
Siamese Attribute-missing Graph Auto-encoder

Journal: Transactions on Pattern Analysis and Machine Intelligence

Manuscript ID TPAMI-2022-01-0177

Manuscript Type: Regular

Keywords:
I.2.6.g Machine learning < I.2.6 Learning < I.2 Artificial Intelligence < I
Computing Methodologies, I.5.1 Models < I.5 Pattern Recognition < I
Computing Methodologies

*****For Peer Review Only*****

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 1

Siamese Attribute-missing Graph Auto-encoder
Wenxuan Tu†, Sihang Zhou†, Xinwang Liu∗, Senior Member, IEEE , Yue Liu, and Zhiping Cai,

Abstract—Graph representation learning (GRL) on attribute-missing graphs, a common yet challenging problem, has recently attracted
considerable attention. We observe that existing literature: 1) isolates the embedding learning of node attributes and graph structures
thus fails to take full advantage of the two types of information; 2) imposes too strict a distribution assumption on the latent space
variables, leading to less discriminative feature representations. In this paper, based on the idea of introducing intimate information
interaction between the two information sources, we propose our Siamese Attribute-missing Graph Auto-encoder (SAGA) to boost
the expressive capacity of graph representations for high-quality missing attribute restoration. Specifically, three strategies have been
conducted. First, we entangle the attribute embedding and structure embedding by introducing a Siamese network structure to share
the parameters learned by both processes, which allows the network training to benefit from more abundant and diverse information.
Second, we introduce a K-nearest neighbor (KNN) and structural constraint enhanced learning mechanism to improve the quality of
latent features of the missing attributes by filtering unreliable similarities. Third, we manually mask the connections on multiple adjacent
matrices and force the structural information embedding sub-network to recover the actual adjacent matrix, thus enforcing the resulting
network to be able to selectively exploit more high-order discriminative features for data completion. Extensive experiments on six
benchmark datasets demonstrate the superiority of our SAGA against the state-of-the-art methods.

Index Terms—graph representation learning, graph neural network, attribute-missing, Siamese network.

✦

1 INTRODUCTION

G RAPH representation learning (GRL), which aims to
learn a graph neural network (GNN) that embeds

nodes to a low-dimensional latent space by preserving node
attributes and graph structures, has been intensively studied
and widely applied into various applications [1], [2], [3], [4],
[5], [6]. One underlying assumption commonly adopted by
these methods is that all attributes of nodes are complete.
However, in practice, this assumption may not hold due
to 1) the absence of particular attributes; 2) the absence of
all the attributes of specific nodes. These circumstances are
usually called attribute incomplete [7] and attribute missing
[8], respectively. The existence of the above circumstances
makes existing GRL methods unable to effectively handle
corresponding learning problems.

To solve the first type of problem, the early methods
mainly concentrate on imputation techniques for data com-
pletion, such as matrix completion via matrix factorization
[9], [10], [11], [12] and generative adversarial learning [13].
Finding that the imputation-based methods disconnect the
learning processes of imputation and network optimization,
which decreases the diversity and discriminability of the
learned representations, some advanced algorithms, e.g.,
GRAPE [14] and GCNMF [7], merge both processes of data
imputation and representation learning into a united graph
convolutional network (GCN) [15]-based framework, where
they adopt bipartite message passing strategy and Gaus-
sian mixture model (GMM) to restore incomplete values,

W. Tu, X. Liu, Y. Liu, and Z. Cai, are with the College of Com-
puter, National University of Defense Technology, Changsha 410073,
China (e-mail: {wenxuantu, yueliu19990731}@163.com, {xinwangliu, zp-
cai}@nudt.edu.cn).
S. Zhou is with the College of Intelligence Science and Technology, Na-
tional University of Defense Technology, Changsha 410073, China (e-mail:
sihangjoe@gmail.com).
† Equal contribution.
∗ Corresponding author.

respectively. The above-mentioned methods could work
well when handling attribute-incomplete problems. Nev-
ertheless, they could be hard to produce high-quality data
completion when node attributes are entirely missing.

Compared to the first type of methods, the second cate-
gory aims to tackle a newly proposed problem, which has
not been sufficiently studied in the literature and remains
an open yet challenging issue. To tackle this issue, SAT [8],
makes the first attempt to guide the generation of more
meaningful latent embedding by introducing a distribution
consistency assumption between attribute and structure
embedding sub-networks. Though demonstrating the high
quality of attribute restoration in various downstream tasks,
SAT suffers from the following non-negligible limitations: 1)
adopts two decoupled sub-networks for information extrac-
tion, thus isolates the learning of attribute embedding and
structure embedding; 2) imposes too strict a distribution
assumption on the latent variables, which essentially de-
creases the discriminative capability of the learned represen-
tations; 3) it lacks a structure-attribute information filtering
and refining mechanism for data completion, resulting in
less robust feature representations.

Motivated by the above observations, we propose
a novel graph representation learning network termed
Siamese Attribute-missing Graph Auto-encoder (SAGA) to
handle attribute-missing graphs, as illustrated in Fig. 1. The
core idea of our method is to establish a structure-attribute
mutual enhanced learning strategy to 1) allow sufficient
interaction between the attribute-missing matrix and the ad-
jacent matrix for information filtering; 2) introduce a hidden
structure refinement strategy for high-quality data comple-
tion. To facilitate the above ideas, we entangle the attribute
information embedding and structural information embed-
ding by introducing a Siamese framework to share the
parameters learned by the two processes. Then, we design

Page 1 of 14 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 2

a dual non-local aggregating (DNA) module to filter unreli-
able similarities by utilizing K-nearest neighbor (KNN) and
structural constraint enhanced learning mechanism. With
this mechanism, each node in the latent space could well
collect and preserve the most informative information from
non-local features. This boosts the quality of latent embed-
ding of the restored attributes. Moreover, to enhance the
quality of structural information of attribute-missing nodes,
we propose a hidden structure refining (HSR) module. In
this module, we manually mask the connections on multiple
adjacent matrices and force the structure information em-
bedding sub-network to recover the actual adjacent matrix.
As an auxiliary task, the HSR module enables the network
to pull closer the representations of neighbor nodes to refine
their structure information, especially for that of attribute-
missing nodes. This in turn enforces the resulting network
to be able to selectively exploit more discriminative features
from hidden high-order attributes for data completion. Fi-
nally, by iteratively optimizing the two-source information
embeddings, the DNA module, and the HSR module on the
end-to-end training process, these three parts can benefit
from each other to boost the discriminative capability of
the graph embedding, thus leading to higher-quality data
completion. The main contributions of this paper are listed
as follows:

• We propose a novel graph representation learn-
ing framework termed as Siamese Attribute-missing
Graph Auto-encoder (SAGA) to solve a newly pro-
posed problem, i.e., unsupervised graph represen-
tation learning on attribute-missing graphs, which
allows us to elegantly achieve powerful data com-
pletion without any prior assumption.

• By promoting the learning processes of attribute and
structure information to sufficiently interact with
each other via the DNA module and the HSR mod-
ule, we can take full advantage of two-source in-
formation to filter unreliable similarities as well as
preserve more informative structure-attribute infor-
mation in the latent space. In this way, the dis-
criminative capacity of resultant latent embedding is
improved for better missing attribute restoration.

• Extensive experimental results on six benchmark
datasets demonstrate that our proposed method is
highly competitive and consistently outperforms the
state-of-the-art ones with a preferable margin.

The remainder of this paper is organized as follows. Section
2 reviews related works in terms of Siamese networks, graph
representation learning, and graph deep learning with ab-
sent data. Section 3 presents the model design and each
component of SAGA. Section 4 conducts experiments and
discusses the results. Finally, section 5 draws a conclusion.

2 RELATED WORK

Siamese Networks. The Siamese network is a kind of net-
work that contains more than one identical weight-sharing
sub-networks, which can naturally introduce inductive bi-
ases for invariance modeling [16]. It has wide applications
including video super-resolution [17], medical object detec-
tion [18], visual tracking [19], etc. Inspired by its success

in various visual tasks, researchers have successfully intro-
duced Siamese networks into the field of graph learning
[20], [21]. However, it has not been extended to handle
incomplete or missing graphs.
Graph Representation Learning. Early graph representa-
tion learning (GRL) methods learn the graph embedding
by utilizing probability models on the generated random
walk paths on graphs [22], [23]. However, these methods
overly emphasize the structural information while ignoring
the important attribute information. Thanks to the develop-
ment of graph neural networks (GNNs), GNN-based GRL
methods that jointly exploit graph structure information
and node attribute information in a spectral [24] or spatial
[15] domain have been widely studied in recent years.
As one of the most representatives, generative/predictive
learning-oriented methods explore abundant information
embedded in the data itself via various techniques, such
as auto-encoder learning and adversarial learning [25], [26],
[27], [28], [29], [30], [31], [32]. Another line pays attention
to graph contrastive learning, which aims to maximize
the agreement of two jointly sampled positive pairs [4],
[33], [34], [35], [36]. One underlying assumption commonly
adopted by current GRL methods is that all node attributes
are complete. However, in practice, the absent data makes
it difficult to utilize the existing methods for satisfactory
performance.
Graph Deep Learning with Absent Data. To handle in-
complete graph data, one popular way commonly adopted
by existing algorithms is data imputation technique, such
as matrix completion and generative adversarial learning.
For matrix completion, sRGCNN [9], GC-MC [10], NMTR
[12], IGMC [37] first formulate the user-item rating matrix,
users (or items), and the observed ratings as bipartite graph,
nodes, and links, respectively. Then they apply a graph
neural network to predict the absent linkages between node
pairs for data completion in a transductive or inductive
manner. Moreover, by introducing an additional adversarial
loss, GINN [13] trains a graph denoising auto-encoder to
build intermediate representations of all nodes with the help
of a pre-processing graph for data completion. To further
improve the quality of attribute restoration, recent efforts
combine the processes of data imputation and represen-
tation learning into a united GNN-based framework. For
instance, GRAPE [14] first formulates the feature imputation
as an edge-level prediction task on the graph, and then
employs a graph neural network to solve it. After that,
GCNMF [7] estimates the incomplete variables by enforcing
them to follow the Gaussian mixture distribution using a
Gaussian mixture model (GMM).

