwhile, we
randomly generate the “incomplete” patterns for 30 times in
the above-mentioned way and report the statistical results.
The aggregated ACC, NMI and purity are used to evaluate
the goodness of the algorithms in comparison. Taking the
aggregated ACC for example, it is obtained by averaging the
averagedACC achieved by an algorithmover different ".

In the following parts, we conduct comprehensive
experiments to study the properties of LF-IMVC from six
aspects: clustering performance, running time, the advan-
tage of joint imputation and clustering in a late fusion man-
ner, the evolution of the learned consensus clustering
matrix, parameter sensitivity and convergence.

4.2 Clustering Performance

4.2.1 Experimental Results on Flower17 and

Flower102

Fig. 1 presents the ACC, NMI and purity comparison of the
above algorithms with different missing ratios on the
Flower17 and Flower102 datasets. We have the following

Fig. 1. Clustering accuracy, NMI and purity comparison with various missing ratios on Flower17 and Flower102. The results of MVEC [14] on
Flower102 are not reported due to the “out of memory” error.
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observations: 1) The recently proposed MKKM-IK [30] (in
green) significantly outperforms existing two-stage imputa-
tion methods. For example, it exceeds the best two-stage
imputation method (AF+MKKM) by 0.1, 0.6, 2.5, 2.8, 4.1, 4.7,
6.0, 8.5, 8.2 percent in terms of clustering accuracy, with the
variation of missing ratios in ½0:1; . . . ; 0:9� on Flower17. These
results verify the effectiveness of its joint optimization on
imputation and clustering. 2) The proposed LF-IMVC signifi-
cantly and consistently outperforms MKKM-IK. Specifically,
it improves the latter by 13.0, 10.7, 9.7, 8.5, 9.4, 7.3, 7.3, 7.6,
8.6 percent with the variation of missing ratios in ½0:1; . . . ; 0:9�
on Flower17. These results verify the effectiveness of imput-
ing base clustering matrices rather than kernel matrices. 3)
The superiority of LF-IMVC is more significant when the
missing ratio is relatively small. For example, LF-IMVC impr-
oves the second best algorithm (MKKM-IK) by 13 percent on
Flower17 in terms of clustering accuracy when the missing
ratio is 0.1 (see Fig. 1a).

We also report the aggregated ACC, NMI and purity, and
the standard deviation in Table 1, where the one with the
highest performance is shown in bold. Again, we observe that
the proposed algorithm significantly outperforms MKKM
+ZF, MKKM+MF, MKKM+KNN, MKKM+AF and MKKM-
IK. For example, LF-IMVC exceeds the second best one
(MKKM-IK) by 9.1 and 14.8 percent in terms of clustering
accuracy on Flower17 and Flower102, respectively. These
results are consistent with our observations in Fig. 1.

4.2.2 Experimental Results on Caltech102

Caltech102 has been widely used as a benchmark dataset to
evaluate the performance of multi-view clustering [6]. Here
we also compare all the above-mentioned algorithms on
this data set where the number of samples for each cluster
varies in the range of 5; 10; . . . ; 30. The clustering results of
different algorithms with the variation of missing ratio are
reported in Fig. 2. The results on Caltech102-5 dataset are
omitted due to space limit.

As can be seen, compared with existing two-stage impu-
tation algorithms, the curve with green color corresponding
to the recently proposed MKKM-IK [30] is on the top when
the missing ratio varies from 0.1 to 0.9 in terms of ACC,
NMI and purity, indicating its superior clustering perfor-
mance. Meanwhile, the proposed LF-IMVC further signifi-
cantly improves the performance of MKKM-IK. Taking the
results in Fig. 2 for example. MKKM-IK demonstrates the

overall satisfying performance. However, LF-IMVC further
significantly and consistently improves its performance.
Moreover, from the Figs. 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j,
2k, 2l, and 2m, we clearly see that the improvement of LF-
IMVC over the compared ones is more significant with the
increase of number of samples. The aggregated ACC, NMI
and purity are also reported in Table 2. We again clearly see
the advantages of our algorithms over the other ones in
terms of ACC, NMI and purity. These results have well
demonstrated the effectiveness and advantages of incorpo-
rating base clustering matrix reconstruction in clustering.

