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Incomplete Multiple Kernel Alignment
Maximization for Clustering
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Abstract—Mulliple kernel alignment (MKA) maximization criterion has bean widely applied into multiple kernel dustering (MKC) and
many variants have been recently developed. Though demonstrating superior dustering performance in various applications, itis
abserved that none of them can effectively handle incomplate MKC, where parts or all of the pre-specified base kernel matrices are
incomplete. To address this issue, wa propose o integrata the imputation of incomplata kernal matricas and MEA maximization for
clustering into a unified learning framework. The dustering of MKA maximization guides the imputation of incomplete kermel elements,
and the complated kernel matricaes ara in turm combined to conduct the subsequant MKC, Thase two procedures are alternataly
performed until convergence. By this way, the imputation and MKC processes are seamlessly connected, with the aim to achieve belter
clustering performance. Besides theoretically analyzing the clustering generalization emor bound, we empirically evaluate the
clustering parformance on several multiple kemnel learming (MKL) banchmark datasets, and the results indicate the superiority of our
algorithm over existing state-of-the-art counterparts. Our codes and data are publicly avallable at hitps Fxinwangliu.github o/,

Index Terms—multiple kermeal clustering, mulli-view clustering, kernal alignment maximization

1 INTRODUCTION

ERNEL alignment criterion [1] measures the agreement

between a kernel and a given learning task. It is simple,
effective and easy-to-implement, and therefore has been
widely adopted in kemel methods such as kernel parameter
tuning [2], multiple kemel leamning (MKL) [3], to name just
a few. The recent work in [4] extends the kemel alignment
criterion from supervised learning scenarios to multiple ker-
nel clustering (MKC) by jointly maximizing the clustering
partition matrix and kernel coefficients. More importantly,
it builds up the theoretical connection between multiple
kemel alignment (MEA) for clustering and existing multiple
kemel k-means, by which the objectives of existing MKC
algorithms can be unified from the perspective of kemel
alignment. MKA based clustering algorithms have been
intensively studied and demeonstrated promising clustering
in various applications such as image fusion [5], image
retrieval [6], document/video analysis [7], to name just a
few. It well indicates the importance and effectiveness of
this criterion [8].

As a representative of MKA based clustering algorithms,
the more recent work in [9] revisits the MEA criterion and
proposes a novel MKC algorithm termed SimpleMEKKM.
Different from existing minimization-minimization opti-
mization framework [10], SimpleMEEM firstly reformu-
lates the MEA criterion for clustering as a minimization-
maximization optimization problem, and then develops a
reduced-gradient descend algorithm to solve it. Despite
its simplicity, SimpleMKEM is considered as one of the
state-of-the-art MKC algorithms by showing competitive
clustering performance in empirical study.
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Though demonstrating promising clustering perfor-
mance, SimpleMKKM assumes that all the pre-calculated
kemnel matrices are complete. In some real-world appli-
cations [11], [12], [13], [14], [15], [16]), [17], however, it
is not unusual to see that some kinds of features of a
sample are unavailable, which causes the corresponding
rows and columns of related kemel matrices unfilled. As a
result, the vielation to this assumption makes SimpleMKEKM
inapplicable for conducting clustering in this challenging
setting, which is called incomplete MKC in this paper
There are two categories of methods to address incomplete
MEKC in the literature. The first category is termed "two-
stage” methods, which firstly impute incomplete kernels
with filling algerithms [18], [19], [20], [21] and then apply
MEC with the imputed kemels. It is recognized that these
“two-stage” algorithms share a drawback that they discon-
nect the processes of imputation and clustering, and this
prevents the two learning processes from negotating with
each other to achieve the optimal clustering. Differently, the
second category, termed “one-stage” methods [13], [22], [23],
[24], addresses this issue by designing a clustering-oriented
imputation algorithm to impute the missing parts of a kemel
during the optimization for clustering. Conceptually, our
work in this paper belongs to the second category, but it
enjoys clear advantages over the existing ones in terms of
optimization efficiency and clustering performance,

In this paper, we develop a simple while effective algo-
rithm to enable SimpleMEKM to well handle MEC with
incomplete kernels. Specifically, the propesed algorithm
unifies the imputation of incomplete kemels and the clus-
tering task into a single objective function. The clustering
guides the imputation of incomplete kemels, and the com-
pleted Kernels are in turn optimally combined to conduct
the subsequent MKC. These two procedures are alternately
performed until convergence. By this way, the imputation
and MKC processes are seamlessly connected, with the
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aim to achieve better clustering performance. Further, we
theoretically analyze the performance of our algorithm on
unseen data via deriving its clustering generalization error
bound. Extensive experimental study on several multiple
kemel learning (MKL) benchmark datasets indicates the
superiority of our algorithm over existing state-of-the-art
counterparts.

The rest of this paper is organized as follows: Section
2 briefly introduces several related work. Section 3 is de-
voted to our proposed incomplete multiple kernel align-
ment maximization for clustering, Section 4 analyzes the
generalization bound of the proposed algorithm. Extensive
experiments are conducted in Section 5 to support our
claims, Qur work is concluded in Section 6.

2 REeLATED WORK

In this section, we briefly review the most related, including
multiple kernel k-means (MKKM), multiple kernel k-means
with incomplete kernels (MKKM-IK) [13] and the recently
proposed SimpleMKKM [9].

21 MKKM

Given a group of pre-calculated kernel matrices {K,}7" ,,
MKKM assumes that the optimal kemel matrix K. can
be parameterized as K, = %" 2K, where y € A =
{y € R™|S™ 9, = 1,7, > 0, Vp} represents the kernel
weights of these base kernel matrices. It jointly learns the
kemel weights v and the clustering partition matrix H by
optimizing Eq. (1).

minyea ming Tr(K,,u—HHT;)

\ 1)
st. HeR™  H'H=1,

In literature, the optimization problem in Eq. (1) is
usually be solved by alternatively updating H and -: (i)
Optimizing H given . With the kemel coefficients - fixed,
H can be obtained by solving a kernel k-means clustering
optimization problem; (i) Optimizing < given H. With
H fixed, v can be optimized via solving the following
quadratic programming with linear constraints,

minyea . 7Tr (Kp(la — HHT)), @)
p=1"F
which has a closed-form solution.

