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Hyperparameter-Free Localized Simple Multiple
Kernel K-means with Global Optimum

Xinwang Liu, Senior Member, IEEE

Abstract—The newly proposed localized simple multiple kernel k-means (SimpleMKKM) provides an elegant clustering framework
which sufficiently considers the potential variation among samples. Although achieving superior clustering performance in some
applications, we observe that it is required to pre-specify an extra hyperparameter, which determines the size of the localization. This
greatly limits its availability in practical applications since there is a little guideline to set a suitable hyperparameter in clustering tasks.
To overcome this issue, we firstly parameterize a neighborhood mask matrix as a quadratic combination of a set of pre-computed base
neighborhood mask matrices, which corresponds to a group of hyperparameters. We then propose to jointly learn the optimal
coefficient of these neighborhood mask matrices together with the clustering tasks. By this way, we obtain the proposed
hyperparameter-free localized SimpleMKKM, which corresponds to a more intractable minimization-minimization-maximization
optimization problem. We rewrite the resultant optimization as a minimization of an optimal value function, prove its differentiability, and
develop a gradient based algorithm to solve it. Furthermore, we theoretically prove that the obtained optimum is the global one.
Comprehensive experimental study on several benchmark datasets verifies its effectiveness, comparing with several state-of-the-art
counterparts in the recent literature. The source code for hyperparameter-free localized SimpleMKKM is available at
https://github.com/xinwangliu/SimpleMKKMcodes/.

Index Terms—Multiple Kernel Clustering, Multi-view Clustering, Clustering Ensemble.

✦

1 INTRODUCTION

Multiple kernel clustering (MKC) provides an elegant
learning framework to integrate complementary representa-
tion from different sources for clustering [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13]. With a number of given
base kernel matrices, MKC optimally exploits them with
the aim to partition similar samples into the same cluster
and dissimilar ones into different clusters [14], [15]. Many
MKC algorithms have been recently proposed and widely
employed in practical applications [14], [15], [16]. In [17], an
adaptive distance metric learning is proposed, which acts
as a nonlinear extension for traditional k-means clustering.
In [3], multiple kernel k-means (MKKM) is developed, in
which the data coefficient and clustering assignment are al-
ternately optimized until achieving convergence. The work
in [18] incorporates a regularization into the objective of
MKKM, with the aim to improve the usability of the selected
kernels. By sufficiently considering the potential variation
among samples, [14] proposes a localized MKKM variant
which shows improved clustering results in applications.
Motivated by the optimal neighborhood kernel learning,
[15] puts forward an optimal neighborhood MKC algorithm,
which is considered to be helpful in enhancing the repre-
sentation ability of the optimal kernel. Different from the
aforementioned MKKM based MKC algorithms, late fusion
based MKC seeks to fuse multiple base partition matrices
from multiple sources to achieve a consensus partition ma-
trix [16].

As a representative of MKC, SimpleMKKM is recently
proposed in [19]. Different from existing MKC algorithms
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which minimize the kernel weights and clustering parti-
tion matrix simultaneously, SimpleMKKM takes a novel
minimization-maximization optimization framework which
minimizes the kernel weights and maximizes the clustering
partition matrix. This leads to an intractable minimization-
maximization optimization. To optimize it, the work in
[19] equivalently rewrites it as a minimization problem
dependent on the clustering partition matrix, and applies
a gradient based algorithm to minimize it. It is further
shown that the obtained optimum is the global one. In addi-
tion, SimpleMKKM is free of hyperparameters. The ablation
study empirically shows that both the novel minimization-
maximization formulation and the new solving optimiza-
tion algorithm attribute to its improved clustering perfor-
mance.

Although SimleMKKM has the aforementioned advan-
tages, it is pointed out in [20] that it globally maximizes
the alignment between a weighted combination of base
kernel matrices and an “ideal” similarity calculated by
the pseudo-label matrix. This could require all pairwise
samples to indiscriminately align to the same ideal simi-
larity. Consequently, it is not able to effectively deal with
the variation among samples and considerably utilize the
local structures, resulting in unsatisfactory clustering per-
formance. The work in [20] defines a local alignment cri-
terion to overcome this issue. Specifically, it only requires
maximizing the alignment between the combined kernel
and ideal similarity matrix locally, i.e., in the range of the
k-nearest neighborhood of each sample. This local crite-
rion could guide clustering algorithms to concentrate on
closer pairwise samples and avoid being affected by un-
reliable similarity of relatively farther ones. In [20], it is
further shown that this localized variant can be encoded by
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element-wise multiplying each pre-specified kernel matrix
with a neighborhood matrix, which is crucial to improving
the clustering performance.

Localized SimpleMKKM has demonstrated superior
clustering performance in various applications, as reported
in [20]. However, we observe that its performance is de-
pendent on a pre-calculated neighborhood matrix. How to
construct a suitable one for practical applications itself is in-
tractable, especially for unsupervised learning tasks where class
labels are missing. Can we learn an optimal neighborhood
matrix from data automatically? To fulfil this goal, this
work firstly parameterizes the optimal neighborhood ma-
trix as a quadratic combination of a set of pre-computed
base neighborhood matrices, and jointly learns its optimal
coefficient together with the clustering tasks. By this way,
we can adaptively learn an optimal neighborhood matrix
from data and avoid manual hyperparameter tuning. The
resultant formulation induces a more difficult minimization-
minimization-maximization optimization which cannot be
solved by off-the-shelf alternate optimization anymore. We
equivalently transform it as a minimization problem, and
design a gradient based algorithm to optimize it. Extensive
and substantial experimental results well indicate the supe-
riority of our algorithm.

In sum, our work has the following main contributions.

• We identify that the recently proposed localized
SimpleMKKM has to pre-specify a hyperparameter
by hand, and develop a new learning paradigm to
adjust it from data automatically. This learning strat-
egy could also be applied to solve hyperparameter
tuning in other learning tasks, especially in unsuper-
vised learning scenarios.