4.2.3 Experimental Results on UCI-Digital

UCI-Digital dataset has been widely used as a benchmark in
multi-view clustering. We also compare the clustering per-
formance of the aforementioned algorithms on this dataset.
The clustering accuracy, NMI and purity of these algorithms
with the variation of missing ratio are plotted in Fig. 3. From
Fig. 3a, we observe that the newly proposed MKKM-IK
gives poor performance on this dataset, which is clearly
inferior to the MKKM+KNN. The proposed LF-IMVC signif-
icantly improves this situation, demonstrating superior clus-
tering performance. For example, it exceeds the second best
one (MKKM+KNN) by 7.9, 8.4, 8.2, 5.9, 6.2, 5.6, 8.0, 12.4,
13.6 percent in terms of ACC. Similar results can be observed
by aggregated clustering results in Table 3.

4.2.4 Experimental Results on Protein Fold

We have evaluated the aforementioned algorithms on Pro-
tein Fold dataset, which is a benchmark with 12 views.
The clustering performance of these algorithms with the
variation of missing is plotted in Fig. 4 and the correspond-
ing aggregated clustering accuracy, NMI and purity are
reported in Table 5. From Table 4, we again see that the pro-
posed LF-IMVC significantly and consistently outperforms
the compared ones with the variation of missing ratio. This
superiority coincides with the results in Table 5.

4.2.5 Experimental Results on CCV

We finally evaluate the performance of LF-IMVC on CCV
dataset, and report the results in Fig. 5 and Table 6. We once
again observe that the proposed LF-IMVC significantly out-
performs the compared ones in terms of ACC, NMI and
purity. These results further verify the effectiveness of
LF-IMVC.

TABLE 1
Aggregated ACC, NMI and Purity Comparison (mean � std) of Different Clustering Algorithms on Flower17 and Flower102

Datasets MKKM+ZF MKKM+MF MKKM+KNN
MKKM+AF MKKM-IK MIC MVEC LF-IMVC

[25] [30] [27] [14] Proposed

ACC
Flower17 36:90� 0:77 36:75� 0:57 37:78� 0:61 40:48� 0:73 44:63� 0:57 34:33� 2:19 22:89� 0:39 53:75� 0:46
Flower102 17:98� 0:15 18:01� 0:17 18:23� 0:13 19:22� 0:14 21:09� 0:16 19:26� 0:22 � 35:93� 0:22

NMI
Flower17 37:31� 0:41 37:28� 0:45 38:22� 0:48 40:07� 0:44 43:67� 0:29 31:22� 2:27 21:36� 0:34 51:34� 0:31
Flower102 37:38� 0:13 37:39� 0:14 37:80� 0:09 38:38� 0:13 39:56� 0:12 33:10� 0:24 � 49:90� 0:11

Purity
Flower17 38:36� 0:63 38:30� 0:60 39:30� 0:57 41:99� 0:60 45:89� 0:48 35:71� 2:17 23:77� 0:39 55:35� 0:26
Flower102 22:45� 0:11 22:43� 0:12 22:80� 0:12 23:73� 0:18 25:76� 0:18 22:95� 0:25 � 41:22� 0:19
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The above experimental results on Flower17,
Flower102, Caltech102, Protein Fold, UCI-Digital and CCV
have well demonstrated that LF-IMVC is superior to some
state-of-the-art in terms of clustering accuracy, NMI and

purity. We attribute the superiority of LF-IMVC as two
aspects: i) The joint optimization on imputation and clustering.
On one hand, the imputation is guided by the cluster-
ing results, which makes the imputation more directly

Fig. 2. Clustering accuracy, NMI and purity comparison with various missing ratios on Caltech102. The results of MVEC [14] on Caltech102-20,
Caltech102-25 and Caltech102-30 are not reported due to the “out of memory” error.
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targeted at the ultimate goal. On the other hand, this
meaningful imputation is beneficial to refine the clustering
results. These two learning processes negotiate with each
other, leading to improved clustering performance. In con-
trast, MKKM+ZF, MKKM+MF, MKKM+KNN, MKKM
+AF and MIC [27] do not fully take advantage of the con-
nection between the imputation and clustering proce-
dures. This could produce imputation that does not well

serve the subsequent clustering as originally expected,
affecting the clustering performance. ii) Completing the
incomplete base clustering matrices with the consensus one. Dif-
ferent from MKKM-IK where the consensus clustering
matrix H is utilized to fill incomplete base kernels, LF-
IMVC imputes each incomplete base clustering matrix
with H. The latter is more natural and reasonable since
both H and incomplete base clustering matrices reside in