Algorithm 1 presents the whole algorithm to solve the
optimization problem in Eq. (1). This algorithm adopts an
alternate way to optimize H and -y. Specifically, one variable
is optimized with the other fixed. By this way, the objective
in Eq. (1) can be monotonically minimized. Meanwhile, this
objective is lower-bounded. As a result, the Algorithm in 1
is theoretically guaranteed to converge to a (local) optimum,

As seen from Eq. (2), using a linear combination of
kemels 3770, K, to replace 3770, 42K, is not a viable
option, because this could make only one single kernel
activate and all the others assigned with zero weight. Other
recent work using f2-norm combinations can be found in
[13], [25], [26].

Algorithm 1 MKKM

I: Input: {KP}:‘=1, k.
2 Qutput H and +.
: Initialize v/ = 1/m, flag = land t = 1.
while flag do
compute H b;{ Esulving a kemel k-means with
)

Ko =Yy [T;Et K.

e

m

6 update y(**1) with Eq. (2).

7 if max [y(® — 41| < le — 4 then
& flag=0.

g: end if

10: t—t+ 1.
11: end while

22 MKKM-IK

The recently proposed MKEM-IK [10] has extended the
existing MEEM in Eq. (1) to enable it to handle multiple
kemel clustering with incomplete kemels. It unifies the
imputation and clustering procedure into a single optimiza-
tion objective and alternately optimizes each of them. That
is, i) imputing the absent kemels under the guidance of
clustering; and ii) updating the clustering with the imputed
kemels. The above idea is mathematically fulfilled as,

minH."r.{Kr}}‘;l Tl‘l:Kq-I:ln - HHT”
st. HER" H'H = I,

‘TTlm = ltTp 2 Ut

K'ﬂ‘{s‘p1 5_':-":' — K':pw)r Kp -~ D! "‘"‘P-
where 5, (1 < p < m) denote the sample indices for which
the p-th view is observed and KLN be used to denote
the kemel sub-matrix computed with these samples. The
constraint Ky(s,,5,) = KE.W:' is imposed to ensure that K,
maintains the known entries during the course. Different
from the optimization in MEKM, [10] incorporates an extra
step to impute the missing entries of base kemels, leading
to a three-step altermnate optimization algorithm. Specifically,
MEEM-IK optimizes one variable by keeping other vari-
ables fixed at each iteration, as outlined in Algorithm 2.
Interested readers are referred to [10].

(3)

Algorithm 2 MKEKM-IK
1: Input: {KY0 k, and {s;}™,.
2 Qutput: H, v and {Kp}L,.
3: Initialize /% = 1 fm, (K}, and t = 1.
4: repeat
5 KT.:., =% Ty—”)

te=1)

p=1 P

6  Update H' by solving kernel k-means with given
K. i

7. Update each K with H® and {K{~"ym
&  Update v with given H® and {K\'},.
o t=t+ 1 .
10: until max ['* — 4" < 1e -4

23 SimpleMKKM

We briefly introduce simple multiple kernel k-means (Sim-
pleMKKM), which is recently developed for MKC in [9]
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and will serve the base for the proposed algorithm to deal
with incomplete MKC. SimpleMKEM revisits the criterion
of MKA, and develops a simple yet effective multiple kernel
clustering algorithm. Different from existing min- ming
optimization framework in Eq. (1), SimpleMKEM proposes
a minimization-maximization problem with respect to the
kemel coefficient and clustering partition matrix as follows.

minyea maxy (Ky,HHT)
st. HeR"** H'H=1,,

where {Kp};Ll are m pre-calculated base kemel matrices,
Ky =30 1%Kp A={yeR"y"1=1,% 2 0,¥p}
and H denotes the clustering partition matrix satisfying the
orthogonal constraint H' H = I.. Noting that (K., HH ")
is just the MKA criterion previously mentioned.

Instead of sclving the formulation in Eq. (4) by the
widely adopted alternate optimization, the work in [9]
designs an efficient and effective reduced gradient descent
algorithm. Firstly, the optimization in Eq. (4) is equivalently
rewritten as,

(=)

minyea J(7), )
with
J() = {maxy Tr(K,HHT) st. HH=L}. ()

By this way, the min-max optimization is transformed to a
minimization one, where its objective is a kernel k-means
optimal value function. After proving the differentiability
of J () w.r.t -y, SimpleMKKM applies the reduced gradient
descent algorithm to decrease Eq. (5), where the equality
and positive constraints on -y are guaranteed at each itera-
tion. The whole algorithm procedure solving the optimiza-
tion problem in Eq. (4) is outlined in Algorithm 3. Interested
readers are referred to [9] for the detailed optimization.

Algorithm 3 SimpleMEKEM

1: Input: {K,}5%, and k.

2 Qutput: H and .

3; Initialize ¥ = 1/m, lag =land t = 1.
4: while flag do

5.  compute H b;r 2su::h«'ing a kernel k-means with

K = E;;;?y ) K.
. e - it i-

2 compute —ﬁ;l (= 1,-+- ,m) and the descent di
rection d(*),

7. update ¥ o 4® 4 od®. o ais the optimal
step size

&  ifmax|y® — 41| < le — 4 then

9; flag=0.

10:  endif

11: t—1t41.
12: end while

Though SimpleMKEM in Eq. (4) demenstrates superior
clustering performance in various applications, we cbserve
that it cannot efficiently deal with MKC with incomplete
kemels. For example, in some practical applications such as
Alzheimer’s disease prediction [11] and cardiac disease dis-
erimination [27], it is not uncommen to see that some kinds
of features of a sample are missing, and this causes the corre-
sponding rows and columns of related base kernels unfilled.

