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Abstract—Incomplete multi-view clustering (IMVC) optimally combines multiple pre-specified incomplete views to improve clustering

performance. Among various excellent solutions, the recently proposed multiple kernel k-means with incomplete kernels (MKKM-IK)

forms a benchmark, which redefines IMVC as a joint optimization problem where the clustering and kernel matrix imputation tasks are

alternately performed until convergence. Though demonstrating promising performance in various applications, we observe that the

manner of kernel matrix imputation in MKKM-IK would incur intensive computational and storage complexities, over-complicated

optimization and limitedly improved clustering performance. In this paper, we first propose an Efficient and Effective Incomplete Multi-

view Clustering (EE-IMVC) algorithm to address these issues. Instead of completing the incomplete kernel matrices, EE-IMVC

proposes to impute each incomplete base matrix generated by incomplete views with a learned consensus clustering matrix. Moreover,

we further improve this algorithm by incorporating prior knowledge to regularize the learned consensus clustering matrix. Two three-

step iterative algorithms are carefully developed to solve the resultant optimization problems with linear computational complexity, and

their convergence is theoretically proven. After that, we theoretically study the generalization bound of the proposed algorithms.

Furthermore, we conduct comprehensive experiments to study the proposed algorithms in terms of clustering accuracy, evolution of

the learned consensus clustering matrix and the convergence. As indicated, our algorithms deliver their effectiveness by significantly

and consistently outperforming some state-of-the-art ones.

Index Terms—Multiple kernel clustering, multiple view learning, incomplete kernel learning

Ç

1 INTRODUCTION

MULTI-VIEW clustering (MVC) optimally integrates fea-
tures from different views to improve clustering per-

formance [1]. It has been intensively studied and widely
applied into various applications during the last few decade
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. All these
MVC algorithms assume that the views of samples are
observable. However, in some practical applications [14],
[15], this assumption may not hold anymore due to the

absence of partial views among samples. The violation on
this assumption makes the aforementioned MVC algo-
rithms not applicable to handle incomplete multi-view clus-
tering (IMVC) tasks.

Many efforts have been devoted to addressing IMVC,
which can roughly be grouped into two categories. In the
first category, the incomplete views are first filled with an
imputation algorithm such as zero-filling, mean value fill-
ing, k-nearest-neighbor filling, expectation-maximization
(EM) filling [16] and other advanced ones [17], [18], [19],
[20], [21]. A standard MVC algorithm is subsequently
applied into these imputed views to perform clustering
tasks. This kind of algorithms are termed “two-stage” ones,
where the imputation and clustering processes are sepa-
rately carried out. By observing that the above-mentioned
“two-stage” algorithms disconnect the processes of imputa-
tion and clustering, the other category, termed as “one-
stage”, puts forward to unify imputation and clustering into
a single optimization procedure and instantiate a cluster-
ing-oriented algorithm termed as multiple kernel k-means
with incomplete kernels (MKKM-IK) algorithm [22]. Specifi-
cally, the clustering result at the last iteration guides the
imputation of absent kernel elements, and the latter is used
in turn to conduct the subsequent clustering. By this way,
these two procedures are seamlessly connected, with the
aim to achieve better clustering performance.

Of the above-mentioned IMVC algorithms, the “one-
stage” methods form a benchmark, where the incomplete
views are optimized to best serve clustering. The main con-
tribution of these methods is the unification of imputation
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and clustering, so that the imputation would be meaningful
and beneficial for clustering. It has been demonstrated that
the “one-stage” methods can achieve promissing clustering
performance in various applications [22], [23], but they also
suffer from the following non-ignorable drawbacks. i) High
computational and storage complexities. Its computational and
storage complexities are Oðn3Þ and Oðmn2Þ per iteration,
respectively, where n and m are the number of samples and
views. It prevents them from being applied to large-scale
clustering tasks. ii) Over-complicated imputation. Existing
“one-stage” methods directly impute multiple incomplete
similarity matrices, in which the number of variables
increases quadratically with the number of samples for each
view. This could make the whole optimization over-compli-
cated and also considerably increase the risk of falling into a
low-quality local minimum. iii) Limitedly improved clustering
performance. Note that a clustering result is determined by a
whole similarity matrix in [22]. As a result, the imputation
to an incomplete similarity matrix has impact to the cluster-
ing of all samples, no matter whether a sample is complete
or not. When an imputation is not of high quality, it could
adversely affect the clustering performance of all samples,
especially for those with complete views.

All of the above issues signal that directly imputing the
incomplete similarity matrices seems to be problematic and
that a more efficient and effective approach shall be taken. In
this paper, we propose efficient and effective incomplete
multi-view clustering (EE-IMVC) to address these issues.
EE-IMVC imputes each incomplete base clustering matrix
generated by performing clustering on each separated
incomplete similaritymatrix, instead of itself. These imputed
base clustering matrices are then used to learn a consensus
clustering matrix, which is then employed to impute each
incomplete base clustering matrix. These two steps are alter-
nately performed until convergence. This idea is fulfilled by
maximizing the alignment between the consensus clustering
matrix and an adaptively weighted base clustering matrices
with an optimal permutation. Though being theoretically
elegant, we also observe that this algorithm does not suffi-
ciently consider that learning the consensus clustering
matrix could benefit from some other prior knowledge,
besides the original orthogonal constraint. As a result, we
further improve EE-IMVC by developing another variant,
termed as efficient and effective regularized incomplete
multi-view clustering (EE-R-IMVC). It explicitly designs a
regularization termwhere the consensus clustering matrix is
required to lie in the neighborhood of a pre-specified one.
This prior knowledge is beneficial for the learning of the
consensus clustering matrix, leading to improved clustering
performance. We design two simple and computationally
efficient algorithms to solve the resultant optimization
problems by three singular value decomposition (SVD) per
iteration, and analyze their computational and storage com-
plexities and theoretically prove the convergence. After that,
we conduct comprehensive experiments on six benchmark
datasets to study the properties of the proposed algorithms,
including the clustering accuracy with the various missing
ratios, the evolution of the learned consensus matrix with
iterations and the objective value with iterations. As demon-
strated, EE-IMVC significantly and consistently outperforms
the state-of-the-art methods in terms of clustering accuracy

with much less running time. Meanwhile, we observe
that the other proposed variant, i.e., EE-R-IMVC, further
improves the clustering performance of EE-IMVC. It is
expected that the simplicity and effectiveness of these clus-
tering algorithmswill make them a good option to be consid-
ered for practical applications where incomplete views are
encountered.

This work is a substantially extended version of our orig-
inal conference paper [24]. Its significant improvement over
the previous one can be summarized as follows: 1) We
design a new algorithm, termed EE-R-IMVC, by incorporat-
ing some prior knowledge on the consensus matrix into
existing EE-IMVC, and develop an iterative algorithm to
efficiently solve the resultant optimization problem. The
prior knowledge can be treated as an initial clustering parti-
tion of data, which can be obtained by performing tradi-
tional clustering algorithms on imputed kernel matrices. It
regularizes the learning of the consensus matrix, and this is
beneficial for the newly proposed EE-R-IMVC to signifi-
cantly outperform EE-IMVC proposed in the previous
paper [24]. 2) We theoretically study the generalization
bound of the proposed EE-IMVC and EE-R-IMVC on test
data. 3) Besides more detailed discussion and extension, we
also conduct more comprehensive experiments to validate
the effectiveness of the proposed algorithms.