• We parameterize the optimal neighborhood mask
matrix as a quadratic combination of a set of base
neighborhood mask ones, and jointly learn the op-
timal combination coefficient together with the opti-
mal kernel weights and clustering partition matrix.
This results in a more intractable tri-level optimiza-
tion problem. To solve it, we reformulate it as a
minimization problem, prove its differentiability, and
develop a reduced gradient decent algorithm with
guaranteed convergence to decrease it. Moreover, we
theoretically prove that the obtained solution is the global
optimum.

• We evaluate the clustering performance of the pro-
posed hyperparameter-free localized SimleMKKM
on six benchmark datasets. As seen, our algorithm
has achieved superior clustering performance when
compared with existing state-of-the-art competitors,
verifying the effectiveness of the proposed joint
learning paradigm.

Besides inheriting the flexibility of localized SimpleMKKM
[20] in capturing the variation among samples, the proposed
algorithm is hyperparameter-free, enabling it more applica-
ble in practical applications.

2 RELATED WORK

In this part, we briefly review three algorithms which are
closely relevant to our work, including multiple kernel k-

means (MKKM) [21], simple multiple kernel k-means (Sim-
pleMKKM) [19] and localized SimpleMKKM [20].

2.1 Multiple Kernel K-means
Let X ∈ Rn×d denote a training set consisting of n samples
with dimension d. k-means aims to partition X into k
clusters {cj}kj=1 which are all disjoint. Let U ∈ {0, 1}n×k

be an indication matrix which is defined as

Uij =

{
1, the i-th point belongs to the j-th cluster,

0, otherwise.

The standard k-means minimizes the following objective in
Eq. (1).

minU,{cj}k
j=1

1

n

∑n

i=1

∑k

j=1
Uij∥xi − cj∥2, (1)

in which
∑k

j=1 Uij = 1, for any i ∈ [n].
For a training set that is linearly inseparable, one can

employ a feature map φ(·) to map samples into a separable
Hilbert spaceH [22], then perform standard k-means on the
mapped data. Instead given a feature mapping φ(·) explic-
itly, a kernel matrix is calculated as Ki,j = φ(xi)

⊤φ(xj) by
the kernel trick. Based on the above definitions, the objective
function of kernel k-means (KKM) is given as:

minH∈Ξ Tr
(
K

(
In −HH⊤

))
, (2)

in which H is termed clustering partition matrix and Ξ =
{H ∈ Rn×k|H⊤H = Ik}.

As well known, the clustering performance of KKM is
largely affected by the choice of kernel functions. Instead
of specifying a single kernel, the work in existing literature
usually assumes that the optimal kernel matrix Kγ is rep-
resented by a linear combination of base kernel matrices
{Kp}mp=1, i.e., Kγ =

∑m
p=1 γ

2
pKp. By this way, KKM is ex-

tended to multiple kernel k-means (MKKM) whose objective
is

minγ∈Γ minH∈Ξ Tr(Kγ(I−HH⊤)), (3)

where Γ = {γ ∈ Rm |
∑m

p=1 γp = 1, γp ≥ 0, ∀p}.
In literature, the optimization in Eq. (3) is usually solved

by coordinate descent algorithms, where only one variable
is optimized with the other fixed at each iteration.

Minimizing H with fixed γ. With a given γ, Eq. (3) w.r.t.
H is equivalent to the following optimization,

maxH∈Ξ Tr
(
H⊤KγH

)
. (4)

Eq. (4) is the kernel k-means, and can be readily solved by
existing optimization packages.

Minimizing γ with fixed H. With a given H, Eq. (3)
w.r.t. γ can be rewritten as the following optimization,

minγ∈Γ

∑m

p=1
γ2
pTr

(
Kp(In −HH⊤)

)
. (5)

It is not easy to check that the optimal solution for Eq. (5)
can be analytically obtained.

We present the whole optimization procedure in solving
Eq. (3) in Algorithm 1, in which H and γ are alternately
optimized until achieving convergence. After obtaining the
optimal H, the final clustering results can be acquired by
performing the standard k-means on the rows of H.
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Algorithm 1 MKKM

1: Input: {Kp}mp=1, k.
2: Initialize γ(1) = 1m/m, flag = 1 and t = 1.
3: while flag do
4: compute H(t) in Eq. (4) with Kγ(t) =∑m

p=1

(
γ
(t)
p

)2
Kp.

5: update γ(t+1) in Eq. (5) with H(t).
6: if max |γ(t+1) − γ(t)| ≤ e−4 then
7: flag = 0.
8: end if
9: t← t+ 1.

10: end while

2.2 SimpleMKKM: Simple Multiple Kernel K-means
According to [19], it is empirically observed that the widely
used minγ minH paradigm of current MKKM algorithms
could not achieve satisfactory clustering results in real-
world applications. Its performance is even worse than the
averaged kernel k-means in some applications. This encour-
ages machine learning researchers to develop more innova-
tive clustering algorithms. Different from the well-known
minγ minH learning paradigm [3], the recently proposed
SimpleMKKM introduces a novel minγ maxH optimization
framework, which is formulated as in Eq. (6).

minγ∈Γ maxH∈Ξ Tr(KγHH⊤). (6)

The novel minimization-maximization formalization in
Eq. (6) cannot be solved by the widely adopted alternate
optimization. In [19], the authors transform the minγ maxH
into a minγ problem. Concretely, Eq. (6) is equivalently
transformed to

minγ∈Γ J (γ), (7)

with

J (γ) =
{
maxH∈Ξ Tr

(
H⊤KγH

)}
. (8)

By this way, one rewrite the minγ -maxH optimization as a
minimization one where its objective J (γ) is dependent on
H.