TABLE 2
Aggregated ACC, NMI and Purity Comparison (mean � std) of Different Clustering Algorithms on Caltech102

Datasets MKKM+ZF MKKM+MF MKKM+KNN
MKKM+AF MKKM-IK MIC MVEC LF-IMVC

[25] [30] [27] [14] Proposed

ACC

Caltech102-5 26:07� 0:34 25:65� 0:26 27:30� 0:28 29:00� 0:29 28:88� 0:32 32:92� 0:44 28:11� 0:31 38:28� 0:29
Caltech102-10 19:73� 0:19 19:68� 0:24 21:51� 0:20 22:56� 0:20 22:74� 0:17 31:37� 0:44 24:05� 0:19 35:12� 0:16

Caltech102-15 17:12� 0:23 17:08� 0:17 18:89� 0:13 20:32� 0:19 20:79� 0:24 29:74� 0:37 16:87� 0:15 34:46� 0:22

Caltech102-20 15:67� 0:12 15:65� 0:22 17:29� 0:16 18:89� 0:20 19:47� 0:14 28:57� 0:20 � 34:14� 0:25
Caltech102-25 14:65� 0:18 14:58� 0:13 16:24� 0:13 17:71� 0:20 18:26� 0:18 27:36� 0:37 � 33:16� 0:19

Caltech102-30 14:15� 0:12 14:05� 0:14 15:51� 0:16 17:11� 0:18 17:80� 0:22 26:69� 0:48 � 32:93� 0:20

NMI

Caltech102-5 64:33� 0:18 63:93� 0:14 65:87� 0:19 66:55� 0:11 66:48� 0:16 68:45� 0:16 63:12� 0:41 71:20� 0:18
Caltech102-10 53:62� 0:12 53:65� 0:09 55:24� 0:11 55:72� 0:19 55:83� 0:14 61:05� 0:10 51:8� 0:24 63:60� 0:11

Caltech102-15 47:40� 0:13 47:39� 0:11 48:82� 0:11 49:69� 0:13 50:06� 0:11 56:29� 0:19 45:12� 0:17 59:74� 0:10

Caltech102-20 43:11� 0:10 43:08� 0:17 44:54� 0:12 45:58� 0:15 46:03� 0:07 53:12� 0:15 � 57:17� 0:17
Caltech102-25 39:98� 0:10 39:88� 0:11 41:47� 0:09 42:45� 0:15 42:96� 0:18 50:40� 0:30 � 54:86� 0:06

Caltech102-30 37:78� 0:08 37:66� 0:12 39:15� 0:13 40:29� 0:12 40:92� 0:14 48:34� 0:39 � 53:37� 0:11

Purity

Caltech102-5 26:73� 0:37 26:37� 0:31 27:90� 0:29 29:75� 0:34 29:59� 0:34 34:05� 0:47 29:1� 0:28 39:93� 0:29
Caltech102-10 20:99� 0:15 20:97� 0:22 22:90� 0:22 23:96� 0:26 24:16� 0:23 32:80� 0:39 25:67� 0:22 37:06� 0:14

Caltech102-15 18:52� 0:20 18:45� 0:16 20:39� 0:17 21:62� 0:18 22:16� 0:23 31:15� 0:40 17:68� 0:18 36:35� 0:16

Caltech102-20 17:05� 0:11 17:02� 0:19 18:81� 0:22 20:17� 0:19 20:89� 0:14 30:00� 0:25 � 36:17� 0:23
Caltech102-25 16:02� 0:22 15:99� 0:15 17:74� 0:15 19:12� 0:15 19:71� 0:14 28:89� 0:28 � 35:46� 0:23

Caltech102-30 15:41� 0:10 15:36� 0:12 17:01� 0:14 18:39� 0:20 19:13� 0:22 28:12� 0:57 � 35:04� 0:16

Fig. 3. Clustering accuracy, NMI and purity comparison with various missing ratios on UCI-Digital.