2 RELATED WORK

2.1 Multiple Kernel k-Means (MKKM)

Let fxigni¼1 � X be a collection of n samples, and
fpð�Þ : x 2 X 7! Hp be the pth feature mapping that maps x
onto a reproducing kernel Hilbert space Hp ð1 � p � mÞ. In
the multiple kernel setting, each sample is represented as
fbbðxÞ ¼ ½b1f1ðxÞ>; . . . ;bmfmðxÞ>�>, where bb ¼ ½b1; . . . ;bm�>
consists of the coefficients of the m base kernels fkpð�; �Þgmp¼1.
These coefficients will be optimized during learning. Based
on the definition of fbbðxÞ, a kernel function can be expressed

as kbbðxi; xjÞ ¼ fbbðxiÞ>fbbðxjÞ ¼
Pm

p¼1 b
2
pkpðxi; xjÞ. A kernel

matrix Kbb is then calculated by applying the kernel function
kbbð�; �Þ into fxigni¼1. Based on the kernel matrix Kbb ¼Pm

p¼1 b
2
pKp, the objective of MKKM can be written as

min H;bb TrðKbbðIn �HH>ÞÞ
s:t: H 2 Rn�k; H>H ¼ Ik; bb

>1m ¼ 1; bp 	 0; 8p;
(1)

where Ik is an identity matrix with size of number of clus-
ters k, and H ¼ ½h>

1 ;h
>
2 ; � � � ;h>

n � 2 Rn�k is a clustering parti-
tion matrix. For each hi ¼ ½hi1; hi2; . . . ; hik�> ð1 � i � nÞ,
hic ¼ 1=

ffiffiffiffiffi
nc

p
if xi belongs to the cth cluster ð1 � c � kÞ, and 0

otherwise, where nc is the number of samples belonging to
the cth cluster. It is not difficult to verify that H>H ¼ Ik.
Note that the variables of H are discrete, which makes the
optimization problem difficult to solve. However, one can
approximate this problem through relaxing H to take arbi-
trary real values.

The optimization problem in Eq. (1) can be solved by
alternately updating H and bb. Specifically, H is updated by
given bb, and bb is then optimized with updated H. These
two steps are alternately performed until convergence.
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2.2 Multiple Kernel k-Means With Incomplete
Kernels (MKKM-IK)

The recently proposed MKKM-IK [22] has extended the
existing MKKM in Eq. (1) to enable it to handle multiple
kernel clustering with incomplete kernels. It unifies the
imputation and clustering procedure into a single optimiza-
tion objective and alternately optimizes each of them. That
is, i) imputing the absent kernels under the guidance of
clustering; and ii) updating the clustering with the imputed
kernels. The above idea is mathematically fulfilled as,

minH; bb; fKpgmp¼1
TrðKbbðIn �HH>ÞÞ

s:t: H 2 Rn�k;H>H ¼ Ik;

bb>1m ¼ 1;bp 	 0;

Kpðsp; spÞ ¼ KðccÞ
p ; Kp 
 0; 8p;

(2)

where sp ð1 � p � mÞ denote the sample indices for which
the pth view is present and KðccÞ

p be used to denote the ker-
nel sub-matrix computed with these samples. The con-
straint Kpðsp; spÞ ¼ KðccÞ

p is imposed to ensure that Kp

maintains the known entries during the course. Different
from the optimization in MKKM, [22] incorporates an extra
step to impute the missing entries of base kernels, leading
to a three-step alternate optimization algorithm. Interested
readers are referred to [22].

Although MKKM-IK demonstrates excellent clustering
performance in handling incomplete multi-view clustering
tasks [22], it also suffers from the following non-ignorable
drawbacks. First, from the above optimization procedure,
we observe that its computational complexity is Oðn3þPm

p¼1 n
3
p þm3Þ per iteration, where n; np ðnp � nÞ and m are

the number of all samples, observed samples of pth view
and views. During the learning procedure, it requires to
store m base kernel matrices with size n. Therefore, its stor-
age complexity is Oðmn2Þ. The relatively high computa-
tional and storage complexities preclude it from being
applied to large-scale clustering tasks. Furthermore, as seen
from Eq. (2), there are 1

2 ðn� npÞðnþ np þ 1Þ elements to be
imputed for the pth incomplete base kernel matrix
Kpð1 � p � mÞ. It unnecessarily increases the complexity of
the optimization and the risk of be trapped into a local
minimum, adversely affecting the clustering performance.
In addition, note that a clustering result is determined by a
whole similarity matrix in [22]. As a result, the imputation
to an incomplete similarity matrix has impact to the clus-
tering of all samples, no matter whether a sample is com-
plete or not. This improperly increases the influence of
imputation on all samples, especially for those with com-
plete views.

2.3 Late Fusion Incomplete Multi-View Clustering
(LF-IMVC)

Instead of imputing incomplete similarity matrices fKpgmp¼1,
the work in [25] develops a late fusion incomplete multi-
view clustering (LF-IMVC) algorithm, which proposes to
impute the incomplete base clustering matrices to overcome
the aforementioned disadvantages of MKK-IK. It simulta-
neously performs clustering and the imputation of missing
elements among base clustering matrices Hp 2 Rn�k ð1 �
p � mÞ, where the observed part of Hp, denoted as

Hð0Þ
p 2 Rnp�k ð1 � p � mÞ, can be obtained by solving kernel

k-means in Eq. (2) with m incomplete base kernel matrices
fKpðsp; spÞgmp¼1.

Specifically, LF-IMVC first finds a consensus clustering
matrix H from fHpgmp¼1, and then imputes the incomplete
parts of them with the learned consensus matrix. By this
way, the above two learning processes can be seamlessly
coupled and they are allowed to negotiate with each other
to achieve better clustering. The above idea can be fulfilled
as follows,

max
H;fWp;Hpgmp¼1

Tr H> Xm
p¼1

HpWp

 !" #
þ �

Xm
p¼1

Tr
�
H>

p Ĥ
ð0Þ
p

�
s:t: H 2 Rn�k; H>H ¼ Ik;

Wp 2 Rk�k; W>
p Wp ¼ Ik;

Hp 2 Rn�k; H>
p Hp ¼ Ik;

(3)

whereH andHp are the consensus clustering matrix and the
pth base clustering matrix, respectively, Wp is the pth per-
mutation matrix in order to optimally match Hp and H,
Ĥð0Þ

p ðsp; :Þ ¼ Hð0Þ
p with other elements being zeros and � is a

regularization parameter to trade of clustering and imputa-
tion. The orthogonal constraints are imposed on H; Hp and
Wp since they are clustering matrices and permutation
matrix, respectively.

Although the recently proposed LF-IMVC [25] has some
nice properties such as less imputation variables and
higher computational efficiency compared with MKKM-IK
[22], it also suffers from the following non-ignorable draw-
backs. i) More vulnerable to low-quality imputation. As seen
from Eq. (3), the observed part of each base clustering
matrix Hp ð1 � p � mÞ doesnot require to be kept
unchanged during the learning course. Consequently, there
are n� k elements to be optimized for each Hp. This
unnecessarily increases the complexity of the optimization
and the risk of being trapped into a low-quality local mini-
mum. In addition, the imputation on fHpgmp¼1 would affect
the clustering of all samples, no matter whether they are
complete. This improperly increases the impact of imputa-
tion on all samples, especially for those with complete
views. ii) Lack of Theoretical Guarantee. Although LF-IMVC
[25] experimentally demonstrates promising clustering per-
formance in practical applications, it lacks of necessary the-
oretical analysis on the generalization error bound, which
is important to theoretically justify its effectiveness. In
addition, this theoretical analysis also provides a guidance
to further improve the performance. In this work, we
design two new IMVC algorithms to address the aforemen-
tioned issues, where the observed part of each base cluster-
ing matrix is strictly kept unchanged during the learning
course. This, on one hand, is helpful to improve the
computational efficiency by significantly reducing the
number of variables to be filled. On the other hand, it also
enhances the robustness to low-quality imputation. More
importantly, we derive a generalization error bound for
the proposed EE-IMVC and EE-R-IMVC, which provides
the theoretical guarantee for the effectiveness of the pro-
posed algorithms.
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3 EFFICIENT AND EFFECTIVE INCOMPLETE MULTI-
VIEW CLUSTERING (EE-IMVC)

3.1 Formulation of EE-IMVC

In this section, we propose Efficient and Effective Incomplete
Multi-view Clustering (EE-IMVC) which performs cluster-
ing and imputes the incomplete base clustering matrices
simultaneously. We first define the p-th ð1 � p � mÞ base
clusteringmatrix as

