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Abstract—By optimally exploiting a set of pre-calculated base kernel matrices, multiple kernel clustering (MKC) aims to improve
performance of clustering tasks. Different from existing MKC algorithms, simple multiple kernel k-means (SMKKM) proposes a novel
minimization-maximization learning paradigm, and makes remarkable achievements in some applications. However, we observe that
SMKKM does not considerably make use of the variation among samples, resulting in unsatisfying clustering performance. To address
this issue, we propose a local kernel alignment criterion with the aim to better capture the variation among samples. It makes the
clustering algorithms focus on reliable pairwise samples that shall stay together and cut off unreliable farther pairwise ones. Based on
this criterion, we first propose a unified weighted localized SMKKM (UWL-SMKKM), and theoretically uncover that SMKKM is a special
case of UWL-SMKKM. According to this connection, one can readily implement the proposed UWL-SMKKM with existing SMKKM
packages. We further improve UWL-SMKKM by proposing sample adaptive localized SMKKM (SAL-SMKKM) where the weight of the
local alignment for each sample can be adaptively adjusted, leading to an intractable tri-level minimization-minimization-maximization.
To solve it, we reformulate it as a minimization of an optimal function which is a minimization-maximization optimization, prove its
differentiability, and design a reduced gradient descent optimization to decrease it. We empirically evaluate the clustering performance
of the proposed UWL-SMKKM and SAL-SMKKM on several widely used benchmark datasets. The experimental results have clearly
indicated that our algorithms consistently outperform state-of-the-art ones. Finally, we apply UWL-SMKKM to the multi-modal
parcellation of human cerebral cortex, which is essential and helpful to understand brain organization and function. As seen,
UWL-SMKKM achieves accurate parcellation in an automatic and objective manner without any manual intervention, which once again
demonstrates its validity and effectiveness in practical applications. The codes of UWL-SMKKM and SAL-SMKKM are publicly
accessed at: https://github.com/xinwangliu/LocalizedSMKKM.

Index Terms—multiple kernel k-means, multiple kernel clustering, multi-view clustering

F

1 INTRODUCTION

A S an elegant learning framework, multiple kernel clus-
tering (MKC) maximally utilizes multiple sources in-

formation to partition samples into different clusters [1], [2],
[3]. Specifically, MKC learns an optimal kernel matrix from
a set of pre-calculated base kernel matrix to best serve for
clustering tasks [4], [5], [6], [7], [8], [9], [10], [11], [12], [13].
It has attracted extensive study [14], [14], [15], [16] and been
widely used in various practical applications such as im-
age segmentation [17], [18], anomaly detection [19], cancer
biology [20], to name just a few. Many pioneering works
on MKC have been recently proposed in the literature. In
[21], a regularization term is induced and incorporated into
MKKM to enhance the diversity and decrease the redun-
dancy of the selected kernel matrices. The work in [14]
develops a local kernel alignment criterion with the aim to
sufficiently consider the variation among sample, which is
considered to be helpful in improving the clustering perfor-
mance. Different from existing assumption that an optimal
kernel is composed of the combination of base kernels, the
optimal neighborhood MKC algorithm is designed in [15],
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where the optimal kernel resides in the neighbor of the
combined kernels. By this way, the representability of the
learned optimal kernel is enhanced, leading to improved
clustering performance.

Different from the aforementioned kernel based MKC,
late fusion based MKC has been more recently proposed
[16]. It seeks to achieve a consensus partition matrix from
a group of base partition ones, which are generated from
base kernel matrices. To fulfil this goal, the work in [16]
maximally aligns multiple base partitions with a consensus
one, which could significantly reduce the computational
complexity and improve the clustering performance. Along
this direction, [22] proposes an effective and efficient late
fusion MKC algorithm to address incomplete multi-view
clustering.

A representative MKC algorithm, termed simple mul-
tiple kernel k-means (SMKKM), is recently put forward
[23]. Different from existing optimization strategy where
the kernel coefficients and clustering partition matrix are
jointly minimized, SMKKM proposes a novel min-max op-
timization paradigm for MKC. Specifically, its objective is to
minimize the kernel coefficients and maximize the cluster-
ing partition matrix. This results in a min-max optimization
problem, which is much more intractable than existing
optimization. To solve it, the work in [23] equivalently
rewrites the min-max optimization as a minimization of an
optimal function, proves its differentiablity, and design a
reduced gradient descent algorithm to solve the resultant
minimization. Further, an ablation study is design to show
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that both the novel min-max formulation and new optimiza-
tion technique lead to the improved clustering performance.

Despite the aforementioned advantages, SimleMKKM
maximally aligns the combined kernel matrix with a sim-
ilarity matrix generated by the clustering partition matrix
in a “global” manner. As seen, this alignment is not able to
sufficiently take the variation among samples into consid-
eration and ignores local structures among samples, result
in unsatisfying clustering performance. In this paper, we
design a local kernel alignment criterion to overcome this
issue. To fulfil this goal, we firstly calculate the neighbor-
hoods for each sample, which defines a local patch in the
combined kernel and ideal similarity matrix, respectively.
The proposed local kernel alignment criterion only requires
these two patches being maximally aligned. As seen, this
local criterion helps clustering algorithms to put more em-
phasis on closer pairwise samples that shall stay together,
and takes little consideration of farther pairwise samples
in kernel alignment. Consequently, our criterion is able to
better utilize the variation among samples, which could be
helpful to bring forth improved clustering performance.