TABLE 3
Aggregated ACC, NMI and Purity Comparison (mean � std) of Different Clustering Algorithms on UCI-Digital

Datasets MKKM+ZF MKKM+MF MKKM+KNN
MKKM+AF MKKM-IK MIC MVEC LF-IMVC

[25] [30] [27] [14] Proposed

ACC
UCI-Digital 42:74� 0:42 43:06� 0:29 71:32� 0:97 47:91� 0:46 48:02� 0:43 54:55� 1:12 35:88� 0:36 79:80� 0:55

NMI
UCI-Digital 41:77� 0:19 40:01� 0:21 63:27� 0:52 46:98� 0:23 46:87� 0:24 43:93� 0:51 32:65� 1:09 68:99� 0:48

Purity

UCI-Digital 44:64� 0:46 43:36� 0:26 71:44� 0:70 50:39� 0:33 50:75� 0:38 55:47� 0:82 39:94� 0:66 79:80� 0:55
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the same clustering space, leading to more suitable impu-
tation. These factors bring forth the significant improve-
ments on clustering performance.

4.3 Running Time

To compare the computational complexity of the above-
mentioned algorithms, we record the running time of these
algorithms on these benchmark datasets and report them
in Table 7. As can be seen, LF-IMVC has the shortest
running time on all datasets except Caltech102-5 and
Caltech102-10, demonstrating the high computational effi-
ciency. In particular, LF-IMVC is much more computation-
ally efficient than the recently proposed MKKM-IK [30],
both of which work in the “one-stage” style to jointly opti-
mize clustering and imputation. Meanwhile, we observe
that the running time of LF-IMVC on Caltech102-5 and
Caltech102-10 is slightly longer than that of MKKM. This
is because the two datasets have relatively small number
of samples and large number of clusters. In such case, the
computational complexity of LF-IMVC and MKKM is
comparable.

We then design an extra experiment to study the rela-
tionship between running time and the number of sam-
ples. To see this point in depth, we randomly select
samples from three largest datasets, i.e., Flower102, CCV
and Caltech102-30, run the aforementioned algorithms
and then record their running time. The running time of
these algorithms with the number of selected samples are
plotted in Fig. 6. We have the following observations
from these figures: 1) The running time of LF-IMVC is
nearly linear with the number of samples. 2) The superi-
ority of LF-IMVC is more significant with the increase of

samples, indicating its computational efficiency in han-
dling large-scale clustering tasks.

In sum, the experimental results in Table 7 and Fig. 6
have well demonstrated the computational advantage of
LF-IMVC.

4.4 Advantages of Late Fusion MVC

Though both MKKM-IK [30] and the proposed LF-IMVC
unify the imputation and clustering into a single optimiza-
tion, they are different in the manner of imputation: the for-
mer is early fusion (or kernel-level imputation), while the
latter is a kind of late fusion (or decision-level imputation).
Specifically, MKKM-IK [30] initializes the incomplete parts
of each Kp with zeros, and jointly performs MKKM cluster-
ing and imputation until convergence. Differently, late
fusion MVC with zero-filling (LF-MVC+ZF)6 first imputes
the incomplete parts of each Hp with zeros, and learns a
consensus clustering matrix H from fHpgmp¼1. As seen, H
obtained by MKKM-IK and LF-MVC+ZF are significantly
different. This difference would lead to dramatic difference
in clustering performance.

To clearly demonstrate the advantages of late fusion
MVC, we conduct an extra experiment to empirically com-
pare MKKM-IK and LF-MVC+ZF on Flower17, as reported
in Fig. 10. As observed, the clustering performance of LF-
MVC+ZF is much better than that of MKKM-IK. This clearly
demonstrates the advantages and effectiveness of the pro-
posed late fusion MVC.

4.5 Evolution of the Learned Consensus
Clustering Matrix

In this section, we conduct experiments to show the evo-
lution of the learned consensus clustering matrix H dur-
ing the learning procedure. Specifically, we evaluate the
NMI of LF-IMVC based on the H learned at each iteration
on all datasets and plot the curves in Fig. 7. From these
figures, we observe that the NMI on all datasets gradually
increases to a maximum and generally maintains it up to
slight variation. Other curves in terms of clustering accu-
racy and purity have similar trend and are omitted due
to space limit. These experiments have clearly demon-
strated the effectiveness of learned consensus clustering
matrix, indicating the advantage of imputing incomplete
base clustering matrices.