After theoretically showing the differentiability of J (γ),
the work in [19] firstly computes the gradient of J (γ),
derives its reduced gradient, and determines a feasible
descent direction. The whole procedure in optimizing Eq. (6)
is outlined in Algorithm 2.

In addition, the ablation study [19] on various bench-
mark datasets validates that both the novel minimization-
maximization and new optimization attribute to the im-
proved clustering performance. More detail on Sim-
pleMKKM can be found in [19].

2.3 Localized SimpleMKKM
The recently proposed work in [20] tries to explore Sim-
pleMKKM in a localized manner. hi (1 ≤ i ≤ n) denotes
the i-th row of clustering partition matrix H. The alignment
between Kγ and HH⊤ in Eq. (6) is optimized in a global
way. This implies that SimpleMKKM aligns each Kij with
a possible “ideal” value h⊤

i hj indiscriminately, ignoring
the potential variation among samples. This would lead to

Algorithm 2 SimpleMKKM [19]

1: Input: {Kp}mp=1, k.
2: Output: H, γ.
3: Initialize γ(1) = 1m/m, flag = 1 and t = 1.
4: while flag do
5: compute H via performing kernel k-means on Kγ .
6: compute ∂J (γ)

∂γp
(p = 1, · · · ,m) and the descent di-

rection d(t).
7: update γ(t+1) ← γ(t) + αd(t).
8: if max |γ(t+1) − γ(t)| ≤ e−4 then
9: flag=0.

10: end if
11: t← t+ 1.
12: end while

aligning very various Kijs with a same cluster label. It is
therefore more reasonable to filter farther global similarity
information that is unreliable and focus more on merging
high confidence clustering predictions.

To achieve this goal, the work in [20] suggests to
align Kγ with HH⊤ in a localized manner. S(i) ∈
{0, 1}n×round(τ×n) (∀i) indicates the round(τ × n)-closest
neighborhoods of the i-th sample, in which τ is the pro-
portion of localization and round(·) is a rounding function.
Based on this idea, one can calculate the local alignment for
the i-th sample as follows,〈

S(i)⊤KγS
(i), S(i)⊤H⊤HS(i)

〉
F
, (9)

where S(i)⊤KγS
(i) indicates sampling elements from Kγ

according to the neighbors of the i-th sample. As shown, the
localized alignment manner only requires closer samples to
be kept together, which makes it better use of differences
between kernels for final clustering. By accumulating the
localized alignment in Eq. (9) for each sample, one can
obtain the objective function of the localized SimpleMKKM
as follows.

minγ∈Γ maxH∈Ξ Tr
(
H⊤

(∑n

i=1
A(i)KγA

(i)
)
H
)
,

(10)
where A(i) = S(i)S(i)⊤ denotes the neighborhood mask
matrix corresponding to the i-th sample.

The following Theorem 1 uncovers the connection be-
tween SimpleMKKM and localized SimpleMKKM.

Theorem 1 ( [20] ). The objection of the proposed localized
SimpleMKKM in Eq. (10) can be rewritten as follows.

minγ∈Γ maxH∈Ξ Tr
(
H⊤ (M⊗Kγ)H

)
, (11)

where

M =
∑n

i=1
A(i) (12)

is termed the neighborhood mask matrix.

According to Theorem 1, one can implement localized
SimpleMKKM via SimpleMKKM by taking {K̃p}mp=1 as the
input, where K̃p = M⊗Kp.
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3 HYPERPARAMETER-FREE LOCALIZED
SIMPLEMKKM
3.1 The Proposed Formulation

Theorem 1 shows that one can encode the localization by
element-wise multiplying each Kp with M in Eq. (12). On
the one hand, the local alignment in Eq. (11) can sufficiently
consider the variation among samples, which could help
to enhance the clustering performance. On the other hand,
there is an extra hyperparameter τ controlling the size of
each sample’s neighborhood, which is required to be pre-
specified. However, it is well recognized in the literature
that how to choose a suitable hyper-parameter in practical
clustering tasks itself is a tough task, especially in the ab-
sence of class labels. It could be better to let clustering algo-
rithms automatically learn the hyper-parameter. Following
the multiple kernel learning framework, we assume that an
optimal neighborhood mask matrix can be represented as
a weighted combination of a group of base neighborhood
mask matrices. That is, the optimal neighborhood mask
matrix M in Eq. (12) can be parameterized as follows,

Mµ =
∑l

p=1
µ2
pMp, (13)

where {Mp}lp=1 are a group of pre-specified neighborhood
mask matrices corresponding to different sizes of the neigh-
borhood, and µ denotes their combination weights. As a
result, choosing a suitable M reduces to learning an optimal
combination weight µ.

By substituting M in Eq. (11) with Mµ in Eq. (13),
the objective function for the proposed hyperparameter-free
localized SimpleMKKM is as follows,

minγ∈Γ minµ∈Θ maxH∈Ξ Tr
(
H⊤(Mµ ⊗Kγ)H

)
, (14)

where Γ = {γ ∈ Rm |
∑m

p=1 γp = 1, γp ≥ 0, ∀p}, Θ =

{µ ∈ Rl|µ⊤el = 1, µp ≥ 0, ∀p}, Ξ = {H ∈ Rn×k|H⊤H =

Ik}, Kγ =
∑m

p=1 γ
2
pKp, and Mµ =

∑l
p=1 µ

2
pMp.

We claim that the objective in Eq. (14) is with the follow-
ing advantages: i) It calculates the kernel alignment locally,
which enables it to capture the variation among base kernel
matrices, leading to improved clustering performance. ii)
The optimal hyper-parameter can be automatically learned
from data. These advantages make the proposed algorithm
more practical for applications. Though bearing such merits,
the optimization in Eq. (14) is a minimization-minimization-
maximization one, which makes it much more difficult to
optimize than the one in SimpleMKKM. In the following, we
equivalently rewrite Eq. (14) as a minimization, and adopt a
gradient descent algorithm to decrease it.