Following the minimization-maximization optimization
of SMKKM, we firstly derive the objective of UWL-SMKKM.
We then theoretically uncover that SMKKM is a special case
of UWL-SMKKM. Base on this connection, we point out that
UWL-SMKKM can be readily implemented with SMKKM
packages after simply normalizing each base kernel. In
addition, we further improve the localized SMKKM by al-
lowing the weight of local kernel alignment for each sample
being adaptively optimized, leading to a more intractable
tri-level optimization. We firstly reformulate the resultant
problem as a minimization of an optimal value function,
provide an theorem to guarantee its differentiability, and
design a reduced gradient descent algorithm to optimize
it. We conduct comprehensive experiments to evaluate the
clustering performance of the proposed algorithms on sev-
eral benchmark datasets, and the results well validate their
effectiveness. Finally, in order to test the performance of
our localized SMKKM in practical applications, we apply it
into the multi-modal parcellation of human cerebral cortex,
which is essential for understanding brain organization and
function. The experimental results show that our algorithm
is able to achieve accurate parcellation in an automatic
and objective manner without manual intervention, well
indicating its superiority.

This paper bears the following main contributions.

• We, for the first time, point out that the newly devel-
oped SMKKM does not well consider the variation
among samples, and design a local kernel alignment
criterion to overcome this issue.

• We build the theoretical connection between
SMKKM and the proposed UWL-SMKKM, and re-
veal that the former is a special case of ours.

• We further improve the localized SMKKM by
proposing a new variant, where the weights of local
kernel alignment for each sample are allowed to be
adaptively adjusted. Further, we develop a new algo-
rithm with proved convergence to solve the resultant
optimization.

• We conduct comprehensive experimental study on

several benchmark datasets and the multi-modal
parcellation of human cerebral cortex. As indicated,
the experimental results have demonstrated that our
algorithms consistently outperforms the state-of-the-
art competitors, verifying its effectiveness.

Finally, we discuss this work with our previous con-
ference paper [24]. This work substantially extends our
original version from the following aspects: (1) Instead of
combining the local kernel alignments for each sample with
equal weights, we design a new algorithm, termed Sample
Adaptive Localized SMKKM, by allowing the weight of
each local kernel alignment to be adaptive adjusted. (2)
We then develop a new optimization with convergence to
decrease the resultant optimization problem. Moreover, the
newly proposed variant significantly outperforms Localized
SMKKM in the previous paper [24]. (3) More comprehen-
sive experimental research has been conducted from per-
spectives of overall clustering performance, the evolution
of learned clustering partition matrix, the learned kernel
weights, the learned weights of each local kernel alignment,
and the convergence of the developed solving algorithms.
These results have well validated the effectiveness of the
proposed algorithms. In addition, we have applied the
proposed algorithm into multi-modal parcellation of human
cerebral cortex, and the results demonstrate its superiority.

2 SMKKM: SIMPLE MULTIPLE KERNEL K-MEANS

In this section, we briefly introduce SMKKM [23], which is
closely related to our work.

In literature, multiple kernel k-means (MKKM) [25] has
been widely used to solve MKC. It assumes that the optimal
kernel Kγ is composed of a group of pre-specified base
kernel matrices, and jointly optimizes γ and the clustering
partition matrix H, leading to the following objective func-
tion,

min
γ∈∆

min
H∈Γ

Tr(Kγ(I−HH>)) (1)

where Kγ =
∑m
p=1 γ

2
pKp, ∆ = {γ ∈ Rm |

∑m
p=1 γp =

1, γp ≥ 0, ∀p}, Γ = {H|H ∈ Rn×k, H>H = Ik}, and Ik is
an identity matrix with size k.

A two-step alternate optimization strategy is developed
to solve γ and H in Eq. (1). That is, one variable is optimized
with the other fixed. With fixed γ, the optimization in Eq.
(1) w.r.t. H reduces to traditional kernel k-means, which
can be readily solved by existing off-the-shelf optimization
packages. With fixed H, the optimization in Eq. (1) w.r.t. γ
is equivalent to

minγ∈∆

∑m

p=1
γ2
pTr

(
Kp(In −HH>)

)
, (2)

which can be analytically obtained. These two-step in op-
timizing H and γ are alternately performed until conver-
gence.

MKKM has been intensively studied and widely
adopted due to its conceptual simplification and easy-to-
implementation. However, it is empirically noticed that
MKKM could not be able to gain superior performance
in some applications, sometimes or even worse than the
unified weighted kernel k-means. Novel clustering models
are needed to alleviate this situation.
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Different from minγ minH used in existing MKKM, the
newly proposed SMKKM [23] adopts the following minγ

maxH optimization paradigm,

min
γ∈∆

max
H∈Γ

Tr
(
KγHH>

)
, (3)

which optimizes γ and H to make the objective minimized
and maximized, respectively. Correspondingly, the afore-
mentioned strategy optimizing one variable with the other
fixed cannot guarantee that the objective is monotonically
changed. As a result, the widely used alternate optimiza-
tion cannot be applied to solve the new minimization-
maximization formulation in Eq. (3).

In [23], SMKKM develops a reduced gradient descent
algorithm to solve Eq. (3). Specifically, it firstly transforms
the minγ maxH into a minimization w.r.t γ, and proves
the differentiability of the resultant optimal value function.
Specifically, we equivalently rewrite Eq. (3) as,

minγ∈∆ J (γ), (4)

with

J (γ) =
{

maxH∈Γ Tr
(
H>KγH

)}
. (5)

In this manner, the formulation in Eq. (3) is reduced a
minimization one, whose objective J (γ) is a kernel k-means
optimal value function.

To solve Eq. (4) with gradient descent, SMKKM firstly
prove the differentiability of J (γ) in Eq. (4) w.r.t. γ, and
computes its gradient as ∂J (γ)

∂γp
= 2γpTr

(
H∗>KpH

∗
)

,
where H∗ =

{
arg maxH∈Γ Tr

(
H>KγH

)}
. In Eq. 4, there

are equality and positivity constraints on γ. To keep the ob-
tained solution at each iteration satisfying such constraints,
SMKKM searches a descent direction which guarantees
the equality and non-negativity constraints on γ. To do
so, SMKKM calculates the following reduced gradient to
make the equality constraint satisfied. Let γu be a non-zero
component of γ and5J (γ) denote the reduced gradient of
J (γ). The p-th (1 ≤ p ≤ m) component of 5J (γ) is

[5J (γ)]p =
∂J (γ)

∂γp
− ∂J (γ)

∂γu
∀ p 6= u, (6)

and

[5J (γ)]u =
∑m

p=1,p6=u

(
∂J (γ)

∂γu
− ∂J (γ)

∂γp

)
, (7)

where u is set as the index corresponding to the largest
component of vector γ which is considered to provide better
numerical stability [23], [23], [26].