Although these methods are competent to effectively
handle the attribute-incomplete problem, they fail to per-
form preferably on datasets with missing attributes, i.e.,
the entire attributes of specific nodes are missing. More
recently, an advanced algorithm SAT is proposed to learn
on attribute-missing graphs. It adopts two decoupled sub-
networks to process node attributes and graph structures,
and then utilize structure information to conduct data
completion under the guidance of a shared-latent space
assumption [8]. Unfortunately, despite its success, SAT not
only isolates the learning processes of attribute embedding
and structure embedding but also heavily relies on a prior

Page 2 of 14*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 3

Fig. 1. The overall architecture of SAGA. Our Siamese architecture
consists of two branches where the attributes and the affinity matrices
are closely entangled. Specially, in the upper branch, the DNA module
improves the quality of missing attribute latent feature learning by intro-
ducing an unreliable similarity filtering mechanism. While in the bottom
branch, the HSR module adopts the multi-order neighbor attentive fusion
with a hidden structure recovery strategy to make the network able to
exploit intrinsic data structures for information recovery.

distribution assumption for latent representation learning.
Thus it fails to take full advantage of both types of informa-
tion, leading to less discriminative latent representations.
In contrast, our method allows both learned features to
sufficiently interact with each other via a structure-attribute
mutual enhanced learning strategy. As a result, the learned
embedding has the potential to be more discriminative for
data completion.

3 THE PROPOSED METHOD

3.1 Primary Statement
3.1.1 Notations
Given an undirected graph G = {V, E} with C classes,
where V = {v1, v2, . . . , vN}, E , and N are the node set,
edge set, and the number of nodes, respectively. In classic
graph learning, a graph is usually characterized by its
attribute matrix X ∈ RN×D and normalized adjacency
matrix Ã ∈ RN×N [15], where D is the node attribute
dimension. Specially, in attribute-missing graph learning,
with the existence of missing attributes, we further define
Vo = {vo1, vo2, . . . , voNo} and Vm = {vm1 , vm2 , . . . , vmNm}
to be the set of attribute-observed nodes and the set of
attribute-missing nodes, respectively. Accordingly, V = Vo

∪ Vm, Vo ∩ Vm = ∅ and N = No + Nm. In this cir-
cumstance, the missing attributes in X are firstly filled
with zero values, random values from a standard Gaussian
or observed neighbor values, and the resulting matrix is
denoted as X̃ ∈ RN×D. To introduce high-order adjacent
information, we construct a series of adjacent matrices of
different orders A using a random walk-like operation,
where A = {A1st,A2nd, . . . ,AH-th}, H is the number of
orders. Specially, h-th-order adjacent matrix Ah-th ∈ RN×N

is formulated as:

Ah-th = A1stA(h−1)-th, (1)

where A1st indicates the initial adjacency matrix in orig-
inal dataset, A0-th denotes identity matrix I ∈ RN×N , 1
≤ h ≤ H . ah-th

ij = 1 if node vi and node vj are connected,

TABLE 1
Summary of notations.

Notations Meaning
X ∈ RN×D Original attribute matrix
A ∈ RN×N Original adjacency matrix
X̃ ∈ RN×D Initially imputed attribute matrix
Ã ∈ RN×N Normalized adjacency matrix
Ah-th ∈ RN×N h-th-order adjacency matrix
Ȧh-th ∈ RN×N Edge-masked h-th-order adjacency matrix
Z ∈ RN×d Latent embedding matrix
S ∈ RN×N Affinity matrix
SN ∈ RN×N Global-scope indicator matrix
S

′N ∈ RN×N Multi-order neighbor-scope indicator matrix
Za ∈ RN×d Attribute-enhanced latent embedding matrix
Zh-th ∈ RN×d h-th path latent embedding matrix
Ch-th ∈ Rd×N h-th path attention weight matrix
Zs ∈ RN×d Structure-enhanced latent embedding matrix
Zf ∈ RN×d Fused latent embedding matrix
Â ∈ RN×N Rebuilt adjacency matrix
X̂ ∈ RN×D Rebuilt attribute matrix

otherwise ah-th
ij = 0. It is worth noting that random walk

has a drawback, i.e., node revisiting. To alleviate this issue,
we first reformulate Eq.(1) as:

Ah-th = A1stA(h−1)-th − diag(A1stA(h−1)-th), (2)

where diag(A1stA(h−1)-th) denotes the corresponding de-
gree matrix. For Ah-th, we then drop the connections that
overlap with the ones in A(h−1)-th,A(h−2)-th, . . . ,A1st. By
doing this, Eh-th ∩ E(h−1)-th ∩ · · · ∩ E1st = ∅, node revisiting
issue can be well alleviated. To boost the network learning,
we manually mask partial connections (i.e., the linkage
relation between attribute-missing nodes) of multi-order ad-
jacent matrices A. After that, A is redefined as a normalized
version Ȧ = {Ȧ1st, Ȧ2nd, . . . , ȦH-th}, where Ȧh-th ∈ RN×N

refers to the edge-masked h-th-order adjacency matrix. Ta-
ble 1 summarizes the commonly used notations.

3.1.2 Task Definition
In this paper, we first aim to learn an auto-encoder
SAGA without utilizing labeling information. In the en-
coding phase, given the inputs G = {X̃, Ã} and Ġh-th =
{X̃, Ȧh-th}, our goal is to learn an encoder E(·) that pro-
duces graph embedding Zf ∈ RN×d such that d ≪ D,
where we have conducted the unreliable similarity filtering
and the structure information refining operations for data
completion in the latent space. In the decoding phase, the
learned graph embedding along with Ã is fed into the
graph decoder D(·). The resultant rebuilt attribute matrix
X̂ ∈ RN×D can then be directly employed in downstream
tasks, e.g., node classification.

3.2 Overview
This section will introduce and analyze our proposed SAGA
framework in detail. Before our work, the existing liter-
ature solves the problem of missing attributes with the
strategy of latent space alignment [8]. Specifically, they
learn the representations of attribute space and structure
space independently and conduct information exchange by
doing latent space alignment. In contrast, to establish a

Page 3 of 14 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 4

structure-attribute mutual enhanced learning strategy, our
paper proposes a Siamese network structure where the
attributes and the adjacent matrix are closely entangled. As
illustrated in Fig. 1, the overall framework mainly consists
of two branches. In the upper branch, the encoder E(·) first
accepts X̃ and Ã as inputs, then outputs Za ∈ RN×d via
the proposed dual non-local aggregating (DNA) module
(section 3.3.1 for details). The goal of the DNA design is
to allow sufficient interaction between the attribute-missing
matrix and the indicator matrices in the global and multi-
order neighbor spaces for unreliable similarity filtering, as
shown in Fig. 2(a). By this means, the network is enabled to
discover more hints in the latent space for accurate attribute
imputation. While in the bottom branch, the weight-sharing
encoder E(·) first accepts X̃ and a series of adjacent matrices
of different orders Ȧ = {Ȧ1st, Ȧ2nd, Ȧ3rd}, then outputs
Zs ∈ RN×d and Â ∈ RN×N via the proposed hidden
structure refining (HSR) module (section 3.3.2 for details). It
is worth noting that HSR is regarded as an auxiliary task to
guide the network to automatically exploit complementary
information. As shown in Fig. 2(b), by adopting the multi-
order neighbor attentive fusion with a hidden structure re-
covery strategy, the HSR module can make the network able
to exploit intrinsic data structures for more accurate latent
space construction. After that, by passing the information
through the Siamese network and combining the learned
structure refinement-oriented latent vectors, the quality of
attribute imputation can be further improved. Finally, the
fused embedding Zf is transferred into the decoder D(·) to
tune the model using two reconstruction loss functions for
missing attribute restoration X̂ (section 3.4 and section 3.5
for details). In the following sections, we will provide details
on two carefully-designed components and the optimization
target, respectively.

3.3 Structure-attribute Mutual Enhancement

In this part, we introduce two proposed components, i.e.,
the dual non-local aggregating (DNA) module and the hid-
den structure refining (HSR) module in detail. Both modules
are illustrated in Fig. 2. The information of the shared
Siamese network will be introduced during the introduction
of the two parts.