3.2 Differentiability of the Objective Function

There are three variables to be optimized in Eq. (14). An
alternate coordinate descent (ACD) is a common approach
to optimization with multiple variables. However, if we
use ACD to solve Eq. (14), it is observed that its objective
function cannot be guaranteed to vary monotonically with
iterations (See Figure 1 in [19] for the detail).

To solve it, we first equivalently rewrite Eq. (14) as a
minimization of an optimal value function which depends

on µ and H, and theoretically show its differentiability.
Specifically, we firstly rewrite Eq. (14) as follows,

minγ∈Γ T (γ) (15)

with

T (γ) =
{
minµ∈Θ maxH∈Ξ Tr

(
H⊤(Mµ ⊗Kγ)H

)}
.

(16)

Our goal is to use gradient descent to decrease T (γ) in
Eq. (15), which is defined in Eq. (16) and dependent on µ
and H. To fulfil this goal, we have to prove the differentia-
bility of T (γ) in Eq. (15). To prove the differentiability, we
firstly introduce the following Lemma 1 in [19].

Lemma 1 ( [19]). J (γ) in Eq. (8) is convex w.r.t γ.

Lemma 1 concludes that the solution optimized by
Algorithm 2 is the global optimum. With a given γ, the
optimization in Eq. (16) is the same to the one in Eq. (6),
which can be directly solved by Algorithm 2, generating
the global optimum. According to Lemma 1, we have the
following Theorem 2.

Theorem 2. T (γ) in Eq. (15) is differentiable w.r.t γ. Further,
∂T (γ)
∂γp

= 2γpTr
(
H∗⊤ (Mµ∗ ⊗Kp)H

∗
)

, where (H∗,µ∗) ={
argminµ∈Θ maxH∈Ξ Tr

(
H⊤(Mµ ⊗Kγ)H

)}
.

Proof. With a given γ, we conclude that the solution of Eq.
(16) is unique according to Lemma 1. Based on Theorem
4.1 in [23], T (γ) in Eq. (15) is differentiable w.r.t γ. Further,
∂T (γ)
∂γp

= 2γpTr
(
H∗⊤ (Mµ∗ ⊗Kp)H

∗
)

, where (H∗,µ∗) ={
argminµ∈Θ maxH∈Ξ Tr

(
H⊤(Mµ ⊗Kγ)H

)}
.

3.3 The Descent Direction and Optimization Algorithm

After calculating the gradient of T (γ) according to Theorem
2, we, in the following, show how to determine a descent
direction which can guarantee its equality and non-negative
constraints. To achieve this goal, we firstly compute the
reduced gradient of T (γ) to keep the equality constraint
according to [19], [24].

We can randomly select a positive component of γ,
denoted as γv . Let ▽T (γ) represent the reduced gradient
of T (γ). Then, we can calculate the p-th element of ▽T (γ)
as follows,

[▽T (γ)]p =
∂T (γ)

∂γp
− ∂T (γ)

∂γv
∀ p ̸= v, (17)

and

[▽T (γ)]v =
∑m

p=1,p ̸=v

(
∂T (γ)

∂γv
− ∂T (γ)

∂γp

)
, (18)

with 1 ≤ p ≤ m. According to the suggestion in [19], [24],
we select v to be the index corresponding to the largest
component of γ, which is usually able to maintain better
numerical stability.

We then consider the non-negative constraints on γ.
To minimize T (γ), we can take − ▽ T (γ) as a feasible
descent direction. However, if we directly take it as a descent
direction, the non-negative constraints may not be kept
anymore when there is an index q such that γq = 0 and its
reduced gradient [▽T (γ)]q > 0. In such a case, we should
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set the descent direction for that component as 0. Together
considering the equality and non-negative constraints, we
give the descent direction of the p-th component as follows,

dp =


0 if γp = 0 and [▽T (γ)]p > 0

− [▽T (γ)]p if γp > 0 and p ̸= v

− [▽T (γ)]v if p = v.

(19)

After calculating a descent direction d = [d1, · · · , dm]⊤

according to Eq. (19), we can update γ by γ ← γ + αd,
where α is called learning rate. In our implementation, we
determine it by the widely adopted Armijo’s rule. Other
one-dimensional line search strategies are also worth try-
ing. We outline the whole optimization procedure to solve
Eq. (14) in Algorithm 3.

Algorithm 3 Hyperparameter-free Localized SimpleMKKM

1: Input: {Kp}mp=1, {Mp}lp=1 and k.
2: Output: H and γ, µ.
3: Initialize γ(0) = 1m/m, µ(0) = 1l/l and t = 1.
4: while flag do

5: Kγ(t) =
∑m

p=1

(
γ
(t−1)
p

)2
Kp.

6:
7: compute (H, µ) by SimpleMKKM in Algorithm 2

with Kγ(t) .
8: compute ∂T (γ)

∂γp
(p = 1, · · · ,m) and the descent di-

rection d(t) in Eq. (19).
9: update γ(t+1) ← γ(t) + αd(t).

10: if max |γ(t+1) − γ(t)| ≤ e−4 then
11: flag=0.
12: end if
13: t← t+ 1.
14: end while

3.4 Global Convergence Analysis
In the following, we analyze the global convergence of our
algorithm in Algorithm 3 by calculating the Hessian matrix
of T (γ) in Eq. (15), as stated in Theorem 3.

Theorem 3. T (γ) in Eq. (15) is convex w.r.t. γ.

Proof. According to Theorem 2, T (γ) in Eq. (15) is differ-
entiable w.r.t γ and ∂T (γ)

∂γp
= 2γpTr(H

∗⊤ (Mµ∗ ⊗Kp)H
∗).