The presence of incomplete base kemels makes it difficult
to utilize the information of all kemels for clustering. In
the following, we further develop a simple while effective
algorithm, termed incomplete multiple kernel alignment
maximization for clustering, to address this issue.

3 INCOMPLETE MULTIPLE KERNEL ALIGNMENT
MAXIMIZATION FOR CLUSTERING

3.1 The Proposed Formulation

Let s, (1 < p < m) denote the sample indices for which the

prth base kemel is observed and K*° be used to denote
the kernel sub-matrix computed with these samples. Our
learning task is to integrate m incomplete kemnel matrices,
ie, (K& s for clustering. This incomplete setting is
net uncommeon in various real-world applications such as
cancer biology [28], analysis of multiple heterogeneous neu-
roimaging data [11], and Alzheimer’s disease diagnosis [29].
Existing two-stage approaches first impute these base
kemels which are then taken as the input of a conven-
tional MKC algorithm. It is observed that the imputation
by such manners may not be able to serve or even hurt the
subsequent clustering tasks [22]. To maintain the advantage
brought by the recently proposed one-stage methods such as
learning clustering-oriented imputation [13], [22], we shall
aim to directly improve the clustering by treating the absent
kemel entries as auxiliary unknowns during this course.
That is to jointly perform imputation and clustering: i) im-
pute the missing parts of kemels under the guidance of clus-
tering; and ii) update the clustering by optimally combined
the imputed kernels. By this way, the above two learning
processes can be seamlessly coupled and they are allowed
to negotiate with each other to achieve better clustering. On
top of this, we seek a more natural and reasonable manner to
deal with the incompleteness in multiple kernel clustering,.
In specific, we propose to jointly impute the incomplete
kemels and combine them for clustering by maximizing
the aforementioned multiple kernel alignment in Eq. (4),
leading to the following new optimization problem,

max (K, ), Minyea maxy (Ky, HH')
st. He R** H'TH =I,,

Ky =0, Kyl(sp,5) = Kfrm}‘?}
{
Noting that compared with SimpleMKEM, we now have to
optimize extra variables { K} ; due to the presence of in-
complete kemels. The equality constraint, i.e., Ky(Sg. 50) =
K,E,M , ensures that the observed part of the p-th base kemel
matrix will be faithfully maintained during optimization. In
addition, the imputed K, shall retain its PSD property.
The formulation in Eq. (7) has the following advantages
when compared with MKKM-IK [22]. Firstly, it consider-
ably extends the widely adopted MEA criterion, making it
capable of effectively dealing with incomplete MKC. When
{Kp ey become available, the proposed Eq. (7) is degen-
erated to Eq. (4). Secondly, it inherits the effective objec-
tive and novel optimization technique from SimpleMEKM,
which is considered to be the most effective MKC algorithm
based on the MKA criterion so far. In addition, our algo-
rithm in Eq. (7) is free of hyper-parameters, which largely
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reduces the parameter-tuning burden of practitioners, mak-
ing them more convenient for practical applications.

3.2 The Proposed Optimization
Although Eq. (7) enables existing MEA to effectively tackle
incomplete MKC, the optimization with respect to incom-
plete kernels, especially the positive semidefinite (PSD) and
equality constraints on each K, makes the optimization
more challenging. In the following, we reformulate Eq. (7)
and devalog: an efficient algorithm to solve it

Let ®{” and &0 be the observed and unobserved
implicit feature maps corresponding to the p-th kernel, with
K = tI"["]'tI*'[”}' . Since all samples, no matter observed
or unobaewed, are subject to the same distribution, we
can assume that the unobserved part tI*'[“}' could be ex-
pressed by a linear transformation of Ii'le observed ﬁ?':a}
ie., fPE‘} =W @f,“'} Similar assumption has been w1de1}r
adopted in Nystrém method for large-scale kernel matrix
approximation [30]. Based on this assumption, each K can
be parameterized as

KE?  KEOW, ) (8)

K. =
’ (WIKL‘”’ WKW,

In addition, an extra orthogonal constraint W;Wp =
lni,.}. is imposed to ensure that the whole optimization is
bounded, where ny*!
for the p-th kernel.
It is not difficult to verify that the parameterization in
Eq. (8) makes both the PSD and equality constraints auto-
matically satisfied. As a result, the imputation of incomplete
kemels boils down to the leaming of {Wp oy With this
parameterization, Eq. (7) can be equivalently wrlt{‘en as

max w, e, Min- s MAxy ':K’TJ"-‘*"r};":,-HHT}
st. HeR"™* H'H=1,, (9
w;wp — lni‘v‘.'tvp1

is the number of uncbserved samples

where K, (w,j= . = 300, 72Ky and Ky is parameterized
in Eq. (8).

Jointly optimizing {Wp}IL,, v and H in Eq. (9) is
difficult. Instead, we can sol\-‘e it in an alternate manner.
That is, solving v and H with given {W, pe1. and solving
{wp}:;l with given -y and H.

3.2.1 Solving v and H with given { W17 ,

With {W, 17" ; fixed, the missing elements of K can be
imputed via Eq. (8). As a result, the formulation in Eq. (2)
w.r.t. v and H reduces to the one in Eq. (4), which can be
readily solved via SimpleMEEKM in Algorithm 3.

322 Solving {Wp}iL, with given~y and H
With -y and H fixed, Eq. (9) w.rt. {wp};':l can be equiv-
alently decomposed into m independent sub-problems as
follows,
maxw, Tr (W KEOW, T, ) +2Tr (W) KT )
&t W;WF = Iniuj

(10)

TW Tz‘u
where T = HH" = g m ), o and u denote the
indices of observed and unobserved samples for the p-th
kemel, respectively. Eq. (10) can be efficiently solved via
reweighed metheds [31] in Algorithm 4.