Hp ¼ ½HðoÞ
p

>
;HðuÞ

p

>�> 2 Rn�k; (4)

where HðoÞ
p 2 Rnp�k can be obtained by solving kernel

k-means in Eq. (2) with m incomplete base kernel matrices
fKpðsp; spÞgmp¼1, while HðuÞ

p 2 Rðn�npÞ�k denote the incom-
plete part of Hp that is required to be filled. Note that other
similarity based clustering algorithms such as spectral clus-
tering can also be used to generate fHðoÞ

p gmp¼1.
According to the above discussion, EE-IMVC proposes to

simultaneously perform clustering and the imputation of
fHðuÞ

p gmp¼1 while keeping fHðoÞ
p gmp¼1 unchanged during the

learning course. Specifically, it first optimizes a consensus
clustering matrix H from imputed fHpgmp¼1, and then fill the
fHðuÞ

p gmp¼1 with H. These two learning processes are seam-
lessly integrated. By doing so, they are allowed to coordi-
nate with each other to achieve optimal clustering. The
above idea can be fulfilled as follows,

max
H;fWp;H

ðuÞ
p ;bpgmp¼1

Tr H>Xm

p¼1
bp

HðoÞ
p

HðuÞ
p

 !
Wp

" #

s:t: H 2 Rn�k; H>H ¼ Ik;

Wp 2 Rk�k; W>
p Wp ¼ Ik;

HðuÞ
p 2 Rðn�npÞ�k; HðuÞ

p

>
HðuÞ

p ¼ Ik;

bb 2 Rm;
Xm

p¼1
b2
p ¼ 1; bp 	 0;

(5)

where H and HðuÞ
p are the consensus clustering matrix and

the missing part of the pth base clustering matrix, respec-
tively, Wp is the pth permutation matrix to optimally match
Hp and H, and bb ¼ ½b1; . . . ;bm�> is the adaptive weights of
m base clustering matrices. Note that the orthogonal con-
straints are respectively imposed on H and HðuÞ

p since they
are clustering matrices. We also put an orthogonal con-
straint onWp because it is a permutation matrix.

Compared with MKKM-IK [22], the objective function of
EE-IMVC in Eq. (5) has the following nice properties. (1)
Less imputation variables: The number of elements needs to
be filled for the pth view is ðn� npÞ � k, which is much less
than 1

2 ðn� npÞ � ðnþ np þ 1Þ required by MKKM-IK. This
could dramatically simplify the model and enhance its
robustness to optimization. (2) Less vulnerable to low-quality
imputation: In EE-IMVC, clustering on samples with com-
plete views will not be affected by the imputation they are
kept unchanged during the learning course. However, it is
not the case for MKKM-IK because it needs to fill all incom-
plete elements and conduct eign-decomposition on the
whole imputed similarity for clustering. This is helpful to
make the proposed model be more robust in the whole
course of optimization. (3) More reasonable imputation: EE-
IMVC utilizesH to completeHðuÞ

p rather than the incomplete

base kernels matrices as in [22], which is more reasonable
since both H and HðuÞ

p reside in clustering partition space.
Besides, our algorithm is parameter-free once the number of
clusters to form is specified. These advantages significantly
boosts the clustering performance, as demonstrated in the
experimental part. In [24], a three-step iterative algorithm
with proved convergence is designed to solve the optimiza-
tion problem in Eq. (5). Interested readers can refer to [24]
for the detail.

3.2 Efficient and Effective Regularized Incomplete
Multi-View Clustering (EE-R-IMVC)

3.2.1 Prior Knowledge Encoded byH0

The proposed EE-IMVC in Section 3.1 which jointly per-
forms base clustering matrices completion and clustering is
elegant, and achieves promising clustering performance as
shown in the experimental part. As seen from Eq. (5), EE-
IMVC imputes each base clustering matrix by only utilizing
the consensus clustering matrix H and the imputed base
clustering matrices are optimally combined to learn H. As a
result, it is crucial for EE-IMVC to learn an effective H in
order to improve the clustering performance. However,
apart from the orthogonal constraint, EE-IMVC does not uti-
lize any auxiliary information to boost the optimization of
H. This could make the optimization with respect to H
being trapped into a local minimum, which could further
adversely affect the imputation of base clustering matrices,
leading to unsatisfying clustering performance.

To address this issue, we aim to further improve the pro-
posed EE-IMVC by incorporating useful prior knowledge,
encoded by H0, to regularize the learning of H. A question
naturally raised is what kind of H0 is expected. We assume
that H0 could be an initial clustering partition of data. For
example,H0 can be the output of existing MKKMwhere the
incomplete elements of each base kernel matrix can be filled
with zeros, mean-value, EM algorithm, to name just a few.
H0 can also be the output of existing kernel k-means (KKM)
where the kernel is the average of all base kernel matrices
with all missing elements filled with zeros. Further, there
are other choices to generate H0. For example, H0 could be
the output of MKKM-IK [22]. By regularizing the learning
of the consensus clustering matrix with H0, the resultant
algorithms can effectively avoid local optimum and demon-
strate superior clustering performance. Finally, it is worth
pointing out that only prior knowledge about the clusters is
far from enough to well partition the data, as will be shown
by the results in Table 3. As a result, we still need clustering
the data even though we have prior knowledge about the
clusters.

3.2.2 Formulation of EE-R-IMVC

Besides the orthogonal constraint, it is assumed that the
consensus clustering matrix H resides in the neighborhood

of a pre-specified H0, and minimizes kH�H0k2F to guide
the learning ofH, whereH0 could be prior knowledge about
the clusters. Note that minimizing kH�H0k2F is equivalent
to maximizing TrðH>H0Þ. By integrating the above regulari-
zation term into the objective of EE-IMVC in Eq. (5), we
obtain the objective function of the proposed efficient and
effective regularized incomplete multi-view clustering
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(EE-R-IMVC) as follows:

max
H;fWp;H

ðuÞ
p ;bpgmp¼1

Tr H>Xm
p¼1

bp

HðoÞ
p

HðuÞ
p

 !
Wp

" #
þ �Tr

�
H>H0

�
;

s:t: H 2 Rn�k; H>H ¼ Ik;

Wp 2 Rk�k; W>
p Wp ¼ Ik;

HðuÞ
p 2 Rðn�npÞ�k; HðuÞ

p

>
HðuÞ

p ¼ Ik;

bb 2 Rm;
Xm

p¼1
b2
p ¼ 1; bp 	 0;

(6)

where H and HðuÞ
p are the consensus clustering matrix and

the missing part of the pth base clustering matrix, respec-
tively, Wp is the pth permutation matrix to optimally match
Hp and H, bb ¼ ½b1; . . . ;bm�> is the adaptive weights of m
base clustering matrices, H0 is an initial estimate of H, and
� is the regularization parameter. Note that the orthogonal
constraints are respectively imposed on H and HðuÞ

p since
they are clustering matrices. We also put an orthogonal con-
straint onWp because it is a permutation matrix.

3.2.3 Alternate Optimization

Jointly optimizing H; fHðuÞ
p ; Wpgmp¼1 and bb in Eq. (6) is diffi-

cult. In the following, we design a simple and computation-
ally efficient three-step algorithm to solve it alternately.

Solving H With Fixed fWp;H
ðuÞ
p gmp¼1 and bb. Given

fWp; H
ðuÞ
p gmp¼1 and bb, the optimization w.r.t H in Eq. (6) is

equivalent to

maxH Tr H>T
� �

s:t: H 2 Rn�k; H>H ¼ Ik; (7)

where T ¼Pm
p¼1 bpHpWp þ �H0. As seen, in the proposed

EE-R-IMVC, the optimization of H depends on both the
base clustering matrix and the pre-specified H0, which is
different from EE-IMVC. The optimization in Eq. (7) is a sin-
gular value decomposition (SVD) problem and can be effi-
ciently solved with computational complexity Oðnk2Þ.