The non-negativity constraint on γ is then considered. If
there is an index p such that γp = 0 and [5J (γ)]p > 0, up-
dating γ along this direction would make the non-negativity
constraint violated. In this case, one should set the descent
direction for that component as 0. Together the aforemen-
tioned consideration of equality and non-negativity con-
straints, SMKKM gives the following descent direction to
update γ as

dp =


0 if γp = 0 and [5J (γ)]p > 0

− [5J (γ)]p if γp > 0 and p 6= u

− [5J (γ)]u if p = u.

(8)

In sum, γ can be updated via γ ← γ + αd, where
d = [d1, · · · , dm]> is a descent direction computed by Eq.
(8), and α is the optimal step size. The whole procedure in
solving Eq. (3) is presented in Algorithm 1.

Algorithm 1 SMKKM

1: Input: {Kp}mp=1, k, t = 1.
2: Initialize γ(1) = 1/m, flag = 1.
3: while flag do
4: calculate H(t) via a kernel k-means with Kγ(t) .
5: calculate ∂J (γ)

∂γp
(∀p) and the descent direction d(t) in

Eq. (8).
6: γ(t+1) ← γ(t) + αd(t).
7: if max |γ(t+1) − γ(t)| ≤ 1e− 4 then
8: flag=0.
9: end if

10: t← t+ 1.
11: end while

In addition, the work in [23] theoretically shows that
J (γ) in Eq. (4) is a convex function w.r.t γ, which guar-
antees the global optimum of Algorithm 1.

3 SAMPLE ADAPTIVE LOCALIZED SMKKM
3.1 UWL-SMKKM: Unified Weighted Localized SMKKM

As seen from Eq. (3), SMKKM adopts a minimization-
maximization strategy to align Kγ and HH>. This criterion
requires each Kij to be indiscriminately aligned with an
“ideal” value h>i hj , where Kij and hi denote the (i, j)-th
component of Kγ and i-th row of H. It would cause Kij ’s
with large variation to be aligned with a same clustering
label. To address this issue, we develop a more reasonable
alignment method, which shall cast off the less reliable
farther pairwise similarity and in the mean time concentrate
more on consolidating these high confidence clustering pre-
dictions. To fulfill this goal, we propose to align Kγ with
HH> in a local way.

To take the variation of samples into consideration, we
firstly define the nearest neighbors for the i-th sample,
denoted as S(i) ∈ {0, 1}n×round(τ×n), where round(·) is
a rounding function and 0 < τ ≤ 1 controls the size of
neighborhood. We propose to calculate the local alignment
for the i-th sample in Eq. (9),〈

S(i)>KγS
(i), S(i)>HH>S(i)

〉
F
, (9)

where S(i)>KγS
(i) and S(i)>HH>S(i) denote extracting

the most reliable elements from Kγ and HH> according
to the nearest neighbors of the i-th sample, respectively.

As seen from Eq. (9), only the most reliable samples
that shall stay together are involved in calculating the local
alignment, which avoids samples with large variations be-
ing aligned with a same clustering label. By summing over
the local alignment of each sample in a unified weighted man-
ner, we obtain the objective function of unified weighted
localized SMKKM (UWL-SMKKM) as follow:

min
γ∈∆

max
H∈Γ

Tr
(
H>

∑n

i=1

(
A(i)KγA

(i)
)
H
)
, (10)
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where ∆ = {γ ∈ Rm|
∑m
p=1 γp = 1, γp ≥ 0, ∀p}, Γ = {H ∈

Rn×k|H>H = Ik}, Kγ =
∑m
p=1 γ

2
pKp and A(i) = S(i)S(i)> .

The following Theorem 1 uncovers the theoretical con-
nection between SMKKM and the proposed UWL-SMKKM.

Theorem 1. The objection of SMKKM is a special case of Eq.
(10).

Proof. The objective function in Eq. (10) can be written as∑n

i=1
Tr
(
H>(A(i)KγA

(i))H
)

=
∑n

i=1

〈
A(i) ⊗Kγ ,A

(i) ⊗ (HH>)
〉

F

=
∑n

i=1

〈
A(i) ⊗Kγ ,HH>

〉
F

=
〈(∑n

i=1
A(i)

)
⊗Kγ ,HH>

〉
F

=
∑m

p=1
γ2
p

〈(∑n

i=1
A(i)

)
⊗Kp,HH>

〉
F

=
∑m

p=1
γ2
p

〈
K̃p,HH>

〉
F

= Tr
(
H>K̃γH

)
,

(11)

where ⊗ represents element-wise multiplication between
two matrices, K̃p =

(∑n
i=1 A

(i)
)
⊗Kp is a normalization of

Kp, and K̃γ =
∑m
p=1 γ

2
pK̃p. This indicates that the objective

of SMKKM is a special case of Eq. (10). This completes the
proof.

According to Theorem 1, it is not difficult to verify that
our formulation in Eq. (10) is reduced to SMKKM when we
set all elements of A(i) as one. In that case, each sample
takes all the rest ones as its neighbors. This implies that
SMKKM is a special case of UWL-SMKKM. The following
Theorem 2 shows that each K̃p still keeps positive semidef-
inite (PSD) under the aforementioned normalization.

Theorem 2. Each K̃p (1 ≤ p ≤ m) is PSD.

Proof. We provide the detailed proof in the appendix due to
page limit.