Algorithm 4 Solving W, with the reweighted method

1: Input: K.,,m]' T and s;.

2 Output: W,

3: Initialize W'[ Jand t = 1.

4: repeat

5 B=2KP?WIT. + Tou).

6  Update witd l:g?' the optimal solution to

MaXwTw,=1_ ) Tr(W, E).
t=¢41.
8 until [W{ 1 _

T

WP /IWE| < 1e-8

In sum, the whole algorithm solving Eq. (9) is outlined
in Algorithm 5. As seen, Algorithm 5 alternately performs
imputation of incomplete kernels and MKA for clustering.
With the given imputation, the proposed algorithm can
benefit from effective objective and advanced optimization
technique, leading to better H and . The effective H
in tums produces an imputation better serve for multiple
kemel clustering. These two procedures boost each other
until satisfying the stopping criterion. It usually converges
in less then ten iterations in our experiments, as will be
shown in Figure 6.

Algorithm 5 The Proposed Incomplete Multiple Kemel
Alignment Maximization for Clustering

I: Input: {K{“} m 1 {Sp} * , and ep.

2 Output: H, {l‘{’_ *p and .

3 Initialize {W}" ;;1 and ¢ = 1.

4: repeat

5:  Update H® and 4@ with fixed {W§}™, via
Algorithm 3,

[iH

7 Update {W¥ym | with fixed H® and 4@ via
Algorithm 4.

- t=t41.

9: until (:::bjf"”' - objm') Jobj® <

uires |EEE permission. See httpuiwvawiees orglpablications_standarde/

3.3 Discussion and Extension

In this section, we discuss the proposed algorithm from
computational complexity, convergence, initialization on in-
complete base kernel matrix K, and other parametrization
on K.

Computational complexity: As seen from Algorithm 5, the
proposed algorithm at each iteration needs to solve a Sim-
pleMKKM problem, and update {W}" ;. The mmputa—

tional complexity of SimpleMKKM and updahnb Wy

are O(T, + (n® +m + n*)) and n¥’ ) 4 ns 4 mm{:-t'[':’}I l:“]']-
where T, is the number of iterations to achieve convergence
with given {W,17,, np {9) and nM are the number of
observed and unabserved samples of the p-th base kernel.
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As a result, the whole computational complexity of the
proposed algorithm at the ¢-th iteration is (T + (n®* +m +
73) + n8? « al 4 min{n{?, n{*}). As observed, though
the proposed algorithm does not significantly increase the
computational complexity of existing MKEM algorithms,
improving its efficiency te handle large-scale applications

is worth further Explcring.

Convergence: Algorithm 5 adopts a coordinate descent
algorithm to solve the optimization problem in Eq. (7). With
imputed {K,}7" , a clustering partition matrix H is gen-
erated by SimpleMKKM. It is then used for completing the
missing parts of each incomplete base kernel via Algorithm
4. The convergence of this optimization procedure cannot be
theoretically guaranteed. However, we empirically cbserve
that Algorithm 5 quickly converges after several iterations
in all benchmark datasets, as shown by the experimental
results in Figure 6.

Initialization on K, amd other wariants: In our current
implementation, we initialize the missing parts of each base
kemels as zeros. This initialization has well demonstrated
the superiority of the proposed algorithm, as seen from
the following experimental study. It is worth pointing out
that other imputation methods such as mean-value fill-
ing, k-nearest neighborhood filling, EM filling, can also be
taken as the initialization. More importantly, by parame-
terizing K, as in Eq. (8), the imputation of missing parts
is equivalently reduced to optimize {W,}I" ;. As seen, a
better parametrization on K, would prn(ft_lce better im-
putation, leading to improved clustering performance. The
parametrization in our work has sufficiently demonstrated
its superiority, how to incorporate prior knowledge to de-
sign more effective parametrization on K, is still worth
exploring,

Differences with MKEM-IK [13]: Both work handle incom-
plete MKC by unifying the imputation of incomplete kernels
and clustering task into a single optimization framework.
Nevertheless, they have the following important differences:
1) Optimization crilerion. With imputed kemnels, MEKKM-TK
optimizes the kemel coefficient and clustering matrix via
a joint minimization procedure. Differently, our algorithm
adopts a minimization-maximization procedure to optimize
the kemel coefficient and clustering matrix, respectively. 2)
Oplimization methods, MEKM-IK sclves the resultant opti-
mization with coordinate descent, while cur work applies
the reduced gradient descent optimization. 3) The clustering
performance is different. We empirically compare their cluster-
ing performance, and observe that the proposed algerithm
consistently and significantly outperforms MEKM-IK on all
benchmark datasets, as shown in Figure 1, 2 and Table 2.

4 THE GENERALIZATION ANALYSIS

In this section, we analyze the generalization error bound
of the proposed algorithm by studying how its leamed cen-
troids generalizes onto unseen data. Let C = [Cy,- -+, Cy]
be the k centroids, {K,}*; the imputed kernel and %4
the kemel coefficients leamed by the propoesed algorithm,

where C, = Eﬁzjeﬁ, ¢45(x;),1 < v < k. By defining

uires |EEE permission. See httpuiwvawiees orglpablications_standarde/

& = {ey,--- e}, our algorithm should make the error on
unseen samples small as follows,

1~ By [maxyeo(ds,e (), Cy)as , (1)
where 65, (x) = [F18(xM)@] (xV), -+, Fp t(x ™)y (x)] T
is the learned feature map associated with the kerel
function Ks(-,-). t = [t(xD),-.- ,2(x™)]T denotes
the absence of x, i.e, #(x™) = 1 indicates that the p-th
observation of x is observed, otherwise its value is missing.
&1, -, e form the orthogonal bases of R*.