Solving fWpgmp¼1 With Fixed H; fHðuÞ
p gmp¼1 and bb. Given

H; fHðuÞ
p gmp¼1 and bb, the optimization w.r.t permutation

matrixWp in Eq. (6) equivalently reduces to,

maxWp Tr W>
p Qp

� �
s:t: Wp 2 Rk�k; W>

p Wp ¼ Ik; (8)

where Qp ¼ H>
p H. Again, it is a SVD optimization problem

with computational complexity Oðk3Þ.
Solving fHðuÞ

p gmp¼1 With Fixed fWpgmp¼1; H and bb. Given
H; fWpgmp¼1 and bb, the optimization w.r.t HðuÞ

p in Eq. (5) is
equivalent to

max
H
ðuÞ
p

Tr HðuÞ
p

>
Up

� �
s:t: HðuÞ

p 2 Rðn�npÞ�k; HðuÞ
p

>
HðuÞ

p ¼ Ik;

(9)

where Up ¼ Hðŝp; :ÞW>
p and ŝp denotes the sample indices

for which the pth view is missing. Once again, it is a SVD
problem and can be efficiently solved with computational
complexity Oððn� npÞk2Þ.

Solving bb With Fixed H and fWp; H
ðuÞ
p gmp¼1. Given H and

fWp; H
ðuÞ
p gmp¼1, the optimizationw.r.tbb in Eq. (6) is equivalent to

maxbb nn>bb s:t: bb 2 Rm;
Xm

p¼1
b2
p ¼ 1; bp 	 0; (10)

where nn ¼ ½n1; n2; . . . ; nm�with np ¼ TrðH>HpWpÞ.
As seen, the optimization in Eq. (10) has an analytical

solution if np 	 0 ð1 � p � mÞ. The following Theorem 1 tells
that the optimal weights of each base clustering matrix can
be obtained analytically.

Theorem 1. The optimal solution for Eq. (10) is bb
? ¼ nn=knnk.

Proof. Let ðHðtÞ; fHðtÞ
p ;WðtÞ

p gmp¼1Þ be the solution at the tth
iteration. We have nðtÞp ¼ TrððHðtÞÞ>HðtÞ

p WðtÞ
p Þ ¼ max

H
ðuÞ
p

Tr
�ðHðtÞÞ>½HðoÞ

p

>
;HðuÞ

p

>�>WðtÞ
p

� 	 maxWpTr
�

ðHðtÞÞ>½HðoÞ
p

>
;
�
HðuÞ

p

ðt�1Þ�>�>Wp

�
> 0; 8p. The proof is

completed by taking the derivative of the Lagrangian
function of Eq. (10) on bp and letting it vanish. tu

Algorithm 1. The Proposed EE-R-IMVC

1: Input: fHðoÞ
p ; spgmp¼1; k; H0; � and �0.

2: Output:H.
3: InitializeWð0Þ

p ¼ Ik; H
ðuÞ
p

ð0Þ ¼ 0; bbð0Þ ¼ 1=
ffiffiffiffiffi
m

p
and t ¼ 1.

4: repeat
5: Update HðtÞ by solving Eq. (7) with fWðt�1Þ

p ; HðuÞ
p

ðt�1Þgmp¼1

and bbðt�1Þ.
6: Update fWðtÞ

p gmp¼1 with HðtÞ; fHðuÞ
p

ðt�1Þgmp¼1 and bbðt�1Þ by
Eq. (8).

7: Update fHðuÞ
p

ðtÞgmp¼1 with HðtÞ; fWðtÞ
p gmp¼1 and bbðt�1Þ by

Eq. (9).
8: Update bbðtÞ with HðtÞ; fWðtÞ

p gmp¼1 and fHðuÞ
p

ðtÞgmp¼1 by
Eq. (10).

9: t ¼ tþ 1.
10: until

�
objðtÞ � objðt�1Þ

�
=objðt�1Þ � �0

In sum, our algorithm for solving Eq. (6) is outlined in
Algorithm 1, where objðtÞ denotes the objective value at the
tth iteration. The following Theorem 2 shows that Algo-
rithm 1 is guaranteed to converge to a local maximum.

Theorem 2. Algorithm 1 is guaranteed to converge to a local
optimum.

Proof. Note that for 8p;Tr�H>½HðoÞ
p

>
;HðuÞ

p

>�>Wp

� �
1
2 ½TrðH>HÞ þTrðW>

p ½HðoÞ
p

>
; HðuÞ

p

>�½HðoÞ
p

>
;HðuÞ

p

>�>WpÞ� ¼
1
2 ½2kþ TrðW>

p H
ðoÞ
p

>
HðoÞ

p WpÞ�. Note that the maximum

of TrðW>
p H

ðoÞ
p

>
HðoÞ

p WpÞ with constraint W>
p Wp ¼ Ik isPk

j¼1 �
j
p, where f�j

pgkj¼1 are the k eigenvalue of HðoÞ
p

>
HðoÞ

p .

We have Tr
�
H>½HðoÞ

p

>
;HðuÞ

p

>�>Wp

� � 1
2 ½2kþ

Pk
j¼1 �

j
p� , ap.

Correspondingly,
Pm

p¼1 bpTr
�
H>½HðoÞ

p

>
;HðuÞ

p

>�>Wp

� �Pm
p¼1 bpap, which is upper-bounded by

Pm
p¼1 kapk due to

the ‘2-norm constraint on bb. Meanwhile, the objective of

Algorithm 1 is guaranteed to be monotonically increased
when optimizing one variable with others fixed at each

iteration. As a result, our algorithm is guaranteed to

converge to a local minimum. tu

3.3 Discussion and Extension

We end up this section by analyzing the computational and

storage complexities, the initialization of fHðuÞ
p ; Wpgmp¼1 and

potential extensions.
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Computational Complexity. As seen from Algorithm 1, the
computational complexity of EE-IMVC and EE-R-IMVC is
Oðnk2 þmðk3 þ ðn� npÞk2ÞÞ per iteration, where n; m and k
are the number of samples, views and clusters, respectively.
Therefore, EE-IMVC and EE-R-IMVC have a linear compu-
tational complexity with number of samples, which enables
it more efficiently to handle large scale clustering tasks
when compared with MKKM-IK [22].

Storage Complexity. During the learning procedure, EE-
IMVC and EE-R-IMVC need to store H and fHp; Wpgmp¼1. Its
storage complexity is Oðnkþmnkþmk2Þ, which is much
less than that of MKKM-IK with Oðmn2Þ since n � k in
practice.

Initialization of fHðuÞ
p ; Wpgmp¼1. In our current implementa-

tion, we simply initialize fHðuÞ
p gmp¼1 as zeros, and fWpgmp¼1 as

identity matrix. This initialization has well demonstrated
superior clustering performance of EE-IMVC and EE-R-
IMVC in our experiments. Further exploring other initializa-
tions and studying their influence on the clustering perfor-
mance will be an interesting future work.

Regularization on H. The regularization on H is important
to improve the subsequent clustering performance. In this
work, we regularize H by assuming that it lies in the neigh-
borhood of a pre-specified H0. In our current implementa-
tion, H0 is obtained by performing kernel k-means on
unified multiple incomplete kernel matrices with zero-fill-
ing. Other approaches to generate H0 can also be designed
to further improve the clustering performance. In addition,
many task related prior knowledge such as low-rank can be
incorporated to regularize H, which is left as a piece of
future work.

Extensions. EE-IMVC and EE-R-IMVC can be extended
from the following aspects. First, EE-IMVC and EE-R-
IMVC could be further improved by sufficiently consider-
ing the correlation among fHpgmp¼1. For example, we may
build this correlation by criteria such as Kullback-Leibler
(KL) divergence [26] and Hilbert-Schmidt independence
criteria (HSIC), to name just a few. This prior knowledge
could provide a good regularization on mutual base clus-
tering matrix completion, and would be helpful to improve
the clustering performance. Second, the way in generating
fHðoÞ

p gmp¼1 could be readily extendable to other similarity
based clustering algorithms, such us spectral clustering
[27]. This could further improve the clustering perfor-
mance. Last but not least, the idea of joint imputation and
clustering is so natural that can be generalized to other
learning task such as feature missing.

4 GENERALIZATION ANALYSIS OF THE PROPOSED

ALGORITHMS

The generalization error of k-means clustering has been
studied by fixing the centroids obtained in the training pro-
cess and generalizing them for testing [28], [29]. In this sec-
tion, we derive generalization bounds of the proposed
algorithms via exploiting the reconstruction error to study
how the centroids obtained by the proposed EE-IMVC and
EE-R-IMVC generalize onto unseen data.