Furthermore, ∂T 2(γ)
∂γpγq

= 2Tr(H∗⊤ (Mµ∗ ⊗Kp)H
∗) if p = q,

and 0 otherwise. Therefore, the Hessian matrix of T (γ)
is a diagonal matrix with elements 2[a1, · · · , am]⊤, where
ap = Tr(H∗⊤ (Mµ∗ ⊗Kp)H

∗), 1 ≤ p ≤ m. In addition,
since both Mµ∗ and Kp are symmetric positive definite,
we have ap = Tr(H∗⊤ (Mµ∗ ⊗Kp)H

∗) ≥ 0. As seen,
the Hessian matrix is positive definite, which indicates that
T (γ) in Eq. (15) is convex w.r.t. γ.

With a given γ, Eq. (16) achieves the global optimum.
Under this condition, the gradient calculation in Theorem 2
is exact. A reduced gradient descent algorithm is then per-
formed on T (γ) which is a continuously differentiable func-
tion defined on Γ = {γ ∈ Rm|

∑m
p=1 γp = 1, γp ≥ 0, ∀p}.

This guarantees that the solution obtained by Algorithm 3
converges to the minimum of T (γ). Furthermore, according

to Theorem 3, the minimum of Algorithm 3 is the global
optimum, which is also validated by experiments in Figure
4.

3.5 Computational Complexity
In this subsection, we discuss the computational complex-
ity of the proposed hyperparameter-free localized Sim-
pleMKKM. According to Algorithm 3, at each iteration, it
involves solving a SimpleMKKM problem, computing the
reduced gradient, and searching for an optimal learning
rate. According to [19], the computational complexity of
SimpleMKKM at each iteration is O(ℓs ∗ n3), where ℓs
denotes the minimum of iterations to achieve convergence.
The computational complexity of computing the reduced
gradient and searching for an optimal learning rate are
O(m ∗n2) and O(ℓr ∗m), where ℓr represents the operation
of searching the optimal step size. As a result, the com-
putational complexity of our algorithm at each iteration is
O(ℓs∗n3+m∗n2+ℓr∗m). As observed, our algorithm keeps
a similar computational complexity to existing MKKM and
SimpleMKKM algorithms, as validated by the experiments
in Figure 5.

4 EXPERIMENTS

4.1 Experimental Settings
Comprehensive experiments have been conducted on sev-
eral publicly available MKKM datasets. They are Wdbc1

569/10/2, ProteinFold2 694/12/27, Flower173 1360/7/17,
Caltech4 1530/25/102, Handwritten5 2000/6/10, Flower1026

8189/4/102, SunRgbd 10335/2/45 and ALOI 10800/4/100.
The three numbers above indicate the numbers of samples,
kernels and clusters, respectively. For example, Flower102
dataset has 8189 samples, 4 kernels and 102 clusters.
The size of datasets, the number of kernels and cate-
gories show considerable variation, which provides an
excellent platform to make a performance comparison
among the aforementioned algorithms. We generate a
group of base neighborhood mask matrices {Mp}lp=1 ac-
cording to the definition in Eq. (11). Since the neigh-
bor number is defined by round(τ × n), eight τs, i.e.,
0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 1, are pre-defined to
generate base neighborhood masks.

For each benchmark, the class number k is given and
taken as the input of all algorithms. Four commonly
adopted clustering evaluation criteria, i.e., clustering accu-
racy (ACC), normalized mutual information (NMI), purity,
and rand index (RI) are used for algorithm validation. To
alleviate the interference of random initialization caused
by the k-means algorithm, the test procedure with random
initializations is implemented for 50 times. Both the mean
value and the variation of the 50 trials are reported.

To evaluate the superiority of our algorithm, the follow-
ing nine state-of-the-art (SOTA) multiple kernel clustering
algorithms are included for comparison.

1. http://archive.ics.uci.edu/ml/datasets/
2. http://mkl.ucsd.edu/dataset/protein-fold-prediction
3. http://www.robots.ox.ac.uk/∼vgg/data/flowers/17/
4. http://www.vision.caltech.edu/ImageDatasets/Caltech101
5. http://archive.ics.uci.edu/ml/datasets/
6. http://www.robots.ox.ac.uk/∼vgg/data/flowers/102/
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Fig. 1: The kernel weights learned by the proposed parameter-free localized SimpleMKKM and the compared algorithms.
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Fig. 2: (a) The learned µ by the proposed parameter-free localized SimpleMKKM. (b) The clustering performance with four
different groups of mask matrices.
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DATASET AVG-MKKM MKKM LMKKM MKKM-MIR LKAM LF-MVC MKKM-MM SMKKM LSMKKM PROPOSED[25] [26] [18] [14] [16] [27] [19] [20]
ACC