Intuitively, Eq. (11) says the expected alignment between
test points and their closest centroid should be high. We
show how the proposed algorithm achieves this goal. We
define a function class first:

F={f: x> 1-max(éye(x), Oyhs|y € A,C e H¥,
|Kp(x,%)| < b,¥x € x},
(12)

where H* stands for the multiple kernel Hilbert space. Note
that the orthogonal constraints on W, makes the elements
of K, in Eq. (8) bounded. Therefore, we can assume that
each entry of K, pe {1,--- ,m} is no larger than b.

Theorem 1. For any & > 0, wilth probability af least 1 — &, the
follotwing holds for all f € F:

BeF00) < 307 £+ VG, t)
+ (14 b) 1‘|' %

where G (,t) = Eg [sups, ooy Ty Tt Biop3tx™) |
and Bip B8 Lid. Gaussion variable with zero mean and unit
standard devintion.

(13)

The detailed proof is provided in the supplemental
material due to the page limit. Note that if all kemnels
are observed, we have G,(v,t) < mkyn In such case,
our algorithm will have generalization bounds of order
O(+/1/n).

According to Theorem 1, for the leamed % and C, to
achieve a small E.[f(x)] in Eq. (13), 4 37, f(x:) should
be as small as possible. Assume that -y and C are obtained
by minimizing %ZLI f(x:) and that H is orthogonal,
we have 250 | f(xs) < 1 — ITr(K,HHT). This is be-
cause the posed orthogonal constraint HH =1, may
make the corresponding centroids non-optimal for minimiz-
ing 2 3°1, f(x;). This implies that 2 377 | f(x;) is upper
bounded by 1 — 1Tr(K,HH'). To minimize the upper
bound, we may have to maximize over v, H and {K,}7" ,,
leading to maxk, j- max,maxy Tr(K,HHT). How-
ever, the work in [é‘] observes that it is intractable to
find a good sclution under this criterion, and prone to
over-fitted solutions. Instead, we take one of its lower
bounds, max(K, = | min, maxy Tr(K,HH'") as the crite-
rion, which is exactly the objective of the proposed alge-
rithm in Eq. (7). This considerably justifies the effectiveness
of the proposed algorithm,
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5 EXPERIMENTAL ANALYSIS
5.1 Experimental Settings

We study the clustering performance of the proposed al-
gorithm on several benchmark datasets, including Protein
Fold!, UCI Digit®, Oxford Flower17®, Oxford Flower102?,
Caltech102®, SUNRGBDSUN [32], and NUSWIDEOB] [33].
These datasets have been widely used to evaluate the clus-
tering performance of MKC algorithms and can be publicly
downloaded from the aforementioned websites. The num-
ber of samples, kernels and classes are listed in Table 1.

TABLE 1: Datasets used in our experiments.

Dataset || #Samples | #Kernels | #Classes
Protein Fold G 12 27
UCT Digie 2000 3 10
Howerl? 1360 T 17
Flower102 150 4 102
CaltechIDZ 1530 a5 102
“SUNRGED 10335 2 45
TNUSWIDECE] 13001 5 a0

Along with the proposed algorithm, we run another six
comparable algorithms in recent incomplete MKC literature,
including: MKKM with zero-filling (MKKM+ZF), MKKM
with means-filling (MKKM+MF), MKKM with KNN-filling
(MEKEM+ENN), MKKM with alignment-maximization fill-
ing (MKKM+AF), MKKM with incomplete kernels (MKKM-
IK) [10], efficient and effective incomplete multi-view clus-
tering (EE-IMVC) [34], multiple incomplete views cluster-
ing via weighted nonnegative matrix factorization (MIC)
[17] and doubly aligned incomplete multi-view clustering
(DAIMC) [35]. Among these compared algorithms, MKEM-
IK and EE-IMVC are considered to be the state-of-the-art
one in handling incomplete MKC. The implementations of
these compared algorithms can be publicly downloaded. We
run these code and report the results without revision in our
experiment.

For the dataset preprocessing, we centralize and scale
each incomplete base kemel to make s,(xi, %) = 1 for
all i and p by following the settings of [10], [34]. For each
data set, we assume that the intrinsic number of clusters is
known. Then, we generate incomplete kemels by following
the same settings in [10], [34] and creating missing index
vectors {s,}1" ;. Concretely, to simulate datasets with in-
complete views, round (€ + n) samples are randomly selected
as samples with incomplete views, where round(:) is a
rounding function and ¢ is the missing ratio. Different s
are corresponding to view missing of different extent. For
each selected sample, a random vector v = (vy,--- ,,,) €
[0,1]™ and a random scalar vy (v € [0,1]) are generated
to represent the visibility of each view. The p-th view is
observable for this sample if v, > vp. In the case that all
V1,70 4 Um < vg and all views are unobservable, a new v
will be generated to ensure that at least one view is available
for a sample. As to the samples without missing views, the

corresponding missing indicating vector is a vector with all
elements to be 1. After generating one v for each sample, we
obtain the index vector s, indicating the visibility of samples
in the p-th view.

We adopt clustering accuracy (ACC), normalized mutual
information (NMI) and purity as the criterion to evaluate the
clustering performance of the aforementioned algorithms.
We firstly give the definitions of ACC, NMI and Purity as
follows. Let = [wy,--- ]’ and C = [eg,:-- ¢
denote the predicted cluster labels of a clustering algorithm
and the provided ground-truth labels of {x;}7,, respec-
tively. The clustering accuracy (ACC) is defined as follows,

3 i1 (i, map(ry))

T

ACC(Q,C) = (14)
where y; and r; denote the provided ground-truth label and
predicted cluster label of x; (1 < i < n), é(u, v) is the delta
function that equals one if # = v and equals zero otherwise,
and map(r;) is a permutation mapping function that maps
each cluster label r; to the equivalent label from data. The
best mapping can be found by using the Kuhn-Munkres
algorithm [36].