Before defining the reconstruction error of k-means, we
model the absence of views first. Specifically, let the indica-
tor function tðxðpÞÞ denote the absence of the pth view of the

observation x, i.e., if the pth view is observed, then
tðxðpÞÞ ¼ 1; otherwise its value needs to be optimized. Note
that tðxðpÞÞ is a random variable depending on x, whose dis-
tribution is unknown. Let ŜS ¼ ½m̂m1; . . . ; m̂mk� be the learned
matrix composed of the k centroids, and b̂b; fWpgmp¼1 the
learned kernel weights and permutation matrices by the
proposed EE-IMVC and EE-R-IMVC. Effective k-means
clustering algorithms should have the following reconstruc-
tion error small

E miny2fe1;...;ekg hbb;t;fWpgmp¼1
ðxiÞ � ŜSy

��� ���2
F

� 	
; (11)

where hbb;t;WðxiÞ ¼
Pm

p¼1 bptpðxðpÞi ÞW>
p hpðxðpÞi Þ and e1; . . . ; ek

form the orthogonal bases of Rk. We show how the pro-
posed algorithms achieve this goal.

Let us define a function class first:

F ¼
n
f : x 7! min

y2fe1;...;ekg
hbb;t;fWpgmp¼1

ðxiÞ � SSy
��� ���2

F




Xm

p¼1
b2
p ¼ 1; bp 	 0; SS 2 Rk�k; W>

p Wp ¼ Ik;

HðuÞ
p

>
HðuÞ

p ¼ Ik; 8p; 8xi 2 X
o
:

(12)

Theorem 3. For any d > 0, with probability at least 1� d, the
following holds for all f 2 F :

E fðxÞ½ � � 1

n

Xn
i¼1

fðxiÞ þ
ffiffiffiffiffiffi
2p

p
mG1nðbb; t; fWpgmp¼1; fHpgmp¼1Þ

n

þ
ffiffiffiffiffiffi
2p

p
kðkþ ffiffiffi

2
p Þffiffiffi

n
p þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1=d

2n

r
;

(13)

where

G1nðbb; t; fWpgmp¼1; fHpgmp¼1Þ ¼ Eg

"
sup

bb;t;fWp;Hpgmp¼1

Xn
i¼1

Xm
p;q¼1

gipqbpbqtpðxðpÞi ÞtqðxðqÞi Þh>
p ðxðpÞi ÞWpW

>
q hqðxðqÞi Þ

#
;

(14)

and gipq; i 2 f1; . . . ; ng; p; q 2 f1; . . . ; mg are i.i.d. Gauss-
ian random variables with zero mean and unit standard
deviation.

Note that if all the views are accessible, we have
G1nðbb; tÞ � m2

ffiffiffi
n

p
. This implies that with an ideal access to

all views, the proposed algorithms will have generalization
bounds of order Oð ffiffiffiffiffiffiffiffi

1=n
p Þ. However, when the number of

absent views are increasing, the values of G1nðbb; tÞ will
become lager, making it more difficult to learn and more
training examples are required to secure a given clustering
accuracy.

According to Theorem 3, for any learned bb; fHp;Wpgmp¼1

and SS, to achieve a small

E½fðxÞ� ¼ E min
y2fe1;...;ekg

��hbb;t;fHp;Wpgmp¼1
ðxiÞ � SSy

��2
F

� 	
;

(15)
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the corresponding 1
n

Pn
i¼1 fðxiÞ needs to be as small as possi-

ble. Assuming that bb; fHp;Wpgmp¼1 and SS are obtained by
minimizing 1

n

Pn
i¼1 fðxiÞ, we have

Xn
i¼1

fðxiÞ ¼
Xn
i¼1

miny2fe1;...;ekg hbb;t;WðxiÞ � SSy
�� ��2

F

¼ Tr
��Xm

p¼1
bpHpWp

��Xm

p¼1
bpHpWp

�>ðI�HH>Þ
�

�
Xm

p¼1
Tr
��

bpHpWp

��
bpHpWp

�>�
� Tr

��Xm

p¼1
bpHpWp

��Xm

p¼1
bpHpWp

�>
HH>

�
¼ 2k� Tr

��Xm

p¼1
bpHpWp

��Xm

p¼1
bpHpWp

�>
HH>

�
� 2k� 1

k
Tr
�
H>Xm

p¼1
bpHpWp

�� �2
;

(16)

Eq. (16) implies that 2k� 1
k ðTrðH>Pm

p¼1 bpHpWpÞÞ2 shall be
minimized to ensure a small

Pn
i¼1 fðxiÞ for good generaliza-

tion. It is equivalent to maximize TrðH>Pm
p¼1 bpHpWpÞ,

which is the objective of the proposed algorithms in Eqs. (5)

and (6). This also verifies the good generalization ability of

the proposed algorithms. The detailed proof are provided

in the supplemental material, which can be found on the

Computer Society Digital Library at http://doi.ieeecom
putersociety.org/TPAMI.2020.2974828. due to space limit.

5 EXPERIMENTS

5.1 Experimental Settings

The proposed EE-IMVC and EE-R-IMVC are experimentally
evaluated on six widely used multiple kernel benchmark-
data sets shown in Table 1. They are Oxford Flower17 and
Flower102,1 Caltech102,2 Columbia Consumer Video
(CCV),3 UCI Digital4 and Protein Fold Prediction.5 For these
datasets, all kernel matrices are pre-computed and can be
publicly downloaded from the above websites. Their num-
ber of samples varies from one thousand to over eight thou-
sands, clusters from ten to 102, and views from four to 48.

We compare EE-IMVC and EE-R-IMVC with several
commonly used imputation methods, including zero filling
(ZF), mean filling (MF), k-nearest-neighbor filling (KNN)
and the alignment-maximization filling (AF) proposed in

[17]. The widely used MKKM [30] is applied with these
imputed base kernels. These two-stage methods are termed
MKKM+ZF, MKKM+MF, MKKM+KNN and MKKM+AF,
respectively. We also compare with the recently proposed
MKKM-IK [22], which jointly optimizes the imputation and
clustering. In addition, we compare EE-IMVC and EE-R-
IMVC with late fusion IMVC (LF-IMVC) [25], which is
regarded as the state-of-the-art in handling incomplete
multi-view clustering tasks.

For all data sets, it is assumed that the true number of
clusters k is known and it is set as the true number of clas-
ses. We follow the approach in [22], [23], [25] to generate the
missing vectors fspgmp¼1. The parameter ", termed missing
ratio in this experiment, controls the percentage of samples
that have absent views, and it affects the performance of the
algorithms in comparison. To show this point in depth, we
compare these algorithms with respect to ". Specifically, "
on all the datasets is set as ½0:1 : 0:1 : 0:9�.

The widely used clustering accuracy (ACC), normalized
mutual information (NMI), purity and rand index are
applied to evaluate the clustering performance. For given
xi ð1 � i � nÞ, let ci and yi be its predicted cluster label
and the provided ground-truth label, respectively. Let c ¼
½c1; . . . ; cn�> and y ¼ ½y1; . . . ; yn�> denote the predicted clus-
ter labels of a clustering algorithm and the provided
ground-truth labels of x1; x2; . . . ; xn, respectively. The clus-
tering accuracy (ACC) is defined as follows,

ACC ¼
Pn

i¼1 dðyi;mapðciÞÞ
n

; (17)

where dðu; vÞ is the delta function that equals one if u ¼ v
and equals zero otherwise, and mapðciÞ is the permutation
mapping function that maps each cluster label ci to the
equivalent label from data. The best mapping can be found
by using the Kuhn-Munkres algorithm [31]. The mutual
information between y and c, denoted asMIðy; cÞ, is defined
as follows:

MIðy; cÞ ¼
X

yi2y; c0j2c
pðyi; c0jÞlog 2

pðyi; c0jÞ
pðyiÞpðc0jÞ

; (18)

where pðyiÞ and pðc0jÞ are the probabilities that a sample
arbitrarily selected from data belongs to the clusters yi and
c0j, respectively, and pðyi; c0jÞ is the joint probability that the
arbitrarily selected samples belongs to the clusters yi and c0j
at the same time. The normalized mutual information
(NMI) is then defined as follows:

NMIðy; cÞ ¼ MIðy; cÞ
maxðHðyÞ;HðcÞÞ ; (19)

where HðyÞ and HðcÞ are the entropies of y and c,
respectively.