TABLE 4
Datasets Used in Our Experiments

Dataset #Samples #Kernels #Classes

Flower17 1,360 7 17
Flower102 8,189 4 102
Caltech102-5 510 48 102
Caltech102-10 1,020 48 102
Caltech102-15 1,530 48 102
Caltech102-20 2,040 48 102
Caltech102-25 2,550 48 102
Caltech102-30 3,060 48 102
UCI-Digital 2,000 3 10
ProteinFold 694 12 27
CCV 6,773 6 20

Fig. 4. Clustering accuracy, NMI and purity comparison with various missing ratios on Protein Fold.

6. Note that the proposed LF-IMVC reduces to LF-MVC+ZF when �
in Eq. (9) approachesþ1.
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TABLE 5
Aggregated ACC, NMI and Purity Comparison (mean � std) of Different Clustering Algorithms on Protein Fold

Datasets MKKM+ZF MKKM+MF MKKM+KNN
MKKM+AF MKKM-IK MIC MVEC LF-IMVC

[25] [30] [27] [14] Proposed

ACC
ProteinFold 20:80� 0:20 20:49� 0:32 21:13� 0:51 20:97� 0:21 23:22� 0:56 20:62� 0:42 14:44� 0:44 30:69� 0:37

NMI
ProteinFold 29:33� 0:35 29:52� 0:45 30:51� 0:40 29:54� 0:27 32:29� 0:56 27:53� 0:49 18:68� 0:40 37:93� 0:26

Purity
ProteinFold 27:22� 0:39 27:16� 0:35 27:85� 0:51 27:52� 0:44 29:82� 0:67 26:20� 0:52 19:08� 0:39 36:70� 0:29

Fig. 5. Clustering accuracy, NMI and purity comparison with various missing ratios on CCV. The results of MVEC [14] on CCV are not reported due to
the “out of memory” error.

TABLE 6
Aggregated ACC, NMI and Purity Comparison (mean � std) of Different Clustering Algorithms on CCV

Datasets MKKM+ZF MKKM+MF MKKM+KNN
MKKM+AF MKKM-IK MIC LF-IMVC

[25] [30] [27] Proposed

ACC
CCV 16:23� 0:15 16:33� 0:19 16:55� 0:23 17:39� 0:26 17:90� 0:21 14:38� 0:22 23:65� 0:23

NMI
CCV 12:46� 0:08 12:63� 0:12 12:90� 0:10 13:33� 0:13 13:76� 0:17 8:55� 0:27 17:96� 0:10

Purity
CCV 20:46� 0:12 20:68� 0:12 20:81� 0:12 21:28� 0:21 21:74� 0:18 17:66� 0:23 26:63� 0:24

TABLE 7
Aggregated Running Time Comparison (mean � std) of Different Clustering Algorithms on Benchmark Datasets (in Seconds)

Datasets MKKM+ZF MKKM+MF MKKM+KNN
MKKM+AF MKKM-IK MIC MVEC LF-IMVC

[25] [30] [27] [14] Proposed

ProteinFold 1:6� 0:2 1:5� 0:1 2:3� 0:2 1:8� 0:2 4:1� 0:6 192:1� 2:8 163:0� 1:4 1:1� 0:1
CCV 83:7� 10:8 85:9� 10:7 124:1� 14:5 106:4� 11:3 130:8� 5:2 2070:8� 15:1 � 23:0� 4:8

Flower17 2:8� 0:3 2:8� 0:3 3:9� 0:5 3:5� 0:4 5:4� 0:6 186:4� 6:5 603:3� 13:1 1:5� 0:2

Flower102 230:0� 17:4 239:3� 27:9 340:7� 17:1 279:4� 28:1 322:1� 31:0 5161:9� 94:1 � 117:2� 10:0