We then discuss how to efficiently implement UWL-
SMKKM via SMKKM packages. Based on Theorem 1, we
firstly normalize each Kp with

∑n
i=1 A

(i) to generate K̃p,
which is kept PSD according to Theorem 2. After that, we
take {K̃p}mp=1 as the input of SMKKM 1, producing the
solution of the proposed UWL-SMKKM.

3.2 Sample Adaptive Localized SMKKM
3.2.1 The Formulation
As seen from Eq. (10), the local kernel alignment for each
sample is taken over in an unified manner. That is, the
weight for each sample in calculating local kernel alignment
is equal. A more reasonable approach to integrating these
local alignments is that their weights shall be adaptively
tuned. By this way, one can expect to learn better weights,
which could further improve clustering performance. To
fulfil this goal, we propose the objective of sample adaptive
localized SMKKM (SAL-SMKKM) as follows,

min
β∈Φ

min
γ∈∆

max
H∈Γ

Tr
(
H>

∑n

i=1
βi(A

(i)KγA
(i))H

)
,

(12)

where βi (1 ≤ i ≤ n), denoting the weight of local align-
ment for the i-th sample, is also jointly optimized, and
Φ = {β ∈ Rn|

∑n
i=1 βi = 1, βi ≥ 0, ∀i}.

3.2.2 The Optimization
Compared with UWL-SMKKM in Eq. (10), Eq. (12) provides
a more flexible and effective way to locally align Kγ with
HH>. However, the optimization in Eq. (12) is a tri-level
optimization, which is much more intractable than the one
in Eq. (10). To solve Eq. (12), we firstly rewrite it as a
minimization of an optimal value function as follows,

min
β∈Φ

T (β) (13)

with

T (β) =

{
min
γ∈∆

max
H∈Γ

Tr
(
H>

(∑n

i=1
βiA

(i)
)
⊗Kγ

)
H
)}

,

(14)

where Tr
(
H>

(∑n
i=1 βiA

(i)
)
⊗Kγ

)
H
)

= Tr
(
H>

∑n
i=1

βi(A
(i)KγA

(i))H
)

.
Eq. (13) is an optimal function optimization on simplex.

In the following, we firstly prove the differentiability of
T (β) w.r.t. β, calculate its reduced gradient, and design
a reduced gradient descent algorithm to optimize it. The
following Theorem 3 guarantees that T (β) is differentiable
w.r.t. β.

Theorem 3. T (β) in Eq. (13) is differen-
tiable w.r.t β. Furthermore, we have ∂T (β)

∂βi
=

Tr
(
H∗>

(
A(i)Kγ∗A

(i)
)
H∗
)

, where (γ∗, H∗) ={
arg minγ∈∆ maxH∈Γ Tr

(
H>

(∑n
i=1 A

(i)KγA
(i)
)
H
)}

.

Proof. Given β, the optimization in Eq. (14) is the one
same to SMKKM. Based on Theorem 2 in [23], we know
that Eq. (14) has the global optimum. According to The-
orem 4.1 in [27], T (β) in Eq. (13) is differentiable, and
∂T (β)
∂βi

= Tr
(
H∗>

(
A(i)Kγ∗A

(i)
)
H∗
)

.

According to Theorem 3, one can calculate the gradient
of T (β) w.r.t β. Let βu be a non-zero component of β, and
5T (β) denotes the reduced gradient of T (β). The i-th (1 ≤
i ≤ n) element of 5T (β) is

[5T (β)]i =
∂T (β)

∂βi
− ∂T (β)

∂βu
∀ i 6= u, (15)

and

[5T (β)]u =
∑n

i=1, i 6=u

(
∂T (β)

∂βu
− ∂T (β)

∂βi

)
. (16)

Correspondingly, the descent direction for updating β as

vi =


0 if βi = 0 and [5T (β)]i > 0

− [5T (β)]i if βi > 0 and i 6= u

− [5T (β)]u if i = u.

(17)

The whole algorithm in solving Eq. (12) is listed in
Algorithm 2. Overall, Algorithm 2 updates (γ,H) via Al-
gorithm 1 with given β, then calculates the gradient of
T (β) w.r.t β, and update β with a reduced gradient descent
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algorithm along the direction v = [v1, · · · , vn]> in Eq. (17).
This procedure is iteratively performed until achieving the
given stopping criterion. In Algorithm 2, obj(t) denotes the
objective value in Eq. (12) at the t-th iteration with β(t), γ(t)

and H(t).

Algorithm 2 SAL-SMKKM: Sample Adaptive Localized
SMKKM

1: Input: {Kp}mp=1, k, τ, t = 1.
2: Initialize β(1) = 1/n and t = 1, flag = 1.
3: Calculate {A(i)}ni=1 according to the average kernel.
4: K̃p =

(∑n
i=1 β

(t)
p A(i)

)
⊗Kp, ∀p.

5: while flag do
6: optimize (γ(t), H(t)) by Algorithm 1 with β(t).
7: compute ∂T (β)

∂βi
(1 ≤ i ≤ n) and the descent direction

v(t) in Eq. (17).
8: update β(t+1) ← β(t) + αv(t).
9: if max |β(t+1) − β(t)| ≤ 1e− 4 then

10: flag=0.
11: end if
12: t← t+ 1.
13: end while

3.3 Computational Complexity and Convergence
We firstly analyze the computational complexity of the pro-
posed UWL-SMKKM and SAL-SMKKM 2. UWL-SMKKM
needs calculating a neighborhood mask matrix firstly with
computational complexity O(n2 log2 n), and then performs
SMKKM 1 with normalized kernel matrices. Compared with
SMKKM, UWL-SMKKM takes extra O(n2 log2 n) to pre-
process kernel matrices. As seen, UWL-SMKKM maintains
a close computational complexity of SMKKM, which has
complexity O(n3) at each iteration. In addition, according
to [23], UWL-SMKKM is proved to be a convex optimiza-
tion and theoretically guaranteed to converge to the global
optimum.