WDBC 91.0 ± 0.0 91.0 ± 0.0 91.0 ± 0.0 81.5 ± 0.0 79.4 ± 0.0 91.0 ± 0.0 91.0 ± 0.0 90.5 ± 0.0 92.1 ± 0.0 93.0 ± 0.0
PROTEINFOLD 29.0 ± 1.5 27.0 ± 1.1 22.4 ± 0.7 34.7 ± 1.8 37.7 ± 1.2 33.0 ± 1.4 29.0 ± 1.5 34.7 ± 1.9 34.7 ± 1.9 37.1 ± 1.6
FLOWER17 50.8 ± 1.5 44.9 ± 2.4 37.5 ± 1.6 58.5 ± 1.5 50.0 ± 0.8 61.0 ± 0.7 50.8 ± 1.5 59.5 ± 1.3 59.5 ± 1.2 62.1 ± 0.7
CALTECH102 34.2 ± 1.0 32.8 ± 0.9 27.9 ± 0.8 34.8 ± 1.0 32.3 ± 1.0 34.4 ± 1.3 34.2 ± 1.0 35.8 ± 0.7 35.9 ± 0.7 37.8 ± 0.7
HANDWRITTEN 96.0 ± 0.0 64.9 ± 2.4 65.0 ± 1.4 88.7 ± 0.1 95.4 ± 3.5 95.8 ± 0.0 96.0 ± 0.0 93.6 ± 0.0 96.5 ± 3.0 95.9 ± 3.0
FLOWER102 27.1 ± 0.8 22.4 ± 0.5 - 40.2 ± 0.9 41.4 ± 0.8 38.4 ± 1.2 27.1 ± 0.8 42.5 ± 0.8 42.5 ± 0.8 42.7 ± 1.0
SUNRGBD 18.5 ± 0.5 17.2 ± 0.6 - 19.5 ± 0.5 19.6 ± 0.5 18.6 ± 0.6 18.5 ± 0.5 19.2 ± 0.5 19.2 ± 0.5 19.4 ± 0.2
ALOI 64.5 ± 1.3 6.4 ± 0.1 67.3 ± 1.4 68.5 ± 1.5 65.2 ± 1.0 68.4 ± 1.4 64.5 ± 1.3 64.3 ± 1.4 66.4 ± 1.3 68.4 ± 1.0

NMI

WDBC 55.2 ± 0.0 55.0 ± 0.0 55.0 ± 0.0 36.3 ± 0.0 34.2 ± 0.0 55.3 ± 0.0 55.2 ± 0.0 54.3 ± 0.0 58.9 ± 0.0 62.5± 0.0
PROTEINFOLD 40.3 ± 1.3 38.0 ± 0.6 34.7 ± 0.6 43.7 ± 1.2 46.2 ± 0.6 41.7 ± 1.1 40.3 ± 1.3 44.4 ± 1.1 44.4 ± 1.1 46.7 ± 1.0
FLOWER17 49.7 ± 1.0 44.9 ± 1.5 38.8 ± 1.1 56.4 ± 0.9 49.8 ± 0.6 58.9 ± 0.4 49.7 ± 1.0 57.8 ± 0.9 57.8 ± 0.9 60.5 ± 0.6
CALTECH102 59.3 ± 0.6 58.6 ± 0.5 55.3 ± 0.5 59.7 ± 0.5 58.5 ± 0.6 59.5 ± 0.6 59.3 ± 0.6 60.4 ± 0.5 60.4 ± 0.5 62.3 ± 0.4
HANDWRITTEN 91.1 ± 0.1 64.8 ± 1.6 64.7 ± 0.5 79.4 ± 0.2 91.8 ± 1.9 90.9 ± 0.1 91.1 ± 0.1 87.4 ± 0.0 93.6 ± 1.6 92.0 ± 1.8
FLOWER102 46.0 ± 0.5 42.7 ± 0.2 - 56.7 ± 0.5 56.9 ± 0.3 54.9 ± 0.4 46.0 ± 0.5 58.6 ± 0.5 58.6 ± 0.5 59.4 ± 0.3
SUNRGBD 22.6 ± 0.3 21.2 ± 0.4 - 23.5 ± 0.3 23.9 ± 0.3 22.6 ± 0.4 22.6 ± 0.3 23.1 ± 0.4 23.1 ± 0.4 24.9 ± 0.2
ALOI 77.7 ± 0.7 22.3 ± 0.2 79.7 ± 0.5 80.9 ± 0.6 78.2 ± 0.4 79.6 ± 0.5 77.7 ± 0.7 77.7 ± 0.7 78.9 ± 0.5 80.7 ± 0.4

PURITY

WDBC 91.0 ± 0.0 91.0 ± 0.0 91.0 ± 0.0 81.5 ± 0.0 79.4 ± 0.0 91.0 ± 0.0 91.0 ± 0.0 90.5 ± 0.0 92.1 ± 0.0 93.0 ± 0.0
PROTEINFOLD 37.4 ± 1.7 33.7 ± 1.1 31.2 ± 1.0 41.9 ± 1.4 43.7 ± 0.8 39.3 ± 1.5 37.4 ± 1.7 41.8 ± 1.5 41.8 ± 1.5 44.3 ± 1.4
FLOWER17 51.9 ± 1.5 46.2 ± 2.0 39.2 ± 1.3 59.7 ± 1.6 51.4 ± 0.7 62.4 ± 0.7 51.9 ± 1.5 60.9 ± 1.2 60.9 ± 1.2 63.4 ± 1.0
CALTECH102 36.2 ± 1.0 34.9 ± 0.9 29.6 ± 0.8 36.8 ± 0.8 34.3 ± 0.9 36.7 ± 1.3 36.2 ± 1.0 38.0 ± 0.7 38.0 ± 0.7 40.4 ± 0.8
HANDWRITTEN 96.0 ± 0.0 65.8 ± 2.1 65.5 ± 0.9 88.7 ± 0.1 95.4 ± 3.5 95.8 ± 0.0 96.0 ± 0.0 93.6 ± 0.0 96.5 ± 2.9 96.1 ± 2.5
FLOWER102 32.3 ± 0.6 27.8 ± 0.4 - 46.3 ± 0.8 48.0 ± 0.6 44.6 ± 0.8 32.3 ± 0.6 48.6 ± 0.7 48.6 ± 0.7 49.6 ± 0.7
SUNRGBD 38.2 ± 0.7 36.2 ± 0.7 - 39.4 ± 0.6 39.6 ± 0.4 38.1 ± 0.6 38.2 ± 0.7 39.0 ± 0.6 18.4 ± 0.5 39.9 ± 0.2
ALOI 77.7 ± 0.7 22.3 ± 0.2 79.7 ± 0.5 80.9 ± 0.6 78.2 ± 0.4 79.6 ± 0.5 77.7 ± 0.7 77.7 ± 0.7 68.3 ± 1.1 80.7 ± 0.4