For all algorithms, we repeat each experiment for 50
times with random initialization to reduce the effect of ran-
domness caused by k-means, and report the best result.
Meanwhile, we randomly generate the “incomplete” pat-
terns for 30 times in the above-mentioned way and report
the statistical results. The aggregated ACC, NMI, purity
and rand index are used to evaluate the goodness of the
algorithms in comparison. Taking the aggregated ACC for

TABLE 1
Datasets Used in Our Experiments

Dataset #Samples #Kernels #Classes

Flower17 1360 7 17
Flower102 8189 4 102
CCV 6773 6 20
Caltech102-30 3060 48 102
UCI-Digital 2000 3 10
ProteinFold 694 12 27

1. http://www.robots.ox.ac.uk/�vgg/data/flowers/

2. http://files.is.tue.mpg.de/pgehler/projects/
iccv09/

3. http://www.ee.columbia.edu/ln/dvmm/CCV/
4. http://ss.sysu.edu.cn/�py/

5. http://mkl.ucsd.edu/dataset/protein-fold-
prediction/
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example, it is obtained by averaging the averaged ACC
achieved by an algorithm over different ".

In the following parts, we conduct comprehensive
experiments to study the properties of EE-IMVC and EE-R-
IMVC from the following four aspects: clustering perfor-
mance, the evolution of the learned consensus clustering
matrix, regularization on clustering matrix H, algorithm
convergence and the sensitivity of EE-R-IMVC with the reg-
ularization parameter �.

5.2 Clustering Performance

We compare the proposed EE-IMVC and EE-R-IMVC with
the aforementioned two-stage methods such as MKKM+ZF,
MKKM+MF, MKKM+KNN and MKKM+AF, and one-stage
methods such as MKKM-IK [22] and LF-IMVC [25] on
Oxford Flower17 and Flower102, which have been widely
used as MKL benchmark data sets [32]. There are seven
views available for these two datasets. For each view, we
apply a Gaussian kernel with the averaged pairwise dis-
tance as the width parameter to generate a kernel matrix. In
this way, we obtain seven base kernels, and use them for all
the multi-view clustering algorithms compared in our
experiment.

Fig. 1 presents the ACC, NMI, purity and rand index
comparison of the above algorithms with different missing
ratios on these two datasets. From this figure, we have the
following observations:

� The proposed MKKM-IK [22] (in green) outperforms
existing two-stage imputation methods. For exam-
ple, it exceeds the best two-stage imputation method
(MKKM+AF) by 0.4, 0.5, 1.2, 0.9, 1.8, 2.9, 3.9, 6.1 and
8.1 percent in terms of ACC, with the variation of
missing ratios in ½0:1; . . . ; 0:9� on Flower17. The
improvement is more significant with the increase of
missing ratios. These results well demonstrates the
effectiveness of its joint optimization on imputation
and clustering.

� The recently proposed LF-IMVC [25] (in blue) fur-
ther improve MKKM-IK [22]. For example, it
improves the latter by 11.4, 8.9, 7.7, 9.7, 8.7, 6.9, 7.9,
6.9 and 5.7 percent in terms of ACC with the varia-
tion of missing ratios in ½0:1; . . . ; 0:9� on Flower17.
These results verify the effectiveness of imputing
base clustering matrices rather than kernel matrices.

� Our EE-IMVC achieves comparable or slightly better
performance than LF-IMVC [25]. Moreover, EE-R-
IMVC significantly and consistently outperforms
EE-IMVC. Taking the results on Flower17 for exam-
ple. It improves the EE-IMVC by 4.4, 5.5, 6.9, 4.0, 4.3,
6.3, 4.4, 3.5 and 3.7 percent in terms of ACC with the
variation of missing ratios in ½0:1; . . . ; 0:9�, indicating
the effectiveness of incorporating regularization on
the consensus clustering matrix.

� The curves in terms of ACC and NMI on Flower102
are plotted in Figs. 1c and 1d, which is similar to the
results on Flower17.

UCI-Digital dataset has been widely used as a bench-
mark in multi-view clustering [22], [25]. We also compare
the clustering performance of the aforementioned algo-
rithms on this dataset. The clustering accuracy, NMI, purity
and rand index of these algorithms with the variation of
missing ratio are plotted in Fig. 2. From Fig. 2a, we observe
that the proposed MKKM-IK gives poor performance on
this dataset, which is clearly inferior to the MKKM+KNN.
The proposed LF-IMVC [25] significantly improves this sit-
uation, demonstrating superior clustering performance.
Our proposed EE-IMVC achieve comparable or slightly bet-
ter performance than LF-IMVC, and EE-R-IMVC further
significantly and consistently outperforms the latter. For
example, EE-R-IMVC exceeds LF-IMVC by 11.4, 11.8, 10.5,
10.6, 9.9, 12.0, 11.8, 11.1 and 8.7 percent in terms of ACC
with the variation of missing ratios. In addition, the result
in terms of NMI is similar, as seen from Fig. 2b.

We evaluate the performance of the proposed algorithms
on CCV dataset, and report the results in Fig. 3. We once
again observe that the proposed EE-IMVC and EE-R-IMVC
significantly outperform the compared ones in terms of
ACC, NMI, purity and rand index. For example, EE-IMVC
slightly improves the performance of the second best one
(LF-IMCV), and EE-R-IMVC further significantly increases
the improvement by 1.9, 1.8, 1.3, 1.7, 1.4, 1.7, 1.4, 1.3 and 1.4
percent in terms of ACC. The result in terms of NMI is simi-
lar, as shown in Fig. 3b.

Fig. 1. ACC and NMI comparison with the variation of missing ratios on
Flower17 and Flower102 datasets. For each given missing ratio, the
“incomplete patterns” are randomly generated for 10 times and their
averaged results are reported. The Purity and Rand Index comparison
are provided in the appendix due to space limit.

Fig. 2. ACC and NMI comparison with the variation of missing ratios on
UCI Digital dataset. For each given missing ratio, the “incomplete
patterns” are randomly generated for 10 times and their averaged results
are reported. The Purity and Rand Index comparison are provided in the
appendix due to space limit.
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We conduct another experiment on the Caltech102 data-
set to evaluate the performance of the proposed algorithms.
This dataset consists of a group of kernels derived from var-
ious visual features computed on the Caltech-102 object rec-
ognition task with 102 categories. It has 48 base kernels
which are publicly available. The ACC and NMI of the
aforementioned algorithms with the variation of missing
ratios are plotted in Figs. 4a and 4b, respectively. As seen,
the proposed EE-IMVC and EE-R-IMVC demonstrate com-
parable or better clustering clustering performance than the
state-of-the-art one in the literature.

Besides the above five visual datasets, we finally compare
the aforementioned algorithms on the protein fold dataset,
which is a multi-source and multi-class dataset based on a
subset of the PDB-40D SCOP collection. It contains 12 differ-
ent feature spaces, including composition, secondary, hydro-
phobicity, volume, polarity, polarizability, L1, L4, L14, L30,
SWblosum62 and SWpam50. This dataset has been widely
adopted in the MKL community [33], [34]. For the protein
fold dataset, the input features are available and the kernel
matrices are generated as in [33], where the second order
polynomial kernels are employed for feature sets one to ten
and the linear kernel for the rest two feature sets.

The clustering performance of these algorithms are plotted
in Figs. 5a and 5b. From these sub-figures, we observe that the
proposed EE-IMVC demonstrates slightly better clustering
performance than the second best one (LF-IMVC), and EE-R-
IMVC further consistently and significantly improves EE-
IMVC. For example, EE-R-IMVC exceeds LF-IMVC by 1.8,
1.9, 2.8, 2.6, 3.5, 3.1, 3.0, 3.4 and 3.8 percent in terms of ACC
with the missing ratios. Meanwhile, we observe that the
results in terms of NMI are also similar.

