Appendix of "SimpleMKKM: Simple Multiple Kernel K-means"

Xinwang Liu, Senior Member, IEEE

1 Summary of the Appendix

In this appendix, we provide the generalization analysis of the proposed algorithm and give the detailed proof.

2 The Generalization Analysis

Let $\hat{\mathbf{C}}=\left[\hat{\mathbf{C}}_{1}, \cdots, \hat{\mathbf{C}}_{k}\right]$ be the learned matrix composed of the k centroids and $\hat{\gamma}$ the learned kernel weights by the proposed SimpleMKKM, where $\hat{\mathbf{C}}_{v}=\frac{1}{\left|\hat{\mathbf{C}}_{v}\right|} \sum_{j \in \hat{\mathbf{C}}_{v}} \phi_{\hat{\gamma}}\left(\mathbf{x}_{j}\right), 1 \leq$ $c \leq k$. By defining $\Theta=\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{k}\right\}$, effective SimpleMKKM clustering should make the following error small

$$
\begin{equation*}
1-\mathbb{E}_{\mathbf{x}}\left[\max _{\mathbf{y} \in \Theta}\left\langle\phi_{\hat{\gamma}}(\mathbf{x}), \hat{\mathbf{C}} \mathbf{y}\right\rangle_{\mathcal{H}^{k}}\right] \tag{1}
\end{equation*}
$$

where $\phi_{\hat{\gamma}}(\mathbf{x})=\left[\hat{\gamma}_{1} \phi_{1}^{\top}(\mathbf{x}), \cdot, \hat{\gamma}_{m} \phi_{m}^{\top}(\mathbf{x})\right]^{\top}$ is the learned feature map associated with the kernel function $K_{\hat{\gamma}}(\cdot, \cdot)$ and $\mathbf{e}_{1}, \cdots, \mathbf{e}_{k}$ form the orthogonal bases of \mathbb{R}^{k}. Intuitively, it says the expected alignment between test points and their closest centroid should be high. We show how the proposed algorithm achieves this goal.

Let us define a function class first:

$$
\begin{array}{r}
\mathcal{F}=\left\{f: \mathbf{x} \mapsto 1-\max _{\mathbf{y} \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}}(\mathbf{x}), \mathbf{C} \mathbf{y}\right\rangle_{\mathcal{H}^{k}} \mid \gamma^{\top} \mathbf{1}_{m}=1\right. \\
\left.\gamma_{p} \geq 0, \mathbf{C} \in \mathcal{H}^{k},\left|K_{p}(\mathbf{x}, \tilde{\mathbf{x}})\right| \leq b, \forall p, \forall \mathbf{x} \in \mathcal{X}\right\} \tag{2}
\end{array}
$$

where \mathcal{H}^{k} stands for the multiple kernel Hilbert space.
Theorem 1. For any $\delta>0$, with probability at least $1-\delta$, the following holds for all $f \in \mathcal{F}$:

$$
\begin{equation*}
\mathbb{E}[f(\mathbf{x})] \leq \frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right)+\frac{\sqrt{\pi / 2} b k}{\sqrt{n}}+(1+b) \sqrt{\frac{\log 1 / \delta}{2 n}} \tag{3}
\end{equation*}
$$

3 Proof of Theorem ??

In the following, we give the detailed proof of Theorem ??. For an i.i.d. given sample $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$, SimpleMKKM algorithm is to minimize an empirical error, i.e.,

$$
\begin{equation*}
1-\frac{1}{n} \sum_{i=1}^{n} \max _{\mathbf{y}_{i} \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}}\left(\mathbf{x}_{i}\right), \mathbf{C} \mathbf{y}_{i}\right\rangle_{\mathcal{H}^{k}} \tag{4}
\end{equation*}
$$

- X. Liu is with College of Computer, National University of Defense Technology, Changsha, 410073, China. E-mail: xinwangliu@nudt.edu.cn.
Manuscript received February 19, 2022.
where $\phi_{\boldsymbol{\gamma}}(\mathbf{x})=\left[\gamma_{1} \phi_{1}^{\top}(\mathbf{x}), \cdots, \gamma_{m} \phi_{m}^{\top}(\mathbf{x})\right]^{\top}$ is the feature map associated with the kernel function $K_{\gamma}(\cdot, \cdot)$ and $\Theta=$ $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{k}\right\}$ in which $\mathbf{e}_{1}, \cdots, \mathbf{e}_{k}$ form the orthogonal bases of \mathbb{R}^{k}.