The mutual information between Q and C, denoted as
MI(£2, C), is defined as follows:

MI(£2,C) = E P, Ce)

plwy)p(ce)’

where p(w;) and p(c,) are the probabilities that a sample
arbitrarily selected from data belongs to the clusters w; and
¢y, respectively, and p(iw;, ¢;) is the joint probability that the
arbitrarily selected samples belongs to the clusters w; and
¢, at the same time. The normalized mutual information
(NMI) is then defined as follows:

MI(Q2, C)
max (H(Q), H(C))’ e

where H(£2) and H(C) are the entropies of 2 and C,
respectively,

The purity is calculated as follows. Each cluster is as-
signed to the class which is most frequent in the cluster,
and then the accuracy of this assignment is measured by
counting the number of correctly assigned documents and
dividing by n. Formally,

, 1 x—k
Purity(£2,C) = = Z:.i=l 1'2?%‘;""*’ M.

wy €0, ¢ €C plwj, c) log, (13)

NMI(Q, C) =

(7)

To consider the randomness incurred by the missing
indicating vectors {s,};" ;, for different missing ratios, the
“incomplete” patterns are randomly generated for 20 times
via the above-mentioned procedure and their statistical
results are reported. In addition, to reduce the affect of
randomness caused by k-means, for each compared algo-
rithm, we repeat the experiment for 50 times with random
initialization and report the best result.

5.2 Robustness Comparison Against Missing Ratios

Lhttp://mkl.ucsd. edu/dataser/protein-fold-prediction § 21 Results on Protein Fold

2Zhttp:/ /33, 3ysu.edu.an/py/
3 http: /M Svww.robots.ox.ac.uk/S "vgg/data/ flowers/17/
4. hetp: /fwww.robots.ox.ac.uk/"vgg/data/flowers/102/

The missing ratio = is an important parameter which could
largely affect the performance of algorithms in comparison.

5. hettp://files.is.tue.mpg.de/pgehler/projects/icev0d/ Intuitively, the larger the value of £ is, the more information
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Fig. 1: The ACC, NMI and purity of different algorithms with the variation of missing ratios on Protein Fold, UCI-Digital,
Flowerl7 and Flowerl02 datasets. For each missing ratio, we randomly generate the “incomplete” pattemns for 20 times
and report the statistical results.
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Fig. 2: The ACC, NMI and purity of different algorithms with the variation of missing ratios on Caltech102, SUNRGBED and
NUSWIDEOB] dataset. For each missing ratio, we randomly generate the “incomplete” patterns for 20 times and report
the statistical results.
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Fig. 3: Execution time comparison of different algorithms on seven benchmark datasets (in second). The experiments are
conducted on a PC with Intel (R) Core (TM)-i9-10900X 3.7GHz CPU and 64G RAM in MATLAB F2020b environment.

0162-2825 () 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httpowwwieee orgfpablications_standardy/publicationsfrighte/indexhitml for more information.
Authorized licensed use limited to: Mational Univ of Dd'l’ans.c‘?ach. Downloaded on January 28, 2023 at 14:27:14 t]TG from IEEE Xplore. Rastrictions apply.



‘This article has been accepted for publication in a future jssoe of this journal, but bas not been fully edited. Content may change peior to final publication. Citaticn information: DOT 10100/ TPAML 20213314048, [EEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS. PATTERN AMALYSIS AND MACHINE INTELLIGENCE, MONTH JUNE, YEAR 2021 8
(et e o0 oD Pt ey asn 03} Brpes, P8 prmpty wig -0 o, 2
osan o 1
bl o am .
- g Fow Hon
am d
1T [-FL 1 a3
e o1
] T b » n © % % " ® 1 [ o o® = S
T Hromiue 42 emges Tha bt 18 ey Tha Homlbe g8 Auswrgns Tha Byt 7 Beaicns The Piymtos of Sshcns
Ll . [ L . WL Diplel jmening ik » 0.0} L0, Dyl pnwwng it - 0.7} s =
e st ks an e
_ a0 o7} 1 o A
g Fome You 1 Hom - S
ap prexd am
e L - ot
oary i ol
‘N-—: " 0 ] L " -} L] L] % N 4 w0 " ]
18 Pl
T T
ol
o
fom
a8
o
% ¥ % = % w " ®
Thop Hramshe 28 P e Tha bivmtas of Remsidry

[ [ " =0 % [ " o [ w0 [T ™ % "0 [T = [ W s o
AR g b = 1) D USRI ey aho = 0.0 P SRS g b« O3
8
o P A o]
oa
oM 0 N
el
a1
§n 8 ﬁn o ; § § oy
e b
o1 e Ll AT
e g
o o
g 3
[ [ " = % [ " o ] W T3 ) [ » " = [ [ % )
Ths VB i P Thop Bl bt o amticren T Boamlast o Paraficm Tosk Vrams e o Paswicrs Tha e b o Beartcrn
SRR g rat - 51] BTA OB pristng mibo 0 MBI g s 2 5 B g et o 0T RO ity i 55
Ay PR A ; armb &1l
ot anl s on on
o aAEh LT
R § g an g g
s o anf
wte @l b avid G
(=R} 5 WAF an ann
[ w W » s w W ® ] T ' w 5 ® 1 » W ®

Fig. 4: The ACC curve of the proposed algorithm with iterations under different missing ratios on all benchmark dasets.
The curves in terms of NMI and purity are provided in the supplemental material due to the space limit.
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TABLE 2: Aggregated ACC, NMI and purity comparison (mean-std) of different clustering algorithms on all benchmark
datasets. Boldface means no statistical difference from the best one.