SAL-SMKKM solves a SMKKM problem in 1 with
given β at each iteration. Its computational complexity
is O(`0 ∗ n3), where `0 is the minimum of iterations to
achieve convergence. Further, the complexity of calculating
∂T (β)
∂βi

(1 ≤ i ≤ n) is O(k ∗ n3). As a result, its overall com-
putational complexity at each iteration is O((`0 + k) ∗ n3),
which is comparable to that of SMKKM.

We then briefly discuss the convergence of SAL-
SMKKM. Given β, Eq. (12) reduces to SMKKM in Algorithm
1, which is proved to has a global optimum. Under this
circumstance, the gradient computation in Theorem 3 can be
exact, and we perform reduced gradient descent on a contin-
uously differentiable function T (β) defined on the simplex
{β ∈ Rn|

∑n
i=1 βi = 1, βi ≥ 0, ∀i}, which does converge

to the minimum of T (β) [26]. The experimental results in
Figure 2 have also empirically validated the convergence of
SAL-SMKKM.

4 EXPERIMENTS

In this part, we perform empirical experiments to verify the
proposed localized SMKKM. We first illustrate the exper-
imental setup, including the used datasets, the evaluation

metrics, and the baseline algorithms. We then present the
clustering performance comparison, the variation of learned
kernel weights, and the algorithm convergence. We conduct
additional experiments to show the evolution of the learned
H and consider an analysis of parameter sensitivity. We
finally make a running time comparison of different algo-
rithms to demonstrate the efficiency of our algorithm.

4.1 Experimental Setup
Several MKKM benchmarks are adopted to evaluate the
clustering performance of our proposed algorithm, includ-
ing MSRA [30], Cal-71, PFold2, Flo173, Flo1024, and Reuters5.
The detailed information of these dataset are summarized
in Table 2. As seen, the number of samples, kernels, and
clusters of the used benchmarks are considerably different,
which provides the clustering algorithms with a great plat-
form for performance comparison.

It is worth noting that we set the pre-specified value k
as the true number of clusters for all datasets. Three widely-
used metrics are employed for evaluation, including cluster-
ing accuracy (ACC), normalized mutual information (NMI),
and rand index (RI). To alleviate the impact of randomness
caused by k-means, we run each algorithm 50 times with
random initialization, and report the averaged results with
standard deviation.

We comprehensively compare the proposed UML-
SMMK and SAL-SMKKM with nine state-of-the-art mul-
tiple kernel clustering algorithms, including Average ker-
nel (Avg-KKM), Multiple kernel (MKKM) [25], Localized
multiple kernel (LMKKM) [28], Optimal neighborhood ker-
nel clustering (ONKC) [15], Multiple kernel with matrix-
induced regularization (MKKM-MR) [21], Multiple kernel
clustering with local alignment maximization (LKAM) [14],
Multi-view clustering via late fusion alignment maximiza-
tion (LF-MVC) [16], MKKM-MM [29], and SMKKM [23]. We
directly reproduce the compared algorithms by following
their available implementations in original literature and
report the corresponding clustering results. Among the
mentioned baseline algorithms, ONKC [15], MKKM-MiR
[21], LKAM [14] and LF-MVC [16] have hyper-parameters
to be optimized. Following the same experimental setup in
original literature, we adopt the public source codes and
conduct the hyper-parameter tuning process carefully to
achieve the best possible clustering results on each bench-
mark dataset.

4.2 Empirical Study
4.2.1 Clustering Performance Analysis
As illustrated in Table 1, we report the clustering perfor-
mance of all compared algorithms in terms of ACC, NMI,
purity and RI. From these results, several observations can
be concluded as below:

• MKKM-MM [29] is the first algorithm to improve
MKKM via the minimization-maximization opti-
mization. As seen, although the adversarial learning

1. http://www.vision.caltech.edu/ImageDatasets/Caltech101
2. mkl.ucsd.edu/dataset/protein-fold-prediction
3. www.robots.ox.ac.uk/∼vgg/data/flowers/17/
4. www.robots.ox.ac.uk/∼vgg/data/flowers/102/
5. http://kdd.ics.uci.edu/databases/reuters21578/
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TABLE 1: Empirical comparison of the proposed UWL-SMKKM and SAL-MKKM with nine baseline algorithms on six
datasets in terms of four publicly-used metrics. Boldface means the best clustering result.

DATASETS AVG-KKM MKKM LMKKM ONKC MKKM-MR LKAM LF-MVC MKKM-MM SMKKM UWL-SMKKM SAL-SMKKM
[25] [28] [15] [21] [14] [16] [29] [23] PROPOSED

ACC

MSRA 83.3 ± 0.8 81.3 ± 3.1 81.9 ± 0.7 85.4 ± 0.4 88.1 ± 0.1 89.1 ± 0.2 87.8 ± 0.4 83.3 ± 0.8 86.5 ± 0.2 91.2 ± 1.0 91.9 ± 0.0
CAL-7 59.2 ± 4.9 52.2 ± 4.3 53.9 ± 1.0 69.4 ± 2.5 68.4 ± 0.3 70.4 ± 1.4 71.4 ± 1.4 59.2 ± 4.9 68.2 ± 1.5 76.5 ± 0.2 79.3 ± 0.1
PFD 29.0 ± 1.5 27.0 ± 1.1 22.4 ± 0.7 36.3 ± 1.5 34.7 ± 1.8 37.7 ± 1.2 33.0 ± 1.4 29.0 ± 1.5 34.7 ± 1.9 35.9 ± 1.5 36.7 ± 1.6
FLO17 50.8 ± 1.5 44.9 ± 2.4 37.5 ± 1.6 54.2 ± 2.2 58.5 ± 1.5 50.0 ± 0.8 61.0 ± 0.7 50.8 ± 1.5 59.5 ± 1.3 61.3 ± 1.3 61.5 ± 0.9
FLO102 27.1 ± 0.8 22.4 ± 0.5 - 39.5 ± 0.7 40.2 ± 0.9 41.4 ± 0.8 38.4 ± 1.2 27.1 ± 0.8 42.5 ± 0.8 44.0 ± 1.0 43.2 ± 1.1
REUTERS 45.5 ± 1.5 45.4 ± 1.5 - 40.9 ± 2.1 39.7 ± 1.5 40.0 ± 2.2 45.4 ± 1.7 45.5 ± 1.5 45.5 ± 0.7 46.6 ± 1.0 53.2 ± 0.0