RAND INDEX

WDBC 67.2 ± 0.0 67.2 ± 0.0 67.2 ± 0.0 39.7 ± 0.0 34.5 ± 0.0 67.2 ± 0.0 67.2 ± 0.0 65.5 ± 0.0 70.7 ± 0.0 73.8 ± 0.0
PROTEINFOLD 14.4 ± 1.8 12.1 ± 0.7 7.8 ± 0.4 17.2 ± 1.5 20.1 ± 1.1 16.1 ± 1.5 14.4 ± 1.8 17.6 ± 1.9 17.6 ± 1.9 20.3 ± 2.0
FLOWER17 32.2 ± 1.3 27.2 ± 1.8 20.6 ± 1.1 39.9 ± 1.3 31.6 ± 0.8 44.1 ± 0.4 32.2 ± 1.3 41.5 ± 1.5 41.5 ± 1.5 44.8 ± 0.7
CALTECH102 18.4 ± 0.9 17.3 ± 0.7 13.4 ± 0.8 18.8 ± 0.8 16.8 ± 0.9 18.8 ± 1.0 18.4 ± 0.9 19.8 ± 0.7 19.8 ± 0.7 21.8 ± 0.7
HANDWRITTEN 91.3 ± 0.0 51.8 ± 2.3 50.4 ± 1.2 77.2 ± 0.2 91.6 ± 3.5 91.0 ± 0.1 91.3 ± 0.0 86.5 ± 0.1 93.5 ± 2.8 91.9 ± 3.0
FLOWER102 15.5 ± 0.5 12.1 ± 0.4 - 25.5 ± 0.6 27.2 ± 0.6 25.5 ± 1.0 15.5 ± 0.5 28.5 ± 0.8 28.5 ± 0.8 28.8 ± 0.9
SUNRGBD 8.9 ± 0.3 8.1 ± 0.3 - 9.6 ± 0.3 9.9 ± 0.3 9.0 ± 0.2 8.9 ± 0.3 9.4 ± 0.3 9.4 ± 0.3 10.3 ± 0.1
ALOI 51.4 ± 1.5 2.0 ± 0.1 55.2 ± 1.1 56.5 ± 1.1 53.9 ± 0.9 54.3 ± 1.2 51.4 ± 1.5 51.5 ± 1.4 54.8 ± 1.2 56.4 ± 0.9

TABLE 1: The ACC, NMI, Purity and Rand Index comparison of the proposed algorithm with baseline methods on six
benchmark datasets. The best results are marked in bold.

• Average kernel k-means (Avg-KKM). A consensus
kernel is firstly constructed by linearly combining the
base kernels with the same weight and then taken as
the kernel input k-means.

• Multiple kernel k-means (MKKM) [25]. The lin-
ear combination weights and the cluster indicating
matrix are optimized simultaneously in a unified
optimization framework.

• Localized multiple kernel k-means (LMKKM) [26].
A sample-adaptive base kernel combination mecha-
nism is proposed to boost the clustering results of
MKKM.

• Multiple kernel k-means with matrix-induced reg-
ularization (MKKM-MiR) [18]. A regularization
term is integrated into the MKKM learning to en-
hance diverse information preservation.

• Multiple kernel clustering with local alignment
maximization (LKAM) [14]. It learns an optimal
kernel combination by aligning the ideal similarity
matrix with the combined kernel matrix within only
the neighborhood district.

• Multi-view clustering via late fusion alignment
maximization (LF-MVC) [16]. It first calculates the
base partitions associated with corresponding views
and then integrates them into a united partition
matrix.

• MKKM-MM [27]. It introduces a minH-maxγ for-

mulation that integrates different views in a way
indicating high within-cluster variance in the consen-
sus kernel space and optimizes the clusters through
minimizing such variance.

• SimpleMKKM (SMKKM) [19]. It introduces a
special min-max clustering formulation for kernel
weights and cluster partition optimization.

• Localized SimpleMKKM (LSMKKM) [20]. It uses
the min-max optimization paradigm of SMKKM, and
proposes to adopt a localized manner to extract the
information of kernel matrices.

The implementations of the aforementioned algorithms are
publicly available. Among the compared algorithms, LKAM
[14], MKKM-MiR [18], LF-MVC [16] and LSMKKM [20]
have at least one hyperparameter to be tuned. We follow
the algorithm settings of their original papers and run
the publicly available source codes. Besides, we tune the
corresponding hyperparameters by grid search. The best
clustering performance and standard deviation of these
algorithms are reported. As seen, the clustering performance
of algorithms with hyperparameters is over-estimated.

4.2 Experimental Comparison and Discussion

4.2.1 Clustering Results
As illustrated in Table 1, we report the clustering perfor-
mances, including ACC, NMI, purity, and RI, of all afore-
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Fig. 3: The evolution of the learned H by the proposed algorithm with iterations.

mentioned algorithms. From these results, several observa-
tions can be concluded:

• The proposed parameter-free localized Sim-
pleMKKM significantly outperforms the algorithms
with hyper-parameters, like LF-MVC [16] and
LSMKKM [20]. This demonstrates the practicability
and efficacy of our formulation.

• SimpleMKKM [19], which adopts a similar min-
max optimization formulation with our proposed
algorithm, and achieves comparable or better clus-
tering performance then the algorithms with hyper-
parameters on most benchmark datasets. This supe-
riority can be attributed to the novelty of its formu-
lation with a reasonable optimization mechanism.