MEEM MEEM-AF | MEEM-IK | EE-IMVC MIC DAIMC
Dotsets " wzF T WMF ] SRNN | [B] [10] ) - Ro]__| Proposed
ACC
Protein_Fold B1x1d | 2014 | 26012 | 268x13 21510 | 298 k15 | 20908 | 29516 | 32415
UCI_Drigital B2E £ 07 | 826 £07 | 843+ 04 | BlL2409 B0 £08 | FOBE£03 | 536419 | F75£09 | 874 +£01
Flowerl? 505+20 | 50419 | 47416 | 49019 Md42+19 | 535216 | M7x12 | 53616 | 57415
Flowerlid B2407 | 22407 | 262406 | 24 £07 215405 | 364 £ 1.0 | 189405 | 360 £ 1.0 | 374409
Caltech102 33110 | 331+11 | 338x1.0 | 32410 31510 | 338210 | 31406 | 32710 | 35311
SUMRGED 150+£04 | 150404 | 1524£04 158 4+ 05 158 +£04 | 156 £04 | 104 £04 | 152 £04 164 + 0.5
NUSWIDEOB] | 12303 | 12303 | 124 £ 0.2 122+ 02 18 +£03 | 139203 | 105202 | 143 =04 13.9 = 04
| midan | 355 | 350 | 35.1 | 353 | 278 | 375 | 258 | 370 | 40.0 |
MM
Protein_Fold S L 00 | IS 10 | M5 E08 | S5.2x09 008 [3B1x10 | 278x06 | 38110 | 406 = 09
UCI_Drigital 43 4£05 | 41405 | 753+03 | 7o 407 468 +£03 | 695 4£03 | 431410 | 689 £04 776 £ 0.2
Flowerl? 93210 | 493210 | 473210 | 48010 425 £11 | 518 £08 | 31707 | 523 £0.5 | 547 =08
Flowerlid 463 4£04 | 463 4£04 | 438 4£03 | d6l 04 6 E03 | 50F4£04 | 326403 | 504 £04 51.5 £ 0.4
Caltech102 SB6E06 | SBHE06 | 591205 | 581+05 57506 | 588 £06 | 56804 | 564 £046 | 600 £05
SUMRGED 1734£02 | 173403 | 178 £03 17.7 £ 03 180 +£02 | 182402 | 100£03 | 181 +£02 | 185+ 03
NUSWIDEOE] | 109+02 | 109 £02 | 113 %02 10,9 + 02 07£02 | 11502 | 77201 | 12502 | 12502
| mean | 419 | 420 | 413 | 413 | 350 | 427 | 300 | 424 | 451 |
Purity
Protein Fold | HA 12 | Bo =12 | Rbxll ] B3X12 | 05200 | 0CF12 | BAiT05 |60 E13 | 08=12
UCI_Digiral 83107 | 82906 | 844 =04 | BL7 X 09 50706 | 799203 | 4716 | 7E1 £0.7 | 874 =01
Flowerl7 519418 | 518+£L7 | 487+15 | 505417 454 £1.7 | 552413 | 361410 | 551 +£13 | 585414
Flower102 31£07 | 341206 | 309206 | 34106 26005 | 417 £0.7 | 224 £05 | 411 £0.7 | 426 =07
Caltech102 351+£10 | 351410 | 3584£09 | 33409 A5 409 | 357410 | 3294006 | 349409 | 373409
SUNRGED 31605 | 31605 | 322205 | 322x05 33205 | 336205 | 23005 | 330204 | 34105
NUSWIDECB] | 225404 | 225 £04 | 231 4£03 | 225404 BAE03 | 233403 | 202402 | 240403 | 243 404
| mean | 418 | 419 | 411 | 412 | 343 | 436 | 308 | 432 | de1 |

would be lost and the poorer the clustering performance
could be resulted. To evaluate the robustness against miss-
ing ratios of different algorithms, in the first experiment,
we compare the state-of-the-art algorithms with respect to
different . The results variation of the compared algorithms
on Protein Fold dataset when = varies in the range of
[0.1:0.1: 0.9] are illustrated in Figure la.

From the sub-figures, we observe that:

o QOur algorithm consistently and significantly
outperforms  “two-stage” methods, including
MEEM+ZF, MEEKM+ME MEKM+ENN, and
MEKM+AE  For example, our algorithm
improves these “two-stage” methods by over
4.83%, 3.4%, 6.4%, 5.6%, 10.9%, 2.6%, 11.5%, and
2.9% on Protein Fold in terms of ACC (see Figure
la). This is not surprising since the separated
imputation may hurt the subsequent MKC, leading
to unsatisfying performance,

o  Our algorithm consistently and significantly im-
proves the clustering performance of MEKM-IK,
which is the first work to integrate imputation for
MEC. This is due to the effectiveness of our objective
and optimization technique.

+ Our algorithm considerably exceeds EE-IMVC,
which is assumed to be the most effective algorithm
in handling with incomplete MKC. For example,
the ACC of our algorithm is higher than EE-IMVC
by over 1.5% with missing ratio 0.1 (see Figure
la). Moreover, the improvement is more significant

uires |EEE permission. See httpuiwvawiees orglpablications_standarde/

with the increase of missing ratios. Our algorithm
also demonstrates superior clustering performance
in terms of NMI and purity, as shown in Figure 1a.

£22 Results on UCI Digital

UCI Digital has been widely used as a benchmark to evalu-
ate the clustering performance of multiple kernel clustering
algorithms. We also test the aforementioned algorithms on
this dataset with different missing ratios, and report the
results in Figure 1b. From these sub-figures, we observe
that the newly proposed EE-IMVC significantly improves
the clustering performance of existing MKKM variants,
including the “one-stage” MKKM-IK [10]. However, our
algorithm further considerably improves EE-IMVC in terms
of ACC, NMI and purity under different missing ratios. For
example, the ACC achieved by our algorithm is higher than
that of EE-IMVC by over 8 percentages with missing ratio
0.1. Moreover, this superiority is consistent under different
missing ratios, indicating the effectiveness of our algorithm
in handling incomplete MKC.