NMI

MSRA 74.0 ± 1.0 73.2 ± 1.7 75.0 ± 1.4 74.9 ± 0.7 77.6 ± 0.3 79.8 ± 0.2 79.4 ± 0.8 74.0 ± 1.0 75.2 ± 0.5 82.6 ± 1.5 85.1 ± 0.0
CAL-7 59.1 ± 2.9 51.6 ± 4.1 52.1 ± 1.3 63.5 ± 2.4 64.1 ± 0.2 65.3 ± 0.7 70.1 ± 3.0 59.1 ± 2.9 63.7 ± 0.3 74.6 ± 1.2 75.7 ± 0.1
PFD 40.3 ± 1.3 38.0 ± 0.6 34.7 ± 0.6 44.4 ± 0.9 43.7 ± 1.2 46.2 ± 0.6 41.7 ± 1.1 40.3 ± 1.3 44.4 ± 1.1 45.2 ± 1.3 45.8 ± 1.1
FLO17 49.7 ± 1.0 44.9 ± 1.5 38.8 ± 1.1 52.6 ± 1.2 56.4 ± 0.9 49.8 ± 0.6 58.9 ± 0.4 49.7 ± 1.0 57.8 ± 0.9 58.9 ± 0.5 60.6 ± 0.6
FLO102 46.0 ± 0.5 42.7 ± 0.2 - 56.1 ± 0.4 56.7 ± 0.5 56.9 ± 0.3 54.9 ± 0.4 46.0 ± 0.5 58.6 ± 0.5 60.0 ± 0.4 59.5 ± 0.4
REUTERS 27.4 ± 0.4 27.3 ± 0.4 - 21.0 ± 1.8 21.3 ± 1.3 21.5 ± 2.3 27.2 ± 0.2 27.4 ± 0.4 27.7 ± 0.2 27.0 ± 0.6 31.0 ± 0.0

PURITY

MSRA 83.3 ± 0.8 81.5 ± 2.7 81.9 ± 0.7 85.4 ± 0.4 88.1 ± 0.1 89.1 ± 0.2 87.8 ± 0.4 83.3 ± 0.8 86.5 ± 0.2 91.2 ± 1.0 91.9 ± 0.0
CAL-7 68.0 ± 3.2 63.8 ± 3.7 66.4 ± 0.6 74.0 ± 2.1 72.9 ± 0.3 76.6 ± 0.4 79.6 ± 2.9 68.0 ± 3.2 72.3 ± 0.2 81.7 ± 1.3 83.9 ± 0.1
PFD 37.4 ± 1.7 33.7 ± 1.1 31.2 ± 1.0 42.7 ± 1.3 41.9 ± 1.4 43.7 ± 0.8 39.3 ± 1.5 37.4 ± 1.7 41.8 ± 1.5 42.5 ± 1.6 43.9 ± 1.5
FLO17 51.9 ± 1.5 46.2 ± 2.0 39.2 ± 1.3 55.4 ± 2.2 59.7 ± 1.6 51.4 ± 0.7 62.4 ± 0.7 51.9 ± 1.5 60.9 ± 1.2 62.0 ± 1.3 62.8 ± 0.6
FLO102 32.3 ± 0.6 27.8 ± 0.4 - 45.6 ± 0.7 46.3 ± 0.8 48.0 ± 0.6 44.6 ± 0.8 32.3 ± 0.6 48.6 ± 0.7 50.3 ± 0.7 49.7 ± 0.6
REUTERS 53.0 ± 0.4 52.9 ± 0.5 - 51.8 ± 1.5 50.9 ± 1.4 51.9 ± 1.0 52.9 ± 0.3 53.0 ± 0.4 53.3 ± 0.0 52.8 ± 0.2 56.9 ± 0.0

RI

MSRA 68.1 ± 1.0 66.2 ± 3.1 68.0 ± 1.1 69.8 ± 0.7 74.5 ± 0.1 76.7 ± 0.4 74.5 ± 0.8 68.1 ± 1.0 71.2 ± 0.5 80.6 ± 1.8 82.5 ± 0.0
CAL-7 46.0 ± 6.5 38.3 ± 4.9 41.2 ± 1.1 56.8 ± 4.2 55.6 ± 0.6 59.4 ± 2.2 65.2 ± 3.4 46.0 ± 6.5 55.6 ± 0.3 69.4 ± 0.7 78.9 ± 0.1
PFD 14.4 ± 1.8 12.1 ± 0.7 7.8 ± 0.4 18.0 ± 1.1 17.2 ± 1.5 20.1 ± 1.1 16.1 ± 1.5 14.4 ± 1.8 17.6 ± 1.9 19.8 ± 1.2 20.6 ± 1.2
FLO17 32.2 ± 1.3 27.2 ± 1.8 20.6 ± 1.1 35.2 ± 1.5 39.9 ± 1.3 31.6 ± 0.8 44.1 ± 0.4 32.2 ± 1.3 41.5 ± 1.5 43.2 ± 0.9 44.7 ± 0.7
FLO102 15.5 ± 0.5 12.1 ± 0.4 - 24.9 ± 0.5 25.5 ± 0.6 27.2 ± 0.6 25.5 ± 1.0 15.5 ± 0.5 28.5 ± 0.8 29.9 ± 0.8 29.3 ± 0.9
REUTERS 21.8 ± 1.4 21.8 ± 1.4 - 18.8 ± 2.4 18.9 ± 2.0 16.9 ± 2.7 21.4 ± 1.1 21.8 ± 1.4 22.1 ± 0.8 21.5 ± 0.3 30.1 ± 0.0
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Fig. 1: The learned kernel weights of different algorithms on all datasets.
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Fig. 2: The objectives of UWL-SMKKM and SAL-SMKKM vary with iterations.
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Fig. 3: The clustering performance of the learned H by UWL-SMKKM at each iteration on six datasets.