3.3.1 Dual Non-local Aggregating
For given inputs X̃ and Ã, a Siamese graph encoder E(·)
conducts the following layer-wise propagation to compute l-
th latent representations Z(l), of which i-th row, z(l)i denotes
the representation for node vi ∈ V :

Z(l) = σ(ÃZ(l−1)W(l)), (3)

where W(l) denotes the learnable parameters of the l-th
encoder layer. σ is a non-linear activation function, e.g.,
ReLU. Note that Z(0) denotes the initially imputed attribute
matrix X̃. As seen, the GCN-based encoder conducts neigh-
borhood aggregation in each layer, and it can be viewed
as a neighbor imputation operation. Therefore, the missing
attributes are gradually imputed during the calculation of
the network and become complete in the latent embedding
matrix Z(2), i.e., Z ∈ RN×d. Although the neighborhood

Fig. 2. Illustration of the DNA module and the HSR module. In our
work, we propose to solve the attribute-missing problem in a brand
new perspective, i.e., 1) the DNA module is designed to aggregate
(dotted lines in (a)) more informative features to complement the missing
information in the global and multi-order neighbor spaces. By filtering
unreliable similarities using indicator matrices (i.e., SN and S

′N), the
DNA module can help the network to discover more hints for accurate at-
tribute imputation; 2) the HSR module is designed to have the two kinds
of information to verify each other by preserving multi-order information
and conducting structure information recovery. As an auxiliary task, the
HSR module guides the network to automatically exploit complementary
information for more accurate latent space construction. By passing the
information through the Siamese network and combining two-source
latent variables, the quality of attribute imputation can be improved.

aggregation could provide primary imputation, only pre-
serving neighbors without information filtering in the latent
space may cause: 1) the representations could be noisy
since the initially imputed values with little discriminative
capability in X̃ would diffuse through the network; 2) to
some extent, the representation learning of attribute-missing
part may suffer from semantic bias as we do not leverage
any supervised information. To overcome these limitations,
we try to further refine the learned graph embedding by
performing accurate information enhancement to introduce
reliable non-local semantic information with few layers.
Specially, we introduce an extra operation after the encoder
E(·) as follow:

Za = αSNZ+ (1− α)S
′NZ, (4)

where α is the learnable weighting coefficient and we set α
= 0.5 for initialization. SN ,S

′N ∈ RN×N are refined global
and multi-order neighbor similarity matrices (i.e., indicator
matrices) that are constructed in two different manners.
As shown in Fig. 2, to construct SN and S

′N , we first

Page 4 of 14*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 5

generate the affinity matrix S ∈ RN×N according to the
latent embedding matrix as follow:

Sij =
ziz

T
j

∥zi∥∥zj∥
, ∀ i, j ∈ [1, N]. (5)

Here zi indicates the latent embedding of the i-th sample.
To improve the reliability of S, two mechanisms are

introduced. On the one hand, we search nearest neighbors
for each node vi from the global scope. The underlying
idea is to discover non-adjacent nodes that share similar
semantic features with the central node. For instance, in
a citation network where each node indicates a specific
paper and each edge indicates the citation relationship
between two papers. Even though the research content
of the two papers belong to the same research field (i.e.,
two nodes with similar features probably have the same
label), they may not cite each other’s work or share any
citation in the graph since their authors apply the proposed
algorithms into different application scenarios. We argue
that such semantically similar entities that do not share a
connection can be exploited via K-nearest neighbors (KNN)
search from the global scope. To this end, we adopt a KNN
strategy to filter the less confident similarity estimation in
S. Specifically, only the top K largest similarity values of
each sample are kept while other values are assigned as
−1. We denote the resultant indicator matrix as SN , where
sNij = 1 if the embeddings of node vi and node vj are
semantically similar, otherwise sNij = 0. On the other hand,
we conduct structure-oriented K-nearest neighbors (SKNN)
search to further boost the quality of the latent space from
the multi-order neighbor scope. The intuition is that the
multi-order neighbor nodes tend to share the same label as
the central node. For example, in a citation network, even
though two papers are not directly connected, they may
be semantically similar and probably be the same category
since they have some common citations. Hence, it is worth
exploring the informative information and filtering useless
one in the range of multi-order neighbor nodes. In this
regard, to construct S

′N , we first preserve all the 1st- to
P -th-order neighbor similarity values of each sample in
affinity matrix, then filter the non-neighbor elements in S
by setting them to −1. Finally, we conduct a KNN strategy
to get the final refined indicator matrix S

′N , similar to the
constructing process of SN .

With the refined similarity matrices, we update the latent
embedding Z with Eq.(4) for reliable information aggre-
gation, so as to improve the quality of missing attribute
imputation and the discriminative capability of the latent
features simultaneously.

3.3.2 Hidden Structure Refining
As known, graphs contain not only the attribute but also
the structure information, which acts as a strong constraint
to the node relationship in the graph [38], [39], [40]. Al-
though experimental results (section 4.3.2 for details) have
demonstrated that the unreliable similarity filtering mech-
anism in the DNA module could guarantee the quality of
attribute restoration, the structure information of attribute-
missing nodes has not been carefully considered. To fill
this gap, we propose a hidden structure refining (HSR)

Algorithm 1 Training procedure of SAGA

Input: Initially imputed attribute matrix X̃; Normalized adja-
cency matrix Ã; A series of edge-masked adjacent matrices
of different orders Ȧ; Iteration number I; Hyper-parameters
P , K, γ, λ.

Output: Rebuilt attribute matrix X̂.
1: Initialize the model parameters θ with an Xavier initializa-

tion;
2: for i = 1 to I do
3: Utilize E to encode Z by Eq.(3);
4: Construct SN and S

′N using KNN by Eq.(5);
5: Calculate Za by Eq.(4);
6: Utilize E to encode {Z1st, Z2nd, . . . , ZH-th} by Eq.(6);
7: Calculate Zs by Eq.(7) and Eq.(8);
8: Rebuilt Â based on Zs by Eq.(9);
9: Calculate Ls by Eq.(10), Eq.(11), and Eq.(12);

10: Fuse Zf using Za and Zs by Eq.(13);
11: Utilize D to decode Zf and output X̂ by Eq.(14);
12: Optimize the network with Adam by minimizing Eq.(16);
13: end for
14: return X̂

module, consisting of two schemes, i.e., the multi-order
neighbor attentive fusion and the hidden structure recov-
ery. The intuition is to guide the network to automatically
exploit complementary information and have the two kinds
of information to verify each other. For example, in the
citation network, raw features or detailed descriptions of
one paper may be unavailable due to copyright protection. If
the citation information (edges) between two papers (nodes)
could be well preserved, that unobserved information may
be easily inferred from the other accessible paper. We argue
that the observed and missing parts should be semanti-
cally similar if they are connected via some reliable edges.
Specifically, we introduce the hidden structure refining op-
eration as an auxiliary task for more accurate latent space
construction. Fig. 2(b) illustrates the design of the HSR
module. Likewise, by transferring given inputs, i.e., X̃ and
Ȧ = {Ȧ1st, Ȧ2nd, . . . , ȦH-th}, into a weight-sharing graph
encoder E(·), we model the h-th path latent representations
Zh-th(l) as:

Zh-th(l) = σ(Ȧh-thZh-th(l−1)W(l)), (6)

where we consider 1st- to 3rd-order neighbors, i.e., H=3,
h ∈ [1, H]. Zh-th(0) and Zh-th(2) are denoted as X̃ and the
h-th path latent embedding matrix where each node ag-
gregates h-th-order observed attributes, respectively. Then
we transform these embedding matrices though a nonlinear
transformation (e.g., one-layer MPL) to estimate the impor-
tance of each path. For node vi, where its embedding in
Zh-th is zh-th

i ∈ R1×d, a normalized attention weight ch-th
i

using softmax function is formulated as follows:

ch-th
i =

e(W
h-th(zh-th

i)T+bh-th)∑H
h=1 e

(Wh-th(zh-th
i)T+bh-th)

, (7)

where Wh-th ∈ Rd×1 denotes the learnable attention pa-
rameters and bh-th ∈ Rd×1 denotes the bias vector of h-th
path. Larger ch-th

i illustrates that the h-th-order observed
neighbors could provide more informative information for

Page 5 of 14 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 6

node vi. Next, we combine these latent embedding matrices
with attention weights:

Zs =
H∑

h=1

(Ch-th)T ⊙ Zh-th, (8)

where ⊙ means matrix product, Ch-th ∈ Rd×N is denoted
as [ch-th

1 , ch-th
2 , . . . , ch-th

N] and ch-th
n ∈ Rd×1 is an attention

vector that repeats ch-th
n with d times. After that, Zs is

decoded into Â through matmul product with an activation
function:

Â = Sigmoid(ZsZ
T
s). (9)

According to Eq.(9), we can model the linkage relation
between node vi and node vj by minimizing:

lij = −[Ãij ln Âij + (1− Ãij) ln(1− Âij)], (10)

where there exists a linkage between node i and node j
in original graph if Ãij ̸= 0, otherwise 0. To enable the
network to focus more on attribute-missing nodes to exploit
their intrinsic structures, we introduce a pre-defined hyper-
parameter γ to balance the hidden structure recovery pro-
cesses of two types of linkage relations, i.e., the manually-
masked part and the manually-preserved part, correspond-
ing to the dotted and solid gray lines in Fig. 2(b). Eq.(10) can
be reformulated as:

Lij =

γlij , vi, vj ∈ Vm

lij , otherwise
. (11)

This is very different from the structure preservation fashion
of missing nodes as in SAT [8] that we manually mask the
edge between attribute-missing nodes on multiple graphs
and enforce the network to focus more on predicting these
connections. Next, we summarize the merits of the fash-
ion of our edge recovery: 1) more naturally evaluates the
overall quality of restored attributes via hidden structure
refinement; 2) in turn enforces the resulting network to be
able to selectively exploit more high-order discriminative in-
formation for data completion. Finally, the average structure
reconstruction loss of all node pairs can be written as:

Ls =
1

N2

N∑
i=1

N∑
j=1

Lij . (12)

3.4 Information Aggregation and Decoding
After obtaining the attribute-enhanced latent embedding
matrix Za and the structure-enhanced latent embedding
matrix Zs from the DNA module and HSR module, we com-
bine both with a learnable weighting coefficient β, where β
is initialized as 0.5. Then we directly feed the fused latent
embedding matrix Zf with Ã into a graph decoder D(·).
This process is formulated as:

Zf = βZa + (1− β)Zs, (13)

Z
′(l) = σ(ÃZ

′(l−1)W
′(l)), (14)

where W
′(l) denotes the learnable parameters of the l-th

decoder layer. Z
′(0) and Z

′(2) are denoted as the fused latent
embedding matrix Zf and the rebuilt attribute matrix X̂,
respectively.