• Our parameter-free localized SimpleMKKM consis-
tently outperforms all compared algorithms by a
significant margin. Here we take the NMI clustering
metric, for instance, and our proposed algorithm ex-
ceeds the LSMKKM algorithm by 3.6%, 2.3%, 2.7%,
1.9%, and 0.8% on Wdbc, ProteinFold, Flower17,
Caltech102, and Flower102 datasets, respectively.
Moreover, our algorithm exceeds the SimpleMKKM
algorithm by 8.2%, 2.3%, 2.7%, 1.9%, 4.6%, 0.8% and
exceeds the LF-MVC algorithm by 7.3%, 5.0%, 1.6%,
2.8%, 1.1%, 4.5% on six benchmark dataset, respec-
tively. The enhancements with respect to other ma-
trices are similar. The above clustering results have
solidly illustrated the effectiveness of our parameter-
free localized SimpleMKKM. This is because it bene-
fits from adaptively learning the local information of

the kernel matrix.
• The proposed parameter free localized Sim-

pleMKKM performs better than MKKM-MiR [18],
LKAM [14], LF-MVC [16], and LSMKKM [20], where
several hyper-parameters are required to tune as-
sociated with regularization on the kernel weights.
Thus they require much effort to choose the best
hyper-parameters in real-world applications. More-
over, parameter tuning is very difficult or even im-
possible in practical scenarios where no ground truth
is available. Differently, the proposed algorithm is
parameter-free.

Apart from inheriting the carefully-designed formula-
tion and advanced optimization from SimpleMKKM, this
improved algorithm adaptively employs a localized learn-
ing manner to conduct the kernel alignment among different
kernels. This makes the algorithm more suitable for kernel
variation. These benefits jointly bring significant improve-
ment over its counterparts on all datasets. In addition, we
point out that LMKKM [26] cannot get the results reported
on some datasets since it suffers from the risk of being out
of memory. This is mainly caused by its huge memory and
heavy computational complexity.

4.2.2 Analysis of Kernel Weight
In this subsection, we further analyze the kernel weights
learned by the aforementioned algorithms. As observed in
Figure 1, the kernel weights learned by MKKM, MKKM-
MiR, and LKAM are distributed very unevenly and rela-
tively sparse on almost all datasets. This sparsity indicates
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Fig. 4: The objective curves of Hyperparameter Free Localized SimpleMKKM under ten different initializations on Wdbc,
ProteinFold, Flower17, Flower102, and Handwritten. Though with different initializations, the objective value stops at the
same point.
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Fig. 5: Running time of the aforementioned algorithms on all datasets (logarithm in seconds). These algorithms are run on
a PC with Intel(R) Core(TM)-i9-10900X 3.7GHz CPU and 64G RAM in MATLAB R2020b environment.

the insufficient exploration of the multiple kernel matrices
and results in the unsatisfactory performance of MKKM.
For instance, the ACC of MKKM, MKKM-MiR and, LKAM
on Flower17 is only 44.9%, 58.5%, and 50.0%, respectively.
Differently, despite the ℓ1-norm constraint on γ, the ker-
nel weights of our proposed algorithm have non-sparse
properties, which contributes to its promising results on
all datasets. The non-sparsity can be attributed to the pro-
posed reduced gradient descent optimization, which in turn
is derived on the basis of the proposed min-max kernel
alignment criterion.

4.2.3 Analysis of Mask Matrix Weight
Here, we analyze the mask matrix weights learned by the
proposed algorithm, and the results on all datasets are
plotted in sub-figure 2a. As observed, the obtained µ is non-
sparse, which indicates that each individual mask matrix
contributes to the construction of the optimal mask matrix.
We also try four different groups of {M(q)

p }lp=1 (1 ≤ q ≤ 4).
The results are reported in sub-figure 2b. As seen, the
performance of our algorithm is almost the same under
different groups of {Mp}lp=1, which shows that its cluster-
ing performance can be further boosted by incorporating
prior knowledge to constructing base mask matrices, which
is worth further exploring.

4.2.4 Global Convergence of the Proposed Algorithm
According to Theorem 3, our parameter-free localized
SimpleMKKM is theoretically guaranteed convergent to a
global optimum. To illustrate this point better, we further
present the objective curves of parameter-free localized Sim-
pleMKKM with iterations under different initializations. From
the results on all datasets in Figure 4, we can find that: i) its
objective monotonically decreases and usually converges in
ten iterations. ii) Although the proposed optimization starts
from different initializations, the objective value converges
to the same value, validating the global convergence of our
algorithm.

4.2.5 Evolution of the learned H

To reveal the performance variation of the learned H with
the number of iterations, we calculate four clustering met-
rics with iterations and present the corresponding results

in Figure 3. It can be observed that the performance of the
proposed algorithm firstly increases at each iteration and
soon keeps stable. This phenomenon considerably verifies
the effectiveness of the Learned H.

4.2.6 Running Time Comparison

For a fair comparison, we empirically evaluate the running
time of compared algorithms to evaluate the computational
efficiency on all datasets, as illustrated in Figure 5. As seen,
besides significantly improving the clustering performance,
our proposed parameter-free localized SimpleMKKM also
has a comparable time cost with other counterparts. Note
that the hyper-parameter tuning time is also included for
these algorithms with hyperparameters.

5 CONCLUSION

While the newly proposed localized SimpleMKKM is able
to capture the variation among samples and demonstrates
promising clustering performance, it needs to pre-specify
the size of the neighborhood. However, how to select a
suitable hyperparameter for unsupervised learning tasks is
an open issue. In this work, we transfer the hyperparameter
selection task to a learning one via parameterization, leading
to a more intractable optimization. We then build a new
optimization algorithm with global convergence to solve
it. Our proposed algorithm demonstrates largely increased
clustering results via substantial experiments on multiple
benchmark datasets. Many future work are worth exploring.
For example, the performance of our algorithm is depen-
dent on {Mp}lp=1, and how to utilize prior knowledge
to construct them to further boost its clustering perfor-
mance is worth studying. Also, we plan to enable the
hyperparameter-free localized SimpleMKKM to deal with
incomplete kernels in future work.
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