TABLE 2: Benchmark datasets used in our experiments.

Dataset Number of
Samples Kernels Clusters

MSRA 210 6 7
Cal-7 441 6 7
PFD 694 12 27
Flo17 1360 7 17
Flo102 8189 4 102
Reuters 18758 5 6

does benefit the MKKM, the clustering performance
enhancement over MKKM is slight on all datasets.
Moreover, the proposed UWL-SMKKM outperforms
MKKM-MM by a large margin. The newly proposed
SAL-SMKKM further improves UWL-SMKKM. This
demonstrates the advantage of our formulation and
the associated optimization strategy.

• Besides our UWL-SMKKM and SAL-SMKKM,

SMKKM achieves competitive performance com-
pared to the aforementioned clustering algorithms
on all datasets. These results have solidly verified the
superiority of its novel formulation and innovative
optimization algorithm.

• The developed UWL-SMKKM consistently exceeds
SMKKM by a large margin. Taking the ACC metric
for example, UWL-SMKKM outperforms SMKKM
algorithm by 4.7%, 8.3%, 1.2%, 1.8%, 1.5% and
1.1% on six benchmark datasets. The improvements
in terms of other criteria are similar. The newly
proposed SAL-SMKKM further improves UWL-
SMKKM by 0.7%, 2.8%, 0.8%, 0.2% and 6.6% on
MRSA, CAL-7, PFD, FLO17 and Reuters, respec-
tively, and achieve slight worse ACC than UWL-
SMKKM on FLO102. These results clearly verify the
effectiveness and superiority of the proposed UWL-
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Fig. 4: The clustering performance of the learned H by SAL-SMKKM at each iteration on six datasets.

SMKKM and SAL-SMKKM that benefit from extract-
ing and preserving the local information of kernel
matrix.

The proposed algorithm not only inherits the clustering-
friendly formulation associated with a novel optimization
from SMKKM, but also conducts the kernel alignment in a
localized manner, which enables the algorithm to well tackle
the issue of kernel variation. These merits jointly contribute
to its significant performance improvement over the existing
competitors on all datasets. It is expected that the proposed
simple and effective solution will have the potential to be
a good option in real-world clustering applications. More-
over, please note that the clustering results of LMKKM [28]
on some datasets are not presented because of the out-
of-memory exception caused by the cubic computational
complexity.

4.2.2 Kernel Weight Analysis
Figure 1 shows the analysis on kernel weights learned by
different algorithms. From these results, we observed that
the kernel weights learned by LKAM, ONKC and MKKM-
MiR algorithms exhibit great variation on most of datasets,
while keep highly sparse on Reuters. This sparsity would
prevent the multiple kernel matrices from being fully ex-
ploited, resulting in unsatisfactory performance. Taking the
results on Reuters for example, MKKM-MiR and LKAM
only achieves 39.7% and 40.0% clustering accuracy. Dif-
ferently, despite the `1-norm constraint on γ, our UWL-
SMKKM and SAL-SMKKM could consistently learn non-
sparse kernel weights on all datasets, which leads to its
promising clustering performance. This benefits from the
proposed minγ -maxH kernel alignment objective and the
resultant reduced gradient descent algorithm.

4.2.3 Convergence and Evolution of the Learned H

In section 3.3, it has been proved that the proposed UWL-
SMKKM and SAL-SMKKM are guaranteed to converge in
theory. To see this point in depth, Figure 2 presents the
objective curves of UWL-SMKKM and SAL-SMKKM with
iterations. From these results, we can see that the objectives
of UWL-SMKKM and SAL-SMKKM keep monotonically
reduced until convergence in few iterations on all datasets.

In addition, to analysis the clustering performance vari-
ation of the learned H by UWL-SMKKM and SAL-MKKM
with iterations, we calculate four metrics with iterations,
and present the corresponding curves in Figure 3 and 4. As
seen, the clustering performance of UWL-SMKKM and SAL-
MKKM first tends to be increased with slight oscillation, and
then keeps stable in a wide range of iterations. These results
show the necessity and effectiveness of the optimization
procedure.

4.2.4 Hyper-parameter Analysis

As observed, the proposed UWL-SMKKM and SAL-MKKM
introduce a hyper-parameter τ to explore and collect more
informative neighborhood information among samples. As
illustrated in Figure 5 and 6, we investigate how this param-
eter affects the clustering performance by performing a grid
search (e.g., τ varies from 0.05 to 0.95) with a step size of
0.05. From these figure, we find that the newly developed
UWL-SMKKM and SAL-MKKM show stable clustering per-
formance in a wide range of τ . This observation indicates
that the proposed algorithm is robust with the variation of
τ values.
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Fig. 5: The clustering performance of UWL-SMKKM with the different size of neighborhood τ on six datasets
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Fig. 6: The clustering performance of SAL-SMKKM with the different size of neighborhood τ on six datasets.
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4.2.5 Running time analysis
According to the aforementioned analysis in Subsection 3.3,
the proposed UWL-SMKKM and SAL-SMKKM have the
same computational complexity with SMKKM in theory.
For a fair comparison, we empirically evaluate their run-
ning time on all datasets and conduct all experiments on
a common PC platform in MATLAB R2020b environment.
The results are presented in Figure 7. As observed, the pro-
posed UWL-SMKKM and SAL-SMKKM greatly improves
the clustering performance without significantly increasing
the computation burden.