TABLE 2
Summary of datasets.

Dataset Nodes Edges Dimension Classes
Cora 2708 5278 1433 7

Citeseer 3327 4228 3703 6
Amac 13752 245861 767 10
Amap 7650 119081 745 8

Pubmed 19717 44324 500 3
Cocs 18333 81894 6805 15

3.5 Joint Loss and Optimization

The overall learning objective consists of two parts, i.e.,
the attribute reconstruction loss of SAGA, and the structure
reconstruction loss that is correlated with HSR module:

La =
1

2No
∥X̃o − X̂o∥2F . (15)

Ltotal = λLa + Ls. (16)

In Eq.(16), La denotes the mean square error (MSE) be-
tween the observed parts of X̃ and X̂. λ is a pre-defined
hyper-parameter that balances the importance of both re-
construction processes. The detailed learning procedure of
the proposed SAGA is shown in Algorithm 1. Compared
to existing attribute-missing oriented graph representation
learning methods, we design a totally different and effec-
tive framework to solve the newly proposed problem, i.e.,
unsupervised graph representation learning on attribute-
missing graphs. Here we summarize the merits of our
proposed framework with the following factors: our SAGA
1) imposes little distribution assumption on the latent space
variables; 2) entangles the learning of attribute embedding
and structure embedding to take full advantage of the two
types of information; 3) exploits more abundant and robust
information, which leads to more discriminative latent rep-
resentations.

4 EXPERIMENTS

We evaluate the benefits of SAGA against several state-
of-the-art graph representation learning algorithms in the
profiling and the node classification tasks. The experiments
aim to answer the following research questions:

• Q1. How does SAGA perform compared to other
baselines in the profiling and the node classification
tasks? (see Section 4.2)

• Q2. How do the proposed components influence the
performance of SAGA? (see Section 4.3)

• Q3. How do key hyper-parameters influence the
performance of SAGA? (see Section 4.4)

• Q4. How about the algorithm convergence on differ-
ent benchmark datasets? (see Section 4.5)

In the following, we begin with a brief introduction of the
experimental setup and then provide detailed experiment
results with corresponding analysis.

Page 6 of 14*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 7

4.1 Experimental Setup
4.1.1 Benchmark Datasets
We evaluate the proposed SAGA on six benchmark datasets,
including four datasets with categorial attributes, i.e., Cora
[41], Citeseer [42], Amazon-Computer and Amazon-Photo
[43], and two datasets with real-valued attributes, i.e.,
Pubmed [42] and Coauthor-CS [44]. Table 2 summarizes the
brief information of these datasets.

• Cora. Cora is a citation network (graph) that consists
of 2,708 scientific papers (nodes) classified into one
of seven classes. The citation network consists of
10,556 citation links (edges). Each paper in the Cora is
described by a 0/1-valued word vector indicating the
absence/presence of the corresponding word from
the dictionary, where the dictionary contains 1,433
unique words (dimension).

• Citeseer. Citeseer is a citation network (graph) that
consists of 3,327 scientific papers (nodes) classified
into one of six classes. The citation network consists
of 9,228 citation links (edges). Each paper in the
Citeseer is described by a 0/1-valued word vector
indicating the absence/presence of the correspond-
ing word from the dictionary, where the dictionary
contains 3,703 unique words (dimension).

• Amazon Computer (Amac) and Amazon Photo
(Amap). Amazon Computer and Amazon Photo are
segments of the Amazon co-purchase graph, where
nodes represent goods, edges indicate that two goods
are frequently bought together, node features are
bag-of-words encoded product reviews. Amazon
Computers consists of 13,752 nodes with dimensions
767 and 245,861 edges. Amazon photo consists of
7650 nodes with dimensions 745 and 119,081 edges.
Amazon Computers and Amazon Photo are classi-
fied into ten classes and eight classes, respectively.

• Pubmed. Pubmed is also a citation network (graph)
which consists of 19,717 scientific papers (nodes)
classified into one of three classes and 88,651 cita-
tion links (edges). Each publication in the dataset is
described by a TF/IDF weighted word vector from
a dictionary which consists of 500 unique words
(dimension).

• Coauthor-CS (Cocs). Coauthor-CS is a co-authorship
graph based on the Microsoft Academic Graph from
the KDD Cup 2016 challenge. This graph contains
18,333 authors (nodes) classified into fifteen classes
and 81,894 connections (edges) that connect two au-
thors if they co-author a paper. Each node consists
of 6,805 features (dimensions) representing paper
keywords for each author’s papers.

4.1.2 Training Procedure
Our experiments are implemented with PyTorch 1.6 plat-
form and run with four NVIDIA Tesla V100S GPU cards.
The adjacency matrix is normalized in pre-processing step
using NetworkX 2.5.1 and Numpy 1.16.1 packages. The
training of the proposed SAGA includes two steps in total.
Firstly, we perform the profiling task using Recall@K and
NDCG@K as metrics to evaluate the quality of restored at-
tributes. Specifically, we train our SAGA in an unsupervised

manner by minimizing the reconstruction loss function
Ltotal for at least 500 iterations until convergence. During
the training, we apply the weighted Binary Cross-Entropy
loss (BCE) or the Mean Square Error (MSE) loss as our
training objective for categorical or real-valued graph data,
respectively. To avoid the over-fitting issue, we adopt an
early stop strategy when the loss value comes to a plateau.
Secondly, we utilize a GCN-based classifier to perform the
node classification task over the attribute-restored nodes,
where we learn the node embeddings supervised by a
cross-entropy loss function with five-fold validation in 10
times, and report the averages evaluated by accuracy (ACC)
metric. Note that we strictly follow the classifier settings of
SAT [8] in the node classification task.

4.1.3 Implementation Details
For all compared algorithms except for GINN [13] and
GCNMF [7], the experimental results are acquired according
to the paper of SAT [8]. For GINN and GCNMF algorithms,
we first adopt the data and code of SAT to process data
before training, then we set the hyper-parameters of both
methods by following their original papers. After that, we
run their publicly available Pytorch code and report the
corresponding performance. For our proposed SAGA, we
strictly follow the same data splits as in SAT [8] for per-
formance comparison on all benchmark datasets, including
the split of attribute-observed/-missing nodes and the spilt
of train/test sets. Specifically, 1) in the profiling task, we
randomly sample 40% nodes with attributes as the training
set, and manually-mask all attributes of the rest 10% and
50% nodes (i.e., attribute-missing nodes) as the validation
set and the test set, respectively. We adopt 4-layer GCNs
as our backbone and train it with Adam optimizer, where
the learning rate is set to 1e-3. During the training phase,
we transfer all samples into our proposed auto-encoder
to restore missing attributes by merely reconstructing the
attribute-observed nodes (i.e., training set). After training,
we directly generate the rebuilt attribute matrix over the
well-trained model via a forwarding propagation algorithm.
According to the results of parameter sensitivity testing, we
set the hyper-parameters P , K as 5 and fix the balanced
coefficients γ and λ to 5 and 10, respectively; 2) in the node
classification task, the attribute-restored nodes are randomly
split into 80% train data and 20% test data with five-fold
validation for 1000 iterations in 10 times. Moreover, the
learning rate, the latent dimension, the dropout rate, and
the weight decay are set to 1e-3, 64, 0.5, and 5e-4, respec-
tively. We adopt early stopping to avoid the over-fitting
phenomenon. In the GCN-based classifier, all the compared
algorithms consistently utilize the normalized adjacency
matrix Ãm for message passing, where Ãm ∈ RNm×Nm

de-
scribes the linkage relations among attribute-missing nodes.

4.2 Baselines and Comparison Results (Q1)
4.2.1 Baseline Algorithms
In the following, we compare our SAGA with 11 related
methods to illustrate its effectiveness. Among these base-
lines, NeighAggre [45] is the representative one of classi-
cal profiling algorithms. VAE [46] is a well-known auto-
encoder-based generative method. GCN [15], GraphSage

Page 7 of 14 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 8

TABLE 3
Profiling performance comparison between the proposed SAGA and nine state-of-the-art algorithms. In this table, two metrics (Recall and NDCG
using top 10, 20, 50) of different algorithms on four datasets are reported. ↑ denotes the performance improvement over the SAT algorithm. The

boldface and underline values indicate the best and the runner-up results, respectively.