£23 Resufts on Flower17 and Flower102

In this section, we compare the clustering performance
of the above-mentioned algorithms on Flowerl7 and
Flowerl02, as plotted in sub-figures 1c and 1d. From these
figures, it is clearly observed that the proposed algorithm
significantly exceeds the second best one, ie., EE-IMVC,
with different missing ratios. Taking the results in Fig-
ure lc for example, our algorithm improves EE-IMVC by
2.2%, 2.5%, 3.5%, 3.5%, 4.1%, 5.4%, 3.8%, 5.00% and 4.3%
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with different missing ratios in terms of ACC. Also, this
improvement is similar in terms of NMI and purity. In
addition, we can see that the proposed algorithm demon-
strates comparable or slightly better clustering performance
when compared with EE-IMVC on Flower102 with various
missing ratios,

524 Resulls on Caltech102

We measure the clustering performance of the proposed
algorithm on Caltech102, which is usually taken as a bench-
mark in the literature of multiple kernel clustering. The
results are plotted in sub-figure 2a. It is observed from these

LG DOGIT (rrvsiine rabg=0.1])
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Fig. 5: The kemnel weights learned by different algorithms on benchmark datasets with missing ratio 0.1. The proposed
algorithm maintains reduced sparsity compared to several competitors. The kemel weights on other missing ratios are
omitted due to space limit.

sub-figures that the proposed algorithm consistently and
significantly outperforms the compared one under different
missing ratios, indicating its effectiveness.

525 Results on SUNRGBD and NUSWIDEOBJ

Finally, we evaluate the clustering performance of the pro-
posed algorithm on two larger benchmark datasets, ie.,
SUNRGED [32] and NUSWIDEOE] [33], and report the
results in sub-figure 2b and 2c. As observed, the proposed
algorithm demonstrates overall better or comparable clus-
tering, performance with the variation of missing ratios.
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Fig. 6: The objective value of the proposed algorithm with iterations on all benchmark datasets.

526 QOverall Effectiveness Evalvation

To illustrate the overall effectiveness of the compared al-
gorithms against different missing ratios, we use the ag-
gregated ACC, NMI and purity to evaluate the goodness
of the algorithms. For example, the aggregated ACC is
obtained by averaging the averaged ACC achieved by an
algorithm over different £s. In addition, we adopt the paired
Student’s {-test to conduct a rigorous comparison, where a p-
value smaller than 0.05 is considered statistically significant.
The aggregated ACC, NMI and purity, and the standard
deviation are reported in Table 2, where the one with the
highest performance is shown in bold. Again, we observe
that the proposed algorithm significantly outperforms the
compared ones, which is consistent with our observations
in Figure 1 and 2.

From the above experimental results, we attribute the
supericrity of our algorithm to: i) its effective ohjective and
optimization, and ii) unifying imputation and clustering
into a single procedure. On one hand, the effective objective
and optimization contribute to learning of H, which is in
tumn to guide the imputation of incomplete kemels. On the
other hand, this meaningful imputation is able to better
serve the MKC. These two leaming processes negotiate with
each other, leading to improved clustering performance.
Differently, ZF+MKEKM, MF+MEKEKM, KNN+MKEM and
MEKM-AF algorithms do not considerably explore the con-
nection between the imputation and clustering procedures.
This could produce imputation that does not well serve the
subsequent clustering as originally expected, affecting the
clustering performance.

5.3 Evolution of the Learned H

To investigate the clustering performance of the proposed
algorithm with iterations, we take H at each iteration to
calculate ACC, NMI and purity, and report them in Figure
4. We observe from each sub-figure that the starting point
is consistently lower than the ending point. Taking the
result in sub-figure 4c for example. The ACC at the first

iteration is only 0.31. However, this value increases over
(.35 after several iterations. Moreover, the improvement is
more significant with the increase of missing ratio. This
clearly indicates the effectiveness and necessarity of joint
imputation for MKC, espedially in the presence of higher
missing ratios. The figures in terms of NMI and purity are
provided in the supplemental material due to space limit.

5.4 Kernel Weight Analysis

We next investigate the kemel weights leamed by the
compared algorithms. The results are plotted in Figure 5.
We can see that the kernel weights leamed by MKEM are
extremely sparse on some datasets such as UCI-Digital,
which is caused by the alternate optimization. This spar-
sity insufficiently exploits the multiple kernel matrices and
explains the weak performance of MKKM. For example,
the clustering accuracy of MKKM-IK on UCI-Digital is only
49.1% with missing ratio 0.1. However, despite the ;-norm
constraint on -, the kernel weights leamed by our algorithm
are all non-sparse on all datasets, which contributes to its
superior clustering performance. This non-sparsity of the
learned kemel weights is attributed to our new reduced
gradient descent algorithm, which in turn is derived based
on our new max-min-max kernel alignment objective.

55 Convergence

Though the convergence of the proposed algorithm cannot
be theoretically guaranteed, we empirically observe that
the objective value of our algorithm does monotonically
increase with iterations, as shown in Figure 6. It usually
converges in less than ten iterations on all datasets,

5.6 Running Time Comparison

Finally, we record the execution time of the aforementioned
algorithms on all datasets, as reported in Figure 3. As
observed, we can see that besides considerably improving
the clustering performance, the proposed algorithm does
not significantly increase the running time.
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6 CONCLUSION

This paper proposes the incorplets muhipls kemel align-
mm%&mﬁm for du;m 10 ad.df;'nsﬁ umma;ﬂ
MEC, whers the kerrel inputationand clustering ars ssamn-
lessly intszrated to achisve better dustering, The propossd
algorithon i sctively solves the resultant optirdzation prob-
lere, and it derconstrates significantly maproved clustinng
perforToanc: Via extareive sxperirental study. A rl-
1zation 10T bound is analy2ed for the propossd algorithan.
Many work is worth furtter = tion. For sxarapls, we
phn to dssign a novel ti-level optirrdzation frmework to
solve Eq. (9) raore efficisraly. In sddition, we are going to
further maprove the dustering pefomaance by considsnng
the ronliresr transformation in Eq. ().
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