5 APPLICATION IN MULTI-MODAL PARCELLATION
OF HUMAN CEREBRAL CORTEX

In this section, we conduct application research by em-
ploying the proposed UWL-SMKKM to the multi-modal
parcellation of human cerebral cortex, with the aim to test its
performance in practical applications. As known, cerebral
cortex is the most complex and sophisticated system in the
world. Neuroscientists has made many efforts to subdivided
the cerebral cortex into functionally and anatomically dis-
tinct areas, which is essential to understand how the brain
works. Accurate parcellation will not only illuminate the
functional and structural properties of the brain, but also
help to reduce data dimension while improving statistical
sensitivity. Most previous studies parcellated the cerebral
cortex by only one neurobiological feature, such as func-
tional connectivity [31] and cortical morphology [32]. How-
ever, few study attempted to parcellate in a multi-modal
manner. Since some cortical boundaries are not sensitive
to a single specific modality, it is believed that integrating
multiple properties will provide complementary as well
as confirmatory information, which can help to generate a
more correct parcellation.

Inspired by Glasser and his colleagues who have estab-
lished the first multi-modal parcellation of human cerebral
cortex by a semi-automatic method with manual delineation
[33], we aim to achieve the more objective parcellation and
accurate boundaries mapping without neuroanatomist’s in-
struction. Multi-modal neuroimaging data are downloaded

from human connectome project 6. In practice, for each
cortical region defined in Desikan–Killiany (DK) template
[32], we construct five kernels as the inputs of SMKKM.
The first four kernels reflect the functional properties of this
region, which are obtained from the 7T fMRI data of four
scanning runs. In specific, for each cortical vertex within
the region, the functional connectivity map to the whole
brain is calculated for each run. Then, four RBF kernels are
constructed based on the functional connectivity maps of
four scanning runs, respectively, with the parameter gamma
defined by averaged pair-similarities. More details about the
calculation process can be found in our previous study [31].
The fifth kernel represents the anatomical properties, with
cortical thickness, myelin content and sulcus architecture
being utilized to construct the RBF kernel.

Parcellation results generated by UWL-SMKKM with
five multi-modal kernels are illustrated in Figure 8, where
the human cerebral cortex is subdivided into 552 corti-
cal parcels. Most of the parcels demonstrate satisfactory
symmetry, with their symmetrical parcels observed in the
contralateral hemisphere. Additionally, we further compare
some local parcellation results with Glasser’s work. As
illustrated in Figure 9, the black lines represent the empirical
boundaries derived from the multi-modal gradients and
anatomist’s experiences [34], and the colorful parcels are the
clustering results of UWL-SMKKM on paracentral gyrus,
precuneus as well as parahippocampal gyrus. It is exciting
that extremely high consistency is observed between the
results from two approaches, while UWL-SMKKM achieves
the accurate parcellation in an automatic and objective
manner without manual intervention, which indicates the
validity and effectiveness of our method.

It should be noted that both the Glasser’s and our
parcellations are established on the population level, where
the features of each modality are averaged across many
individuals. Although the group parcellation has revealed
many basic principles of cortical organization, it is limited
for the clinical applications due to the lack of emphasis on
meaningful individual differences [33]. Moreover, expert ex-
periences will undoubtedly allow the exquisite delineation

6. https://www.humanconnectome.org/
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Fig. 8: The multi-modal parcellation of human cerebral
cortex derived from UWL-SMKKM (a). Parcellation re-
sults of paracentral gyrus, precuneus and parahippocam-
pal gyrus are overlaid with the empirical boundaries from
neuroanatomist’s delineation, respectively (b). The colorful
parcels are the clustering results of UWL-SMKKM, and the
black lines denote the boundaries from [34].

Fig. 9: The multi-modal parcellation of human precuneus
on five single individuals. The black lines denote the group-
level boundaries.

of cerebral cortex, but this method is impractical to extend
on the individual level. As an unsupervised and automatic
approach, UWL-SMKKM has shown a good performance
on the group-level parcellation, and we believe that it
can serve as an alternative on the individual multi-modal
parcellation. In practice, we take the human precuneus as
an example, which is an important medium of multiple
functional networks and participates in many high-level
functions. Considering the low signal-to-noise ratio of in-
dividual data, we introduce the spatial constraint by adding
the sixth RBF kernel which reflects the spatial locations of
cortical vertices. The calculation of each kernel is conducted
on five different individuals, respectively. The clustering

results are illustrated in Figure 9, where individual multi-
modal parcellations of precuneus are overlaid with the
group boundaries. As seen, topological differences are ob-
served between the results of individuals, which reflects the
individual-specific functional and anatomical patterns; all
the individuals still partly share the similar boundaries with
group, which in turn indicates the reliability of individual
parcellation. In summary, the individual differences and
group correspondences demonstrate the potential of UWL-
SMKKM on individual multi-modal parcellation.

6 CONCLUSION

While the currently proposed SMKKM demonstrates en-
couraging clustering performance, it doesn’t sufficiently
consider the variation information among base kernel ma-
trices. To address this issue, we propose to calculate the
kernel alignment in a local manner rather than a global one.
We reveal the theoretical connection between the proposed
UWL-SMKKM and SMKKM. Based on this discovery, we
still use the reduced gradient descent algorithm to solve
the obtained optimization problem. We further improve
UWL-SMKKM by allowing the weights of local kernel
alignment for each sample to be adaptively adjusted, which
is termed SAL-SMKKM. The proposed UWL-SMKKM and
SAL-SMKKM demonstrate significantly improved cluster-
ing results via extensive experiments on both benchmark
datasets and practical applications. In the future, to replace
the unchanged nearest neighbors of each sample, we plan to
study the automatic updating them during the optimization
learning process for further improving clustering effect.
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