Dataset Method Recall@10 Recall@20 Recall@50 NDCG@10 NDCG@20 NDCG@50

Cora

NeighAggre [45] 9.06 14.13 19.61 12.17 15.48 18.50
VAE [46] 8.87 12.28 21.16 12.24 14.52 19.24
GCN [15] 12.71 17.72 29.62 17.36 20.76 27.02

GraphSage [47] 12.84 17.84 29.72 17.68 21.02 27.28
GAT [48] 13.50 18.12 29.72 17.91 20.99 27.11
Hers [49] 12.26 17.23 27.99 16.94 20.31 25.96

GraphRNA [50] 13.95 20.43 31.42 19.34 23.62 29.38
ARWMF [51] 12.91 18.13 29.60 18.24 21.82 27.76

SAT [8] 15.08 21.82 34.29 21.12 25.46 32.12
Ours 16.86 (1.78↑) 23.85 (2.03↑) 35.97 (1.68↑) 23.49 (2.37↑) 28.16 (2.70↑) 34.59 (2.47↑)

Citeseer

NeighAggre [45] 5.11 9.08 15.01 8.23 11.55 15.60
VAE [46] 3.82 6.68 12.96 6.01 8.39 12.51
GCN [15] 6.20 10.97 20.52 10.26 14.23 20.49

GraphSage [47] 6.12 10.97 20.58 10.03 13.93 20.34
GAT [48] 5.61 10.12 19.57 8.78 12.53 18.72
Hers [49] 5.76 10.25 19.73 9.04 12.79 19.00

GraphRNA [50] 7.77 12.72 22.71 12.91 17.03 23.58
ARWMF [51] 5.52 10.15 19.52 8.59 12.45 18.58

SAT [8] 7.64 12.80 23.77 12.98 17.29 24.47
Ours 9.45 (1.81↑) 15.35 (2.55↑) 26.74 (2.97↑) 16.15 (3.17↑) 21.07 (3.81↑) 28.58 (4.11↑)

Amac

NeighAggre [45] 3.21 5.93 13.06 7.88 11.56 19.23
VAE [46] 2.55 5.02 11.96 6.32 9.70 17.21
GCN [15] 2.73 5.33 12.75 6.71 10.27 18.24

GraphSage [47] 2.69 5.28 12.78 6.64 10.20 18.22
GAT [48] 2.71 5.30 12.78 6.73 10.28 18.30
Hers [49] 2.73 5.25 12.73 6.76 10.25 18.25

GraphRNA [50] 3.86 6.90 14.65 9.31 13.33 21.55
ARWMF [51] 2.80 5.44 12.89 6.94 10.53 18.51

SAT [8] 3.91 7.03 15.14 9.63 13.79 22.43
Ours 4.45 (0.54↑) 7.87 (0.84↑) 16.51 (1.37↑) 10.88 (1.25↑) 15.44 (1.65↑) 24.63 (2.20↑)

Amap

NeighAggre [45] 3.29 6.16 13.61 8.13 11.96 19.98
VAE [46] 2.76 5.38 12.79 6.75 10.31 18.30
GCN [15] 2.94 5.73 13.24 7.05 10.82 18.93

GraphSage [47] 2.95 5.62 13.22 7.12 10.79 18.96
GAT [48] 2.94 5.73 13.24 7.05 10.83 18.92
Hers [49] 2.92 5.74 13.28 7.14 10.94 19.06

GraphRNA [50] 3.90 7.03 15.08 9.59 13.77 22.32
ARWMF [51] 2.94 5.68 13.27 7.27 10.98 19.15

SAT [8] 4.10 7.43 15.97 10.06 14.50 23.95
Ours 4.55 (0.45↑) 7.92 (0.49↑) 16.33 (0.36↑) 11.08 (1.02↑) 15.57 (1.07↑) 24.51 (0.56↑)

[47], and GAT [48] are typical graph convolutional net-
work (GCN)-based methods, where the node representa-
tions are embedded with structure information by GCN.
GraphRNA [50] and ARWMF [51] are representatives of at-
tributed random walk-based methods, which apply random
walks on the node-attribute bipartite graphs and can poten-
tially tackle the attribute-missing issue. Since the attribute-
missing graph learning is similar to cold-start recommen-
dation task, thus one representative cold-start recommenda-
tion method called Hers [49] is involved as a baseline. Fur-
ther, we report the performance of two attribute-incomplete
GRL methods, i.e, GINN [13], GCNMF [7] and a state-
of-the-art attribute-missing GRL method SAT [8]. Table 3
and Table 4 summarize the performance comparison on the
profiling and the node classification tasks.

4.2.2 Profiling Task
In the profiling task, four observations can be obtained from
Table 3: 1) SAGA shows the best performance in terms of six

metrics against all compared baselines on four datasets. For
instance, SAT has been considered as the strongest attribute-
missing GRL framework, and our method exceeds it by
1.68%/2.47%, 2.97%/4.11%, 1.37%/2.20%, and 0.36%/0.56%
in terms of Recall@50 and NDCG@50 Cora, Citeseer, Amac,
and Amap, which verifies the effectiveness of structure-
attribute mutual enhanced learning strategy in handling
attribute-missing graphs; 2) it can be seen that SAGA consis-
tently outperforms the attributed rand walk-based methods.
This is because the operation of random walks may intro-
duce noise to the learning process, which affects the quality
of restored attributes; 3) our SAGA also achieves better
performance than GCN, GraphSage, and GAT, all of which
have been demonstrated the strong representation learning
capability on complete graphs, while these methods are not
suitable to effectively handle the attribute-missing graphs;
4) since NeighAggre and VAE isolate the processes of data
completion and network learning. Thus both algorithms are

Page 8 of 14*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 9

TABLE 4
Node classification performance comparison between the proposed SAGA and twelve state-of-the-art algorithms. In this table, the accuracy of
different algorithms on six datasets is reported. ↑ denotes the performance improvement over the SAT algorithm. The boldface and underline

values indicate the best and the runner-up results, respectively.

Method Cora Citeseer Amac Amap Pubmed Cocs
NeighAggre [45] 64.94 54.13 87.15 90.10 65.64 80.31

VAE [46] 30.11 26.63 40.23 37.81 40.07 23.35
GCN [15] 43.87 40.79 39.74 36.56 42.03 21.80

GraphSage [47] 57.79 42.78 40.19 37.84 42.00 23.35
GAT [48] 45.25 26.88 40.34 37.89 41.96 23.34
Hers [49] 34.05 32.29 40.25 37.94 42.05 23.34

GraphRNA [50] 81.98 63.94 86.50 92.07 81.72 88.51
ARWMF [51] 80.25 27.64 74.00 61.46 80.89 83.47

GINN [13] 67.58 55.32 81.72 87.77 54.28 79.74
GCNMF [7] 70.30 63.40 76.43 87.79 62.00 87.53

SAT [8] 83.27 65.99 85.19 91.63 75.37 85.76
Ours 85.13 (1.86↑) 69.25 (3.26↑) 88.65 (3.46↑) 92.36 (0.73↑) 80.55 (5.18↑) 88.90 (3.14↑)

TABLE 5
Ablation study on initial imputation. Node classification performance of the three designed algorithms on six datasets are reported. GVF-based

SAGA, NVF-based SAGA, and ZVF-based SAGA are the algorithms where the missing attributes in X are filled with random values from a
standard Gaussian, observed neighbor values, and zero values. The boldface value indicates the best result.

Method Cora Citeseer Amac Amap Pubmed Cocs
GVF-based SAGA 85.03 67.10 87.82 91.81 70.94 84.63
NVF-based SAGA 85.31 69.11 88.21 91.99 81.36 88.79
ZVF-based SAGA 85.13 69.25 88.65 92.36 80.55 88.90

not comparable to ours.

4.2.3 Node Classification Task
In the node classification task, as reported in Table 4, we
can find that 1) our method achieves the best average
performance in terms of accuracy on five of six datasets.
For instance, SAGA exceeds SAT by 1.86%, 3.26%, 3.46%,
0.73%, and 5.18%, 3.14% accuracy increment. These results
well demonstrate that our SAGA could learn a more dis-
criminative latent embedding for data completion by taking
full advantage of the attribute and structure information,
thus boosting the node classification performance; 2) com-
pared with GINN and GCNMF, our method gains 14.83%,
5.85%, 6.93%, 4.57%, 18.55%, and 1.37% accuracy increment,
which indicates that our SAGA is competent to handle
attribute-missing graphs, while incomplete GRL methods
can not provide effective solutions; 3) it is worth noting that
GraphRNA and ARWME achieve slightly better results than
that of ours on Pubmed dataset, this is because GraphRNA
and ARWME could naturally model the correlation between
attribute dimension, especially for handling real-valued
graph data.

Overall, the results of both the profiling and the node
classification tasks have solidly demonstrated the superior-
ity and effectiveness of SAGA in solving attribute-missing
graph representation learning.

4.3 Ablation Comparison (Q2)
4.3.1 Influence of Initial Imputation
Since only partial nodes with observed features exist,
it should be considered to assign initial features to the
attribute-missing nodes before network training. In Table
5, to illustrate the influence of different fashions of ini-
tial imputation, we design three algorithms and compare

their performance. GVF-based SAGA, NVF-based SAGA,
and ZVF-based SAGA are algorithms where we initialize
the missing attributes with random values from a stan-
dard Gaussian, observed neighbor values, and zero values.
The node classification accuracy performance of three al-
gorithms has been reported in Table 5. From this table,
we observe that 1) GVF-based SAGA are not comparable
to the other two counterparts on Citesser, Amac, Pubmed,
and Cocs. This is because random features contain much
semantically irrelevant information that will diffuse through
the network, which affects the discriminative capacity of
the imputed representations and even causes a distortion
of the graph; 2) NVF-based SAGA and ZVF-based SAGA
consistently achieve similar performance on six datasets,
which indicates that SAGA is insensitive to the initial im-
putation when setting the missing attributes to zero values
or observed neighbor values.