We also report the aggregated ACC, NMI, purity and
rand index, and the standard deviation in Table 2, where
the one with the highest performance is shown in bold.
Again, we observe that the proposed EE-R-IMVC signifi-
cantly outperforms MKKM+ZF, MKKM+MF, MKKM
+KNN, MKKM+AF, MKKM-IK and LF-IMVC. For exam-
ple, EE-R-IMVC exceeds the second best one (LF-IMVC) by
5.9, 2.0, 10.9, 1.5, 0.8 and 2.9 percent in terms of ACC on
Flower17, Flower102, UCI-Digital, CCV, Caltech102 and
ProteinFold, respectively. These results are consistent with
our observations in Figs. 1, 2, 3, 4, and 5.

The above experimental results on these datasets havewell
demonstrated that EE-IMVC and EE-R-IMVC are superior to
some state-of-the-art in terms of ACC, NMI, purity and rand
index. We attribute the superiority of EE-IMVC and EE-R-
IMVC as three aspects: i) Completing the incomplete base
clustering matrices with the consensus one. Different from
MKKM-IK where the consensus clustering matrix H is uti-
lized to fill incomplete base kernels, EE-IMVC and EE-R-
IMVC impute each incomplete base clustering matrix withH.
The latter is more natural and reasonable since both H and
incomplete base clusteringmatrices reside in the same cluster-
ing space, leading to more suitable imputation. ii) The joint
optimization on imputation and clustering. On one hand, the
imputation is guided by the clustering results, which makes
the imputationmore directly targeted at the ultimate goal. On
the other hand, this meaningful imputation is beneficial to
refine the clustering results. These factors bring forth the sig-
nificant improvements on clustering performance. iii) The
regularization on the consensus clustering matrix. We can
incorporate useful prior knowledge to help the learning ofH,
which in turn boosts the imputation of incomplete base clus-
teringmatrices, leading to improved clustering performance.

5.3 Effectiveness of the Learned Consensus Matrix

We conduct extra experiments to show the evolution of the
learned consensus clustering matrix H during the learning
procedure. Specifically, we evaluate the ACC, NMI, purity
and rand index of EE-IMVC and EE-R-IMVC based on the
H learned at each iteration on the aforementioned datasets,
and plot the curves in Fig. 6. Taking the results in terms of
ACC for example, we observe that i) the ACC of EE-IMVC
and EE-R-IMVC gradually increases to a maximum and
generally maintains it up to slight variation, and ii) the
curves corresponding to EE-R-IMVC is usually on the above
of EE-IMVC. These observations have clearly demonstrated
the effectiveness of learned consensus clustering matrix,

Fig. 3. ACC and NMI comparison with the variation of missing ratios on
CCV dataset. For each given missing ratio, the “incomplete patterns”
are randomly generated for 10 times and their averaged results are
reported. The Purity and Rand Index comparison are provided in the
appendix due to space limit.

Fig. 4. ACC and NMI comparison with the variation of missing ratios on
Caltech102-30 dataset. For each given missing ratio, the “incomplete
patterns” are randomly generated for 10 times and their averaged results
are reported. The Purity and Rand Index comparison are provided in the
appendix due to space limit.

Fig. 5. ACC and NMI comparison with the variation of missing ratios on
Protein Fold dataset. For each given missing ratio, the “incomplete
patterns” are randomly generated for 10 times and their averaged results
are reported. The Purity and Rand Index comparison are provided in the
appendix due to space limit.

2642 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 8, AUGUST 2021

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on September 07,2022 at 05:55:58 UTC from IEEE Xplore.  Restrictions apply. 



indicating the advantage of regularizing the consensus clus-
tering matrix. Other curves in terms of NMI, purity and
rand index have similar trend.

5.4 Empirical Study on RegularizingH

In this subsection, we first clarify the motivation of incorpo-
rating prior knowledge to improve the clustering by con-
ducting an ablation study on all benchmark datasets.
Second, we try the best to explore what kind of prior knowl-
edge is expected by designing differentH0s.

We empirically observe that, apart from the orthogonal
constraint, some prior knowledge on H may be helpful to
boost its optimization, leading to improved clustering per-
formance. To see this point in depth, we design an ablation
study to verify the effectiveness of incorporating H0 on all
benchmark datastes. The clustering algorithms include: 1)
clustering data with only prior knowledge H0, 2) clustering

data without prior knowledge (i.e., EE-IMVC), and 3) clus-
tering data with EE-IMVC and prior knowledge (i.e., EE-R-
IMVC). The experimental results are reported in Table 3.
From these results, we have the following observations.

� The clustering performance with only prior knowl-
edge H0 is usually inferior to that of EE-IMVC and
EE-R-IMVC. This indicates that only prior knowl-
edge about the clusters is far from enough to well
partition the data. As a result, we still need cluster-
ing the data even though we have prior knowledge
about the clusters.

� The clustering performance of EE-IMVC is inferior to
that of EE-R-IMVC. This demonstrates that the prior
knowledge about the clusters is indeed helpful to
improve the clustering, indicating the necessarity of
incorporating prior knowledge.

TABLE 2
Aggregated ACC, NMI, Purity and Rand Index Comparison (meanstd) of Different Clustering

Algorithms on all Benchmark Datasets

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK LF-IMVC EE-IMVC EE-R-IMVC

[17] [22] [19] Proposed

ACC
Flower17 36:96 0:42 36:75 0:66 37:75 0:61 40:80 0:40 43:67 0:42 51:87 0:69 52:96 0:69 57:72 0:71
Flower102 17:98 0:16 17:95 0:18 18:20 0:16 18:73 0:15 20:90 0:16 35:26 0:32 36:44 0:31 37:25 0:28
UCI-Digital 42:78 0:44 43:00 0:32 71:35 0:94 47:98 0:44 48:19 0:47 78:89 0:73 79:64 0:51 89:75 0:43
CCV 16:13 0:11 16:29 0:23 16:52 0:18 17:37 0:19 18:09 0:23 22:81 0:32 23:37 0:39 24:35 0:19
Caltech102-30 14:01 0:13 14:00 0:14 15:44 0:18 15:86 0:15 17:45 0:18 32:36 0:30 31:96 0:28 33:18 0:16
ProteinFold 20:64 0:26 20:22 0:24 20:95 0:36 21:02 0:39 21:36 0:51 29:73 0:39 30:50 0:74 32:62 0:37

NMI

Flower17 37:30 0:35 37:21 0:34 38:22 0:37 40:31 0:30 42:99 0:34 50:06 0:49 51:38 0:57 54:17 0:41
Flower102 37:42 0:14 37:38 0:11 37:77 0:11 37:90 0:15 39:40 0:10 49:31 0:16 50:77 0:09 51:08 0:13
UCI-Digital 41:77 0:15 39:90 0:22 63:25 0:49 46:98 0:24 46:91 0:26 68:45 0:50 69:48 0:42 81:20 0:53
CCV 12:40 0:10 12:58 0:14 12:87 0:09 13:25 0:11 13:83 0:17 17:52 0:24 18:22 0:22 18:75 0:12
Caltech102-30 37:72 0:11 37:66 0:12 39:15 0:08 39:08 0:09 40:51 0:14 52:90 0:19 52:94 0:13 53:55 0:05
ProteinFold 28:99 0:30 29:31 0:27 30:34 0:25 29:28 0:31 29:96 0:48 37:10 0:37 38:60 0:51 40:19 0:30

Purity

Flower17 38:46 0:42 38:31 0:61 39:19 0:48 42:28 0:31 45:11 0:41 53:65 0:72 54:66 0:69 59:01 0:63
Flower102 22:49 0:17 22:44 0:17 22:76 0:17 23:17 0:21 25:62 0:18 40:37 0:17 41:89 0:18 42:44 0:23
UCI-Digital 44:71 0:44 43:30 0:31 71:47 0:66 50:42 0:35 50:84 0:41 78:94 0:63 79:69 0:51 89:75 0:43
CCV 20:36 0:11 20:63 0:15 20:73 0:10 21:21 0:13 21:90 0:20 25:86 0:34 26:46 0:42 27:36 0:18
Caltech102-30 15:35 0:18 15:29 0:17 16:97 0:12 17:06 0:17 18:84 0:15 34:56 0:34 34:25 0:23 35:32 0:10
ProteinFold 26:95 0:36 27:00 0:42 27:76 0:34 27:25 0:47 27:70 0:54 35:76 0:38 36:99 0:72 38:99 0:41