Let

$$
\begin{equation*}
\hat{R}\left(\mathbf{C}, \boldsymbol{\gamma},\left\{\mathbf{K}_{p}\right\}_{p=1}^{m}\right)=1-\frac{1}{n} \sum_{i=1}^{n} \max _{\mathbf{y} i \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}}\left(\mathbf{x}_{i}\right), \mathbf{C} \mathbf{y}_{i}\right\rangle_{\mathcal{H}^{k}} \tag{5}
\end{equation*}
$$

Our proof idea is to upper bound

$$
\begin{equation*}
\sup _{\mathbf{C}, \boldsymbol{\gamma},\left\{\mathbf{K}_{p}\right\}_{p=1}^{m}}\left(\mathbb{E}\left[\hat{R}\left(\mathbf{C}, \boldsymbol{\gamma},\left\{\mathbf{K}_{p}\right\}_{p=1}^{m}\right)\right]-\hat{R}\left(\mathbf{C}, \boldsymbol{\gamma},\left\{\mathbf{K}_{p}\right\}_{p=1}^{m}\right)\right), \tag{6}
\end{equation*}
$$

and then upper bound the term $\hat{R}\left(\mathbf{C}, \gamma,\left\{\mathbf{K}_{p}\right\}_{p=1}^{m}\right)$ by the proposed objective.

We assume that the kernel mapping of each kernel is upper bounded, i.e., every entry of $\mathbf{K}_{p}(p \in\{1, \cdots, m\})$, is no larger than b. Let us define a function class first:

$$
\begin{align*}
\mathcal{F}= & \left\{f: \mathbf{x} \mapsto 1-\max _{\mathbf{y} \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}}(\mathbf{x}), \mathbf{C y}\right\rangle_{\mathcal{H}^{k}} \mid \boldsymbol{\gamma}^{\top} \mathbf{1}_{m}=1, \gamma_{p} \geq 0\right. \\
& \left.\mathbf{C} \in \mathcal{H}^{k},\left|K_{p}(\mathbf{x}, \tilde{\mathbf{x}})\right| \leq b, \forall p, \forall \mathbf{x}, \tilde{\mathbf{x}} \in \mathcal{X}\right\} \tag{7}
\end{align*}
$$

where \mathcal{H}^{k} stands for the multiple kernel Hilbert space.
Then, Eq. (??) becomes

$$
\begin{equation*}
\sup _{f \in \mathcal{F}}\left(\mathbb{E}[f(\mathbf{x})]-\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right)\right) \tag{8}
\end{equation*}
$$

It is obvious that

$$
\begin{align*}
\phi_{\boldsymbol{\gamma}}^{\top}(\mathbf{x}) \phi_{\boldsymbol{\gamma}}(\tilde{\mathbf{x}}) & =\sum_{p=1}^{m} \gamma_{p}^{2} \phi_{p}^{\top}\left(\mathbf{x}^{(p)}\right) \phi_{p}\left(\tilde{\mathbf{x}}^{(p)}\right) \\
& =\sum_{p=1}^{m} \gamma_{p}^{2} K_{p}\left(\mathbf{x}^{(p)}, \tilde{\mathbf{x}}^{(p)}\right) \tag{9}\\
& \geq-b \sum_{p=1}^{m} \gamma_{p}^{2} \geq-b \sum_{p=1}^{m} \gamma_{p} \\
& =-b .
\end{align*}
$$

In the same way, it is easy to prove $-b \leq \phi_{\gamma}^{\top}(\mathbf{x}) \phi_{\gamma}(\tilde{\mathbf{x}}) \leq b$. For \mathbf{x} in v-th cluster,

$$
\begin{align*}
& \left\langle\phi_{\boldsymbol{\gamma}}(\mathbf{x}), \mathbf{C y}\right\rangle_{\mathcal{H}} \\
& =\phi_{\gamma}^{\top}(\mathbf{x})\left(\frac{1}{\left|\mathbf{C}_{v}\right|} \sum_{i \in \mathbf{C}_{v}} \phi_{\boldsymbol{\gamma}}\left(\mathbf{x}_{i}\right)\right) \\
& =\sum_{p=1}^{m} \gamma_{p}^{2}\left(\frac{1}{\left|\mathbf{C}_{v}\right|} \sum_{i \in \mathbf{C}_{v}} \phi_{p}^{\top}\left(\mathbf{x}_{i}\right) \phi_{p}(\mathbf{x})\right) \tag{10}\\
& \geq-b \sum_{p=1}^{m} \gamma_{p}^{2} \geq-b \sum_{p=1}^{m} \gamma_{p} \geq-b
\end{align*}
$$

As a result, we have $f(\mathbf{x}, \tilde{\mathbf{x}}) \leq 1+b$.
By exploiting McDiarmid's concentration inequality, we have the following theorem [?].