4.3.2 Effectiveness of Each Component
In this section, we design an ablation study to demonstrate
the effectiveness of the proposed components. Here we
denote a naive graph auto-encoder as the baseline method.
+HSR and +DNA refer to the baseline methods with the
HSR module and the DNA module, respectively. +PS de-
notes a pseudo-Siamese counterpart of SAGA. In Fig. 3, we
experimentally compare all methods and report their perfor-
mance on four datasets. We can see that 1) the +HSR method
and the +DNA method consistently improve the baseline in
terms of six metrics over all datasets. Taking the results on
Amazon-C for example, the +HSR method and the +DNA
method gain 2.12%/2.21% and 3.43%/3.49% accuracy incre-
ment in terms of Recall@50/NDCG@50. These results verify
the effectiveness of sufficient interaction between attribute
and structure information (i.e., unreliable similarity filtering

Page 9 of 14 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 10

Fig. 3. Ablation study on the effectiveness of each component. In this figure, two metrics (Recall and NDCG using top 10, 20, 50) of the five designed
algorithms on four datasets are reported. The baseline is the algorithm that adopts a naive graph auto-encoder without any proposed components.
+HSR is the algorithm with the proposed hidden structure refining module. +DNA is the algorithm with the proposed dual non-local aggregating
module. +PS is a pseudo-Siamese counterpart of the proposed SAGA. The performance of our SAGA is listed in the last bar.

TABLE 6
Ablation study on the dual non-local aggregating mechanism of the DNA module. In this table, two metrics (Recall and NDCG using top 10, 20, 50)
of the three designed algorithms on four datasets are reported. DNA-KNN is the algorithm where we merely utilize K-nearest neighbor (KNN) to

filter unreliable similarities upon the affinity matrix. DNA-KNN is the algorithm where we merely utilize structure-oriented K-nearest neighbor
(SKNN) to filter unreliable similarities upon the affinity matrix. DNA indicates our proposed SAGA using a dual non-local aggregating mechanism.

↑ denotes the performance improvement. The boldface value indicates the best result.

Dataset Method Recall@10 Recall@20 Recall@50 NDCG@10 NDCG@20 NDCG@50

Cora
DNA-KNN 16.72 23.66 35.82 23.26 28.01 34.43

DNA-SKNN 16.55 23.38 35.73 23.02 27.87 34.14
DNA 16.86 (0.31↑) 23.85 (0.53↑) 35.97 (0.24↑) 23.49 (0.47↑) 28.16 (0.29↑) 34.59 (0.45↑)

Citeseer
DNA-KNN 9.30 15.04 26.32 16.12 20.91 28.28

DNA-SKNN 9.22 14.94 26.48 15.71 20.49 28.03
DNA 9.45 (0.23↑) 15.35 (0.41↑) 26.74 (0.42↑) 16.15 (0.44↑) 21.07 (0.58↑) 28.58 (0.55↑)

Amac
DNA-KNN 4.29 7.61 16.23 10.46 15.21 24.40

DNA-SKNN 4.22 7.50 16.11 10.31 14.92 24.24
DNA 4.45 (0.23↑) 7.87 (0.37↑) 16.51 (0.40↑) 10.88 (0.57↑) 15.44 (0.52↑) 24.63 (0.39↑)

Amap
DNA-KNN 4.38 7.75 16.03 10.75 15.26 24.26

DNA-SKNN 4.30 7.59 16.27 10.70 15.27 24.38
DNA 4.55 (0.25↑) 7.92 (0.33↑) 16.33 (0.30↑) 11.08 (0.38↑) 15.57 (0.31↑) 24.51 (0.25↑)

and graph structure refinement) for data completion. We
can obtain similar observations from the results on other
metrics and datasets; 2) this ablation study also reveals the
advantage of our Siamese architecture, which can help to
better exploit the two-source information for data imputa-
tion. As seen, the proposed SAGA demonstrates slightly
better performance than the pseudo-Siamese counterpart.
According to these observations, the effectiveness of the
proposed components in SAGA has been clearly verified.

4.3.3 Analysis of the DNA Mechanism
To further reveal the effect of the dual non-local aggregat-
ing mechanism, we present the profiling performance of
three SAGA variants, i.e., DNA-KNN, DNA-SKNN, and
DNA (our proposed method) in Table 6. DNA-KNN and
DNA-SKNN are the algorithms where we utilize K-nearest
neighbor (KNN) and structure-oriented K-nearest neighbor
(SKNN) to filter unreliable similarities in the latent space,

respectively. From this table, we can find that 1) taking
the results on Cora for instance, two proposed correlation
aggregating strategies can achieve promising performance
in terms of six metrics, it is obvious that filtering unreliable
similarities and preserving more informative information
could boost the discriminative capacity of the learned latent
embedding. We can obtain similar observations from the
results on other datasets; 2) our dual non-local aggregating
mechanism consistently achieves better performance than
other counterparts. These results illustrate that although
there exists some overlapping information between the
learning processes of DNA-KNN and DNA-SKNN, com-
bining both together does help each other to exploit more
informative information to some extent.

4.3.4 Analysis of the DNA and HSR Structure Designs
In this subsection, we conduct additional experiments to
show the effect of different DNA and HSR structure designs.

Page 10 of 14*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 11

TABLE 7
Ablation study on different structures of the DNA module and the HSR module. In this table, two metrics (Recall and NDCG using top 10, 20, 50) of

the two designed algorithms on four datasets are reported. DNA-HSR-H is the algorithm where the DNA module and the HSR module are
structured in a hierarchical design (DNA after HSR). DNA-HSR-P is the algorithm where the DNA module and the HSR module are structured in a

parallel design. ↑ denotes the performance improvement. The boldface value indicates the best result.

Dataset Method Recall@10 Recall@20 Recall@50 NDCG@10 NDCG@20 NDCG@50

Cora DNA-HSR-H 16.65 23.55 35.75 23.39 28.03 34.47
DNA-HSR-P 16.86 (0.21↑) 23.85 (0.30↑) 35.97 (0.22↑) 23.49 (0.10↑) 28.16 (0.13↑) 34.59 (0.12↑)

Citeseer DNA-HSR-H 8.44 13.59 24.21 14.61 18.93 25.89
DNA-HSR-P 9.45 (1.01↑) 15.35 (1.76↑) 26.74 (2.53↑) 16.15 (1.54↑) 21.07 (2.14↑) 28.58 (2.69↑)

Amac DNA-HSR-H 4.21 7.42 16.04 10.33 14.98 24.11
DNA-HSR-P 4.45 (0.24↑) 7.87 (0.45↑) 16.51 (0.47↑) 10.88 (0.55↑) 15.44 (0.45↑) 24.63 (0.52↑)

Amap DNA-HSR-H 4.27 7.71 16.31 10.53 15.10 24.26
DNA-HSR-P 4.55 (0.28↑) 7.92 (0.21↑) 16.33 (0.02↑) 11.08 (0.55↑) 15.57 (0.47↑) 24.51 (0.25↑)

TABLE 8
Profiling performance comparison between SAT and our proposed SAGA with different observed ratio settings. In this table, two metrics (Recall

and NDCG using top 10, 20, 50) of the two algorithms on two datasets are reported. ↑ denotes the performance improvement. The boldface value
indicates the best result.

Dataset Ratio Method Recall@10 Recall@20 Recall@50 NDCG@10 NDCG@20 NDCG@50

Cora

20% SAT 13.49 19.75 31.02 19.33 23.51 29.61
Ours 14.60 (1.11↑) 21.10 (1.35↑) 32.57 (1.55↑) 20.95 (1.62↑) 25.27 (1.76↑) 31.36 (1.75↑)

30% SAT 14.89 21.30 33.46 20.87 25.15 31.59
Ours 15.93 (1.04↑) 22.52 (1.22↑) 34.83 (1.37↑) 22.40 (1.53↑) 26.82 (1.67↑) 33.32 (1.73↑)

40% SAT 14.71 21.76 34.33 20.60 25.18 31.87
Ours 16.86 (2.15↑) 23.85 (2.09↑) 35.97 (1.64↑) 23.49 (2.89↑) 28.16 (2.98↑) 34.59 (2.72↑)

50% SAT 15.72 22.46 34.82 21.69 26.14 32.73
Ours 17.22 (1.50↑) 24.59 (2.13↑) 36.94 (2.12↑) 23.96 (2.27↑) 28.81 (2.67↑) 35.39 (2.66↑)

60% SAT 15.59 22.64 35.74 21.79 26.45 33.44
Ours 17.90 (2.31↑) 25.21 (2.57↑) 38.26 (2.52↑) 24.65 (2.86↑) 29.53 (3.08↑) 36.40 (2.96↑)

70% SAT 15.68 22.75 36.63 21.77 26.47 33.78
Ours 18.13 (2.45↑) 26.10 (3.35↑) 39.53 (2.90↑) 25.33 (3.56↑) 30.61 (4.14↑) 37.78 (4.00↑)