Rand Index

Flower17 20:05 0:37 19:92 0:41 20:83 0:35 22:81 0:31 25:57 0:30 33:99 0:64 35:29 0:62 39:07 0:67
Flower102 8:11 0:12 8:06 0:14 8:32 0:11 8:66 0:13 10:27 0:14 22:22 0:27 23:57 0:29 24:23 0:20
UCI-Digital 25:46 0:19 22:14 0:22 51:55 0:69 30:86 0:31 31:05 0:27 62:89 0:61 64:20 0:48 79:31 0:70
CCV 4:57 0:06 4:64 0:09 4:74 0:05 5:02 0:08 5:45 0:09 7:80 0:14 8:17 0:13 8:65 0:07
Caltech102-30 4:06 0:09 4:03 0:09 5:28 0:12 5:58 0:11 6:75 0:14 18:20 0:18 18:06 0:21 18:95 0:13
ProteinFold 6:68 0:23 6:53 0:18 7:06 0:24 6:93 0:27 7:21 0:32 12:94 0:32 14:36 0:54 15:83 0:37

Fig. 6. The evolution of the learned consensus clustering matrix H by EE-IMVC and EE-R-IMVC with missing ratio 0.1 on all datasets. The curves
with other missing ratios are similar and we omit them due to space limit.
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These experimental results well explain the effectiveness
of incorporating prior knowledge in optimizing H and
improving clustering.

We then try to explore what kind of prior knowledge is
expected by designing two different H0s, i.e., H

ð1Þ
0 and H

ð2Þ
0 .

1)H
ð1Þ
0 : We first impute the missing parts of each base kernel

matrix with zeros, and combine them with unified weight. It
is then taken as the input of kernel k-means to generateH

ð1Þ
0 ,

and 2) H
ð2Þ
0 : The incomplete parts of base kernels are first

filled with zeros. These imputed base kernel matrices are
then taken as the input of multiple kernel k-means (MKKM)
to output H

ð2Þ
0 . The experimental results with different H0s

are reported in Table 3. From these results, we observe that:

� Different prior knowledge encoded by H0s produces
different clustering performance.

� By integrating different H0s, EE-R-IMVC consis-
tently and significantly outperforms EE-IMVC in
terms of ACC, NMI, purity and rand index.

These results indicate that the prior knowledge on H is
able to boost its optimization, leading to improved cluster-
ing performance. Also, there are other choices to generate
H0. For example, H0 could be the output of MKKM-IK [22].
We will further explore the affect of differentH0s on cluster-
ing in the future work.

5.5 Parameter Sensitivity

As can be seen in Eq. (6), EE-R-IMVC introduces the regulari-
zation parameter � to trade off the clustering and regulariza-
tion. In the following, we conduct experiments to show the
effect of this parameter on the clustering performance on all
datasets. Fig. 7 presents the NMI of EE-R-IMVC by varying �

TABLE 3
ACC, NMI, Purity and Rand Index Comparison (Meanstd) of Different Clustering Algorithms on all

Benchmark Datasets (With Missing Ratio=0.1)

Datasets Clustering with onlyH0 EE-IMVC EE-R-IMVC

H
ð1Þ
0 H

ð2Þ
0 H

ð1Þ
0 H

ð2Þ
0

ACC
Flower17 52:63 2:19 42:69 1:16 54:88 2:59 62:47 2:41 58:56 1:30
Flower102 32:02 0:46 21:41 0:32 42:70 0:96 43:45 0:78 43:20 0:59
UCI-Digital 90:86 4:42 47:41 0:76 82:14 2:01 93:74 1:86 82:39 1:86
CCV 17:94 0:25 17:49 0:36 24:67 0:70 25:81 0:53 25:64 0:58
Caltech102-30 26:64 0:73 16:05 0:41 32:33 1:21 33:41 0:55 33:37 0:46
ProteinFold 29:08 0:83 26:77 1:10 34:35 2:89 36:28 1:60 36:35 1:61

NMI

Flower17 52:93 1:29 43:16 0:74 54:26 1:36 59:36 0:88 56:12 0:90
Flower102 50:81 0:27 41:00 0:18 57:22 0:41 57:57 0:35 57:56 0:33
UCI-Digital 86:35 2:03 46:42 0:62 74:34 1:35 87:73 1:34 74:57 1:34
CCV 15:34 0:30 14:35 0:31 19:83 0:34 20:40 0:25 20:19 0:29
Caltech102-30 48:88 0:51 39:44 0:32 53:27 0:57 54:02 0:27 53:88 0:29
ProteinFold 39:91 0:64 36:43 0:86 43:05 1:23 44:68 0:84 44:28 0:80

Purity

Flower17 55:63 1:64 44:46 0:95 56:63 2:23 63:22 2:04 59:94 1:36
Flower102 39:51 0:43 26:32 0:18 48:98 0:81 49:70 0:75 49:53 0:68
UCI-Digital 91:51 3:15 50:11 0:92 82:15 2:00 93:74 1:34 82:41 1:84
CCV 21:60 0:20 21:72 0:28 27:78 0:54 28:94 0:45 28:87 0:54
Caltech102-30 29:07 0:56 17:43 0:48 34:60 1:14 35:64 0:44 35:70 0:49
ProteinFold 37:12 1:10 33:04 1:00 41:50 1:78 43:29 1:29 43:10 1:02

Rand Index

Flower17 35:46 2:33 25:45 0:75 38:16 2:00 44:70 1:66 40:91 1:31
Flower102 19:33 0:37 11:07 0:19 29:34 1:04 29:86 0:61 29:77 0:66
UCI-Digital 84:02 3:79 30:22 0:69 69:46 1:94 86:85 2:33 69:69 1:92
CCV 6:04 0:09 5:43 0:15 9:04 0:27 9:59 0:27 9:42 0:31
Caltech102-30 13:39 0:45 5:66 0:22 18:35 0:94 19:48 0:51 19:33 0:44
ProteinFold 13:19 0:69 11:42 0:71 17:89 1:94 19:91 1:12 19:75 0:91

Fig. 7. The sensitivity of EE-R-IMVC with the variation of � with missing ratio 0.1 on Flower17, Flower102, UCI-Digtal, CCV, Caltech102-30 and Pro-
teinFold datasets. The results of EE-IMVC are also provided as a reference. The results in terms of ACC, Purity and Rand Index with other missing
ratios are similar and omitted due to space limit.
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from 2�3 to 23, where the EE-IMVC is also provided as a base-
line. From these figures, we observe that the NMI first
increases to a high value and generally maintains it up to
slight variation with the increasing value of �. EE-R-IMVC
demonstrates stable performance across a wide range of �.
These experiments have well shown that EE-R-IMVC is
insensitive to the variation of the parameter.

5.6 Convergence

Our algorithms are theoretically guaranteed to converge
according to Theorem 2. We record the objective values of
EE-IMVC and EE-R-IMVC with iterations on all datasets
and plot them in Fig. 8. As observed, the objective value of
EE-IMVC and EE-R-IMVC does monotonically increase at
each iteration and that it usually converges in less than 50
iterations.

6 CONCLUSION

While the recently proposedMKKM-IK [22] is able to handle
incompletemulti-view clustering, the relatively high compu-
tational and space complexities prevent it from large scale
clustering tasks. This paper first proposes the EE-IMVC to
simultaneously clustering and imputing the incomplete base
clustering matrices. We further improve EE-IMVC by incor-
porating prior knowledge to regularize the learning of the
consensus clustering matrix. We develop two four-step algo-
rithms to effectively and efficiently solves the resultant opti-
mization problems. In addition, we analyze and derive the
generalization error bound of the proposed EE-IMVC and
EE-R-IMVC. Extensive experiments on benchmark datasets
have been conducted and the results well demonstrate the
superiority of our algorithms. In the future, we plan to
explore the correlation among base clustering matrices and
use it to further improve the imputation.
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