Theorem 2. For any $\delta>0$, with probability at least $1-\delta$, the following holds for all $f \in \mathcal{F}$:

$$
\begin{equation*}
\mathbb{E}[f(\mathbf{x})]-\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right) \leq 2 \Re_{n}(\mathcal{F})+(1+b) \sqrt{\frac{\log 1 / \delta}{2 n}} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{R}_{n}(\mathcal{F})=\frac{1}{n} \mathbb{E}\left[\sup _{f \in \mathcal{F}} \sum_{i=1}^{n} \sigma_{i} f\left(\mathbf{x}_{i}\right)\right] \tag{12}
\end{equation*}
$$

and $\sigma_{1}, \ldots, \sigma_{n}$ are i.i.d. Rademacher random variables uniformly distributed from $\{-1,1\}$.

Now, we are going to upper bound $\Re_{n}(\mathcal{F})$. Since there is a maximization function in f, it is not easy to directly upper $\mathfrak{R}_{n}(\mathcal{F})$. Similar to the proof method in [?], we upper bound it by introducing Gaussian complexities:

$$
\begin{equation*}
\mathfrak{G}_{n}(\mathcal{F})=\frac{1}{n} \mathbb{E}\left[\sup _{f \in \mathcal{F}} \sum_{i=1}^{n} \beta_{i} f\left(\mathbf{x}_{i}\right)\right] \tag{13}
\end{equation*}
$$

where $\beta_{1}, \ldots, \beta_{n}$ are i.i.d. Gaussian random variables with zero mean and unit standard deviation.

The following two lemmas [?] will be used in our proof.
Lemma 1.

$$
\begin{equation*}
\mathfrak{R}_{n}(\mathcal{F}) \leq \sqrt{\pi / 2} \mathfrak{G}_{n}(\mathcal{F}) \tag{14}
\end{equation*}
$$

Lemma 2. Let $G_{f}=\sum_{i=1}^{n} \beta_{i} G\left(\mathbf{x}_{i}, f\right)$ and $H_{f}=$ $\sum_{i=1}^{n} \beta_{i} H\left(\mathbf{x}_{i}, f\right)$ be two zero mean, separable Gaussian processes. If for all $f_{1}, f_{2} \in \mathcal{F}$,

$$
\begin{equation*}
\mathbb{E}\left[\left(G_{f_{1}}-G_{f_{2}}\right)^{2}\right] \leq \mathbb{E}\left[\left(H_{f_{1}}-H_{f_{2}}\right)^{2}\right] \tag{15}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\mathbb{E}\left[\sup _{f \in \mathcal{F}} G_{f}\right] \leq \mathbb{E}\left[\sup _{f \in \mathcal{F}} H_{f}\right] \tag{16}
\end{equation*}
$$

In our case, let

$$
\begin{equation*}
G_{\boldsymbol{\gamma}, \mathbf{C}}=\sum_{i=1}^{n} \beta_{i}\left(1-\max _{\mathbf{y}_{i} \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}}\left(\mathbf{x}_{i}\right), \mathbf{C} \mathbf{y}_{i}\right\rangle_{\mathcal{H}^{k}}\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{\gamma, \mathbf{C}}=\sum_{i=1}^{n} \phi_{\gamma}^{\top}\left(\mathbf{x}_{i}\right) \sum_{v=1}^{k} \beta_{i v} \mathbf{C} \mathbf{e}_{v} \tag{18}
\end{equation*}
$$

we are going to prove that

$$
\begin{equation*}
\mathbb{E}_{\beta}\left[\left(G_{\boldsymbol{\gamma}_{1}, \mathbf{C}_{1}}-G_{\boldsymbol{\gamma}_{2}, \mathbf{C}_{2}}\right)^{2}\right] \leq \mathbb{E}_{\beta}\left[\left(H_{\boldsymbol{\gamma}_{1}, \mathbf{C}_{1}}-H_{\boldsymbol{\gamma}_{2}, \mathbf{C}_{2}}\right)^{2}\right] \tag{19}
\end{equation*}
$$

Specifically, for any $f_{1}, f_{2} \in \mathcal{F}$, we have

$$
\begin{align*}
& {\left[\left(1-\max _{\mathbf{y} \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}_{1}}(\mathbf{x}), \mathbf{C}_{1} \mathbf{y}\right\rangle_{\mathcal{H}^{k}}\right)-\left(1-\max _{\mathbf{y} \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}_{2}}(\mathbf{x}), \mathbf{C}_{2} \mathbf{y}\right\rangle_{\mathcal{H}^{k}}\right)\right]^{2}} \\
& =\left(\max _{\mathbf{y} \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}_{1}}(\mathbf{x}), \mathbf{