80% SAT 17.43 25.00 37.95 24.01 29.11 36.05
Ours 18.46 (1.03↑) 26.72 (1.72↑) 41.20 (3.25↑) 25.87 (1.86↑) 31.45 (2.34↑) 39.10 (3.05↑)

Citeseer

20% SAT 6.30 10.74 20.82 10.63 14.33 20.92
Ours 8.07 (1.77↑) 13.29 (2.55↑) 23.73 (2.91↑) 13.67 (3.04↑) 18.03 (3.70↑) 24.90 (3.98↑)

30% SAT 7.08 11.87 22.46 12.18 16.20 23.13
Ours 8.80 (1.72↑) 14.27 (2.40↑) 25.30 (2.84↑) 15.05 (2.87↑) 19.64 (3.44↑) 26.91 (3.78↑)

40% SAT 7.78 12.77 23.43 13.41 17.58 24.58
DNA 9.45 (1.67↑) 15.35 (2.58↑) 26.74 (3.31↑) 16.15 (2.74↑) 21.07 (3.49↑) 28.58 (4.00↑)

50% SAT 8.16 13.37 24.36 13.93 18.28 25.48
Ours 10.04 (1.88↑) 15.92 (2.55↑) 27.46 (3.10↑) 17.07 (3.14↑) 22.00 (3.72↑) 29.57 (4.09↑)

60% SAT 8.32 13.60 24.68 14.35 18.75 26.01
Ours 10.33 (2.01↑) 16.55 (2.95↑) 28.66 (3.98↑) 17.51 (3.16↑) 22.74 (3.99↑) 30.70 (4.69↑)

70% SAT 8.54 14.02 25.38 14.72 19.30 26.76
Ours 11.01 (2.47↑) 17.40 (3.38↑) 29.56 (4.18↑) 18.56 (3.84↑) 23.96 (4.66↑) 31.94 (5.18↑)

80% SAT 8.37 13.52 25.58 14.41 18.70 26.58
Ours 10.71 (2.34↑) 17.10 (3.58↑) 29.39 (3.81↑) 18.13 (3.72↑) 23.45 (4.75↑) 31.54 (4.96↑)

Specifically, we develop two algorithms (i.e., DNA-HSR-H
and DNA-HSR-P) and compare their performance. DNA-
HSR-H and DNA-HSR-P mean that the DNA module and
the HSR module are structured in a hierarchical and a par-
allel design, respectively. From the results in Table 7, DNA-
HSR-P (our proposed SAGA) consistently achieves better
performance than that of DNA-HSR-H. Taking the results on
Citeseer for example, DNA-HSR-P exceeds DNA-HSR-H by
1.01%, 1.76%, 2.53%, 1.54%, 2.14%, and 2.69% in terms of six
metrics. In addition, the observations on other datasets are
similar. We attribute the superiority of DNA-HSR-P as the
following aspect, in our Siamese architecture (the parallel
design), the HSR module could be regarded as an auxiliary
task to guide the network to automatically exploit intrinsic
data structures for more accurate latent space construction.

By combining the preserved latent variables of two pro-
posed components, two-source information could negotiate
with each other in a complementary manner, leading to
higher-quality attribute restoration.

4.3.5 Analysis of the Observed Ratio

In this part, to further verify the effectiveness of the pro-
posed SAGA, we compare it with the strongest baseline SAT
on Cora and Citeseer by varying the observed ratio from
20% to 80%. Table 8 presents the Recall and NDCG using
the top 10, 20, 50 comparisons of both algorithms. From
this table, we have the following observations: 1) taking
the results of NDCG@10 on both datasets for example, our
proposed SAGA learned with only 20% observed attributes
still can achieve comparable or slightly better performance

Page 11 of 14 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 12

Fig. 4. Parameter sensitivity with P and K. In this figure, one metric (Recall using top 10) of the proposed SAGA on four datasets is reported. We
explore the performance variation of our algorithm by varying hyper-parameters P and K from one to nine.

Fig. 5. Parameter sensitivity with γ. In this figure, the accuracy performance of the proposed SAGA on six datasets is reported. We explore the
performance variation of our algorithm by varying the balanced coefficient γ from one to ten.

than SAT learned with 40% observed attributes. The results
in terms of the other five metrics are similar; 2) the proposed
SAGA outperforms SAT by 1.55%, 1.37%, 1.64%, 2.12%,
2.52%, 2.90%, 3.25% in terms of Recall@50 with the variation
of observed ratio from 20% to 80% on Cora. The improve-
ment is more significant with the increase of the observed
ratio. The above observations have solidly demonstrated the
effectiveness and robustness of our proposed SAGA.

4.4 Analysis of Hyper-parameters (Q3)
In this section, we study the algorithm sensitivity by set-
ting different hyper-parameters (i.e., P , K, γ, and λ) and
observing the changes in algorithm performance.

4.4.1 Parameter Analysis of P and K

Here we present the analysis of two hyper-parameters P
and K on four datasets. As seen, Fig. 4 presents the perfor-
mance variation of SAGA when P and K vary from 1 to 9,
where we can see that 1) for a certain P , K value between 3
and 5 achieves better performance; 2) for a certain K, SAGA
obtains stable results when P varies from 3 to 7. These
indicate that our SAGA needs proper hyper-parameters to
establish a structure-attribute mutual enhanced learning.
Overall, SAGA performs well by setting P and K to 5 across
both datasets.

4.4.2 Parameter Analysis of γ
We conduct experiments on six datasets to investigate the
effect of hyper-parameter γ in Eq.(11). Fig. 5 presents the
node classification performance with different γ, i.e., γ
varies from 1 to 10. We can observe that 1) γ is effective
in improving the performance; 2) the ACC metric first
increases to a higher value and then keeps stable on Citeseer,
Amac, Pubmed, and Cocs when γ varies from 0 to 10; 3)
with the increasing value of γ, the performance on Cora
and Amap tends to drop but still keeps better than that of
the baseline (i.e., γ is set to 1); 4) SAGA performs well by
setting γ to 5 across all datasets.

4.4.3 Parameter Analysis of λ
We also investigate the effect of hyper-parameter λ, which
balances the importance of two reconstruction losses of
SAGA. We vary λ from 2 to 20 and report the corresponding
results. As shown in Fig. 6, we can find that 1) the perfor-
mance can be improved with tuning the hyper-parameter
λ; 2) increasing the value of λ from 2 to 8 slightly increases
the performance, and continually increasing λ to a higher
value obtains relatively stable performance; 3) the proposed
SAGA tends to perform well across four datasets when
setting λ to 10.

4.5 Algorithm Convergence (Q4)
To illustrate the convergence of the proposed SAGA, we
record the metric reflected by Recall@10 on four datasets
and show the performance variation as the training iteration
goes. The results are illustrated in Fig. 7, we can see that
1) the performance of our method gradually increases to a
plateau with an obvious tendency; 2) SAGA could converge
within 1000 iterations. These results clearly verify the suit-
able convergence property of our proposed SAGA.

5 CONCLUSION

In this paper, we propose the SAGA method to handle
attribute-missing graphs. In our network, two core com-
ponents, i.e., DNA and HSR modules, take full advantage
of structures and attributes, and allow both types of infor-
mation to sufficiently interact with each other in a Siamese
framework. In this way, unreliable similar information is
filtered while more informative information can be well
collected and preserved, which effectively enhances the
discriminative capacity of the learned latent embedding for
data completion. Moreover, our Siamese design can assist
in boosting the learning capability of SAGA. Extensive
experiments on six benchmark datasets have demonstrated
the effectiveness and superiority of the proposed method.
Future work may aim to extend SAGA to handle multi-view

Page 12 of 14*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 13

Fig. 6. Parameter sensitivity with λ. In this figure, one metric (Recall using top 10) of the proposed SAGA on four datasets is reported. We explore
the performance variation of our algorithm by varying the balanced coefficient λ from two to twenty.

Fig. 7. Algorithm convergence of the proposed SAGA. X-axis and Y-axis refer to the number of iterations and the corresponding value of Recall@10
metric, respectively.

attribute-missing GRL, where various observed information
from different views can be exploited to further improve the
performance.

ACKNOWLEDGMENT

This work was supported by the National Key Re-
search and Development Program of China (project no.
2020AAA0107100) and the National Natural Science Foun-
dation of China (project no. 62006237).

REFERENCES

[1] P. Hu, K. C. C. Chan, and T. He, “Deep graph clustering in social
network,” in WWW, 2017, pp. 1425–1426.

[2] Y. Shen, N. Ding, H.-T. Zheng, Y. Li, and M. Yang, “Modeling
relation paths for knowledge graph completion,” IEEE Transactions
on Knowledge and Data Engineering, vol. 33, no. 11, pp. 3607–3617,
2021.

[3] Z. Wang, L. Zheng, Y. Li, and S. Wang, “Linkage based face
clustering via graph convolution network,” in CVPR, 2019, pp.
1117–1125.

[4] Z. Peng, W. Huang, M. Luo, Q. Zheng, Y. Rong, T. Xu, and
J. Huang, “Graph representation learning via graphical mutual
information maximization,” in WWW, 2020, pp. 259–270.

[5] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A sur-
vey,” IEEE Transactions on Knowledge and Data Engineering, vol. 34,
no. 1, pp. 249–270, 2022.

[6] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive sur-
vey of graph embedding: Problems, techniques, and applications,”
IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 9,
pp. 1616–1637, 2018.

[7] H. Taguchi, X. Liu, and T. Murata, “Graph convolutional networks
for graphs containing missing features,” Future Generation Com-
puter Systems, vol. 117, pp. 155–168, 2021.

[8] X. Chen, S. Chen, J. Yao, H. Zheng, Y. Zhang, and I. W. Tsang,
“Learning on attribute-missing graphs,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 44, no. 2, pp. 740–757,
2022.

[9] F. Monti, M. M. Bronstein, and X. Bresson, “Geometric matrix com-
pletion with recurrent multi-graph neural networks,” in NeurIPS,
2017, pp. 3697–3707.

[10] R. van den Berg, T. N. Kipf, and M. Welling, “Graph convolutional
matrix completion,” in ArXiv abs/1706.02263, 2017.

[11] L. Zheng, C.-T. Lu, F. Jiang, J. Zhang, and P. S. Yu, “Spectral
collaborative filtering,” in NeurIPS, 2018, pp. 311–319.

[12] C. Gao, X. He, D. Gan, X. Chen, F. Feng, Y. Li, T. Chua, and D. Jin,
“Neural multi-task recommendation from multi-behavior data,”
in ICDE, 2019, p. 1554–1557.

[13] I. Spinelli, S. Scardapane, and A. Uncini, “Missing data imputation
with adversarially-trained graph convolutional networks,” Neural
Networks, vol. 129, pp. 249–260, 2020.

[14] J. You, X. Ma, D. Y. Ding, M. J. Kochenderfer, and J. Leskovec,
“Handling missing data with graph representation learning,” in
NeurIPS, 2020.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2017.

[16] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signa-
ture verification using a siamese time delay neural network,” in
NeurIPS, 1993, pp. 737–744.

[17] H. Zhang, D. Liu, and Z. Xiong, “Two-stream action recognition-
oriented video super-resolution,” in ICCV, 2019, pp. 8798–8807.

[18] H. Chen, Y. Wang, K. Zheng, W. Li, C.-T. Chang, A. P. Harrison,
J. Xiao, G. D. Hager, L. Lu, C.-H. Liao, and S. Miao, “Anatomy-
aware siamese network: Exploiting semantic asymmetry for accu-
rate pelvic fracture detection in x-ray images,” in ECCV, 2020, pp.
239–255.

[19] Z. Fu, Q. Liu, Z. Fu, and Y. Wang, “Stmtrack: Template-free visual
tracking with space-time memory networks,” in CVPR, 2021, pp.
13 774–13 783.

[20] E. Krivosheev, M. Atzeni, K. Mirylenka, P. Scotton, C. Miksovic,
and A. Zorin, “Business entity matching with siamese graph
convolutional networks,” in AAAI, 2021, pp. 16 054–16 056.

[21] M. Jin, Y. Zheng, Y.-F. Li, C. Gong, C. Zhou, and S. Pan, “Multi-
scale contrastive siamese networks for self-supervised graph rep-
resentation learning,” in IJCAI, 2021, pp. 1477–1483.

[22] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning
of social representations,” in KDD, 2014, pp. 701–710.

[23] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks.” in KDD, 2016, pp. 855–864.

[24] Z. Wang, Z. Li, R. Wang, F. Nie, and X. Li, “Large graph clustering
with simultaneous spectral embedding and discretization,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 12, pp. 4426–4440, 2021.

[25] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in
ArXiv abs/1611.07308, 2016.

Page 13 of 14 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JANUARY, YEAR 2022 14

[26] Z. Tao, H. Liu, J. Li, Z. Wang, and Y. Fu, “Adversarial graph
embedding for ensemble clustering,” in IJCAI, 2019, pp. 3562–
3568.

[27] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural deep
clustering network,” in WWW, 2020, pp. 1400–1410.

[28] W. Tu, S. Zhou, X. Liu, X. Guo, Z. Cai, E. Zhu, and J. Cheng, “Deep
fusion clustering network,” in AAAI, 2021, pp. 9978–9987.

[29] Y. Liu, W. Tu, S. Zhou, X. Liu, L. Song, X. Yang, and E. Zhu,
“Deep graph clustering via dual correlation reduction,” in ArXiv
abs/2112.14772, 2021.

[30] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Deep inductive graph
representation learning,” IEEE Transactions on Knowledge and Data
Engineering, vol. 32, no. 3, pp. 438–452, 2020.

[31] F. Feng, X. He, J. Tang, and T.-S. Chua, “Graph adversarial train-
ing: Dynamically regularizing based on graph structure,” IEEE
Transactions on Knowledge and Data Engineering, vol. 33, no. 6, pp.
2493–2504, 2021.

[32] T. Q. Dinh, Y. Xiong, Z. Huang, T. Vo, A. Mishra, W. H. Kim,
S. N. Ravi, and V. Singh, “Performing group difference testing
on graph structured data from gans: Analysis and applications in
neuroimaging,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 2, pp. 877–889, 2022.

[33] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” in ICLR, 2019.

[34] K. Hassani and A. H. K. Ahmadi, “Contrastive multi-view repre-
sentation learning on graphs,” in ICML, 2020, pp. 4116–4126.

[35] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph
contrastive learning with augmentations,” in NeurIPS, 2020.

[36] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph
contrastive learning with adaptive augmentation,” in WWW, 2021,
pp. 2069–2080.

[37] M. Zhang and Y. Chen, “Inductive matrix completion based on
graph neural networks,” in ICLR, 2020.

[38] J. Chang, L. Wang, G. Meng, Q. Zhang, S. Xiang, and C. Pan,
“Local-aggregation graph networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 42, no. 11, pp. 2874–2886,
2020.

[39] G. Ciano, A. Rossi, M. Bianchini, and F. Scarselli, “On inductive-
transductive learning with graph neural networks,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 44, no. 2, pp.
758–769, 2022.

[40] S. Wang, J. Arroyo, J. T. Vogelstein, and C. E. Priebe, “Joint
embedding of graphs,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 43, no. 4, pp. 1324–1336, 2021.

[41] A. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automat-
ing the construction of internet portals with machine learning,”
Information Retrieval, vol. 3, no. 2, pp. 127–163, 2000.

[42] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad, “Collective classification in network data,” Information Re-
trieval, vol. 29, no. 3, pp. 93–106, 2008.

[43] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pit-
falls of graph neural network evaluation,” in ArXiv abs/1811.05868,
2018.

[44] G. Namata, B. London, L. Getoor, and B. Huang, “Query-driven
active surveying for collective classification,” in NeurIPS, 2012.

[45] Özgür Simsek and D. D. Jensen, “Navigating networks by using
homophily and degree,” National Academy of Sciences, vol. 105,
no. 35, pp. 12 758–12 762, 2008.

[46] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
in ICLR, 2014.

[47] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” in NeurIPS, 2017, pp. 1024–1034.

[48] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[49] L. Hu, S. Jian, L. Cao, Z. Gu, Q. Chen, and A. Amirbekyan, “Hers:
Modeling influential contexts with heterogeneous relations for
sparse and cold-start recommendation,” in AAAI, 2019, pp. 3830–
3837.

[50] X. Huang, Q. Song, Y. Li, and X. Hu, “Graph recurrent networks
with attributed random walks,” in KDD, 2019, pp. 732–740.

[51] L. Chen, S. Gong, J. Bruna, and M. M. Bronstein, “Attributed
random walk as matrix factorization,” in NeurIPS Workshop, 2019.

Wenxuan Tu is pursuing his Ph.D. degree in
College of Computer, National University of De-
fense Technology (NUDT), China. His research
interests include unsupervised graph learning,
deep graph clustering, and image semantic seg-
mentation. He has published several papers in
highly regarded journals and conferences such
as AAAI, ICML, MM, IEEE T-IP, Information Sci-
ences, etc.

Sihang Zhou received his Ph.D. degree from
the National University of Defense Technology
(NUDT), China in 2019. He received his M.S. de-
gree in computer science from the same school
in 2014 and his bachelor’s degree in informa-
tion and computing science from the University
of Electronic Science and Technology of China
(UESTC) in 2012. He is now a lecturer of the
College of Intelligence Science and Technology,
NUDT. His current research interests include
machine learning, pattern recognition, and med-

ical image analysis.

Xinwang Liu received his Ph.D. degree from
the National University of Defense Technology
(NUDT), China. He is now a full professor
of the College of Computer, NUDT. His cur-
rent research interests include kernel learning
and unsupervised feature learning. Dr. Liu has
published 60+ peer-reviewed papers, including
those in highly regarded journals and confer-
ences such as IEEE T-PAMI, IEEE T-KDE, IEEE
T-IP, IEEE T-NNLS, IEEE T-MM, IEEE T-IFS,
ICML, NeurIPS, ICCV, CVPR, AAAI, IJCAI, etc.

He is a senior member of IEEE. More information can be found at
https://xinwangliu.github.io.

Yue Liu is pursuing his M.E. degree in College of
Computer, National University of Defense Tech-
nology (NUDT), China. Her research interests
include unsupervised graph learning and multi-
view deep graph clustering.

Zhiping Cai received the B.S. M.S. and Ph.D.
degrees in computer science and technology
from the National University of Defense Technol-
ogy (NUDT), Changsha, China, in 1996, 2002,
and 2005, respectively. He is a Full Professor
at the College of Computer, NUDT. His current
research interests include artificial intelligence,
network security, and big data. Prof. Cai is a
Senior Member of CCF.

Page 14 of 14*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://xinwangliu.github.io

