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Appendix of “SimpleMKKM: Simple Multiple
Kernel K-means”
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1 SUMMARY OF THE APPENDIX

In this appendix, we provide the generalization analysis of
the proposed algorithm and give the detailed proof.

2 THE GENERALIZATION ANALYSIS

Let C = [Cy, - ,Ck] be the learned matrix composed of
the k centroids and 4 the learned kernel weights by the pro-
posed SimpleMKKM, where C, =& C | Yjee, P5(x5),1 <
¢ < k. By defining © = {eq,---,ex}, effective Sim-
pleMKKM clustering should make the following error small

1~ Ex [maxyeo(d5(x), Cy)ar | M

where ¢5(x) = [4,0] (X), s ¥m®m (x)] " is the learned fea-
ture map associated with the kernel function K4(-,-) and
ey, ,e form the orthogonal bases of R*. Intuitively, it
says the expected alignment between test points and their
closest centroid should be high. We show how the proposed
algorithm achieves this goal.

Let us define a function class first:

={f : x> 1= maxyee (@ (x), Oy} 7

p>0,C € H, K, (x, %) < b, vp,Vx € X},
()

1, =1,

where H" stands for the multiple kernel Hilbert space.

Theorem 1. For any § > 0, with probability at least 1 — 6, the

following holds for all f € F:
Zf \/ bk F(1+b) llogl/é.
2n
®)

3 PROOF OF THEOREM ??

In the following, we give the detailed proof of Theorem ??.
For an i.i.d. given sample {x;}? ;, SimpleMKKM algorithm
is to minimize an empirical error, i.e.,
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where ¢ (x) = [v10] (X),  , Ymd,,(X)] T is the feature
map associated with the kernel function K, (-,-) and © =
{e1, -+ ,er} in which ey, - - , e} form the orthogonal bases
of R

Let

. 1&
R(C7’Y? {Kp};nzl) =1- ﬁ ;g}gé <¢'y(xi)7 CYL>Hk . (5)

Our proof idea is to upper bound
(B [R(C,7 (K, 1| = RCov (K 1))

(6)
and then upper bound the term R(C,~, {K,},L1) by the
proposed objective.

We assume that the kernel mapping of each kernel is
upper bounded, i.e., every entry of K, (p € {1,--- ,m}), is
no larger than b. Let us define a function class first:

F :{f cx— 11— max (05(x), Cy)agn

Ce M, |Ky(x,%)| <b, Vp,¥x, X € X}7

sup
CrAKplpi,

’YTlm = 177[) Z 07

@)
where H* stands for the multiple kernel Hilbert space.
Then, Eq. (??) becomes
1 n
sup [ E[f(x)] — — f(x:)]. 8)
fef< 6= D 1 >>
It is obvious that
03 (K)o (%) =D 1y (xP)dp (X))
— Zm 2K L(x®) xP))
p=1 . ©)
> —bZ Bz bYW

In the same way, it is easy to prove —b < ¢ (x)¢~(X) < b
For x in v-th cluster,

<¢‘Y(X)7 Cy>3‘-[
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As a result, we have f(x,%) < 1+b.

By exploiting McDiarmid’s concentration inequality, we
have the following theorem [?].

Theorem 2. For any § > 0, with probability at least 1 — 6, the
following holds for all f € F:

1 — log1/6§
- ) < 2R, 145
IREPIEC (F) + (L0 =5 =,
)
where
R (F su o f(x; 12
(F) = L E |sup S } (12)
and o1, ..., oy are i.id. Rademacher random variables uniformly

distributed from {—1,1}.

Now, we are going to upper bound R, (F). Since there is
a maximization function in f, it is not easy to directly upper
R, (F). Similar to the proof method in [?], we upper bound
it by introducing Gaussian complexities:

& (F) (13)

- %E {supfef Z:;l 5if(xi)} ;

where (1, ..., 8, are i.i.d. Gaussian random variables with
zero mean and unit standard deviation.

The following two lemmas [?] will be used in our proof.

(F) < \J7/26,(F)

S BiG(xi, f) and Hp =

Lemma 1.

(14)

Lemma 2. Let Gy =

Sy BiH (x4, f) be two zero mean, separable Gaussian pro-
cesses. If for all f1, fo € F,
E[(Gy, — Gp,)?] <E[(Hj, — Hp,)?]. (15)
Then,
E [sup ;e Gy] <E[sup;cr Hyl . (16)

In our case, let
Gyc= 251 (1 — max (D~ (x5), Cyz> ) 17)
=1

and

(18)

n k
Hyc =Y ¢3(x) > BiwCe,.
i=1 v=1
we are going to prove that

Eﬁ [(G’Yl,cl - G72,C2)2} < Eﬁ [(nyl,cl - H723c2)2:| .

(19)

Specifically, for any f1, f2 € JF, we have
(1= max (6, 09, Cv)ye ) = (1 max (6, (0. €y )| 2
= (f;lgg<¢~/1 (), C1¥ )y — max (6, (x), Czy>w)2
< (ma (6], )Cay - o], (X)02Y))2

— (max (63, (). - ¢;2<x>02)y)2

yEo©
= max (Z v (07, (0C1 = 61,(x)C2 ) e,,>
<3 (67,0901 - 6,02 )

(20)
where the last inequality holds because 25:1 Yo = 1.
Thus, we have

Eg [(GA,I,CI - 072702)2}
=Eg {(ijl Bi [(1
_ (1 — maXy,eo (P, (Xi), C2yi>Hk>])2]

— MaXy,co <¢'Y1 (X’L)? Clyl>Hk)

2
(maX (¢, (x4), Clyi>7_tk ~ Inax (ry, (x5), Czyz'>7_[k)

yi€O

Il
M=

1

-
Il

M§

k ((dhz (x:)C1 — o], (Xi)CQ) ev)Z

<
i=1v=1
[( ¥1,C1 — H’127C2)2} .
21
Using Holder’s inequality and Jensen’s inequality, we have
B e Hy] =Es [sup 33t s e
Ci=1v=1
n (22)
< Eﬁ bz ’Zizl Biv
v=1
< bk/n.

Combining Lemmas ?? and ??, Egs. (2?) (??), and (??), we

have 1
R (F) < —4/7/2E[sup G
(F) < nV / [fep s.c]

1
—/7/2E |sup H,
7/ [feg ﬁ,C]

1
— 2 (bk
L 2 (b
_\/m/2bk
=
Putting the above inequality into Theorem ??, with proba-
bility at least 1 — ¢, the following holds for all f € F:

Sii @kar(ler)\/loi;/é.

(23)
This completes the proof.
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