UCI-Digital 4:3� 0:4 4:2� 0:5 4:4� 0:5 5:0� 0:6 7:8� 0:9 153:4� 3:6 906:1� 30:0 1:3� 0:2
Caltech102-5 4:4� 0:2 4:4� 0:1 6:8� 0:2 4:8� 0:2 31:6� 3:3 1204:3� 330:4 187:4� 1:0 16:6� 0:4

Caltech102-10 17:3� 0:7 17:2� 0:7 29:5� 0:7 18:9� 0:6 74:3� 17:0 2211:3� 668:1 809:7� 14:0 25:8� 0:6

Caltech102-15 55:6� 0:7 55:8� 0:7 84:1� 2:3 58:1� 2:1 197:1� 28:4 3379:8� 867:8 2226:4� 46:1 44:9� 0:6

Caltech102-20 111:0� 4:7 111:3� 4:6 199:7� 25:3 120:6� 4:8 320:3� 37:6 5370:2� 1753:1 � 75:5� 0:7
Caltech102-25 207:3� 14:8 209:2� 19:7 362:7� 18:7 200:6� 4:6 566:1� 71:0 9265:5� 1465:2 � 32:4� 2:4

Caltech102-30 357:2� 21:5 364:5� 24:4 616:4� 36:9 360:2� 16:8 828:2� 33:4 11896:0� 1875:8 � 139:2� 0:8

All experiments are conducted on a PC machine with an Intel(R) Core(TM)-i7-5820, 3.3 GHz CPU and 16G RAM in MATLAB environment. The results of
MVEC [14] on CCV, Flower102, Caltech102-20, Caltech102-25 and Caltech102-30 are not reported due to the “out of memory” error.
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4.6 Parameter Sensitivity Analysis

As can be seen in Eq. (9), LF-IMVC introduces the regulari-
zation parameter � to trade off the clustering and imputa-
tion. In the following, we conduct experiments to show the

effect of this parameter on the clustering performance on all
datasets. Fig. 8 presents the NMI of LF-IMVC by varying �
from 2�15 to 215, where the MKKM-IK is also provided as a
baseline. From these figures, we observe that the NMI first

Fig. 7. The clustering results by the learned H of LF-IMVC with iterations, where � is set as 2�3 on Flower17, Flower102, CCV, UCI-digtal and
Caltech102-30 datasets in this experiment. The results in terms of ACC and purity with other missing ratios are similar and omitted due to space limit.

Fig. 8. The sensitivity of LF-IMVC with the variation of � on Flower17, Flower102, CCV, UCI-digtal and Caltech102-30 datasets. The results in terms
of ACC and purity with other missing ratios are similar and omitted due to space limit.

Fig. 9. The objective value of LF-IMVC with iterations on Flower17, Flower102, CCV, UCI-digtal and Caltech102-30 datasets. The curves with other
missing ratios are similar and omitted due to space limit.

Fig. 6. Running time comparison of different algorithms with various number of samples on Flower102, CCV and Caltech102-30 datasets.

Fig. 10. Clustering accuracy, NMI and purity comparison of MKKM-IK [30] and LF-MVC+ZF with various missing ratios on Flower17.
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increases to a high value and generally maintains it up to
slight variation with the increasing value of �. LF-IMVC
demonstrates stable performance across a wide range of �.
These experiments have well shown that LF-IMVC is not
very sensitive to the variation of the parameter.

4.7 Convergence

Our algorithms are theoretically guaranteed to converge
according to Theorem 1. We record the objective values of
LF-IMVC with iterations on all datasets and plot them in
Fig. 9. As observed, the objective value of LF-IMVC does
monotonically increase at each iteration and that it usually
converges in less than 200 iterations.

5 CONCLUSION

While the recently proposed MKKM-IK [30] is able to handle
incompletemulti-view clustering, the relatively high computa-
tional and space complexities prevent it from large scale clus-
tering tasks. This paper proposes a late fusion approach to
simultaneously clustering and imputing the incomplete base
clustering matrices. The proposed algorithm effectively and
efficiently solves the resultant optimization problem, and dem-
onstrates well improved clustering performance via extensive
experiments on benchmark datasets. In the future, instead of
uniformly integrating each base clustering matrix, we plan to
further improve the clustering performance by automatically
updating them during the learning course. Moreover, we are
going to explore the correlation among base clusteringmatrices
and use it to further improve the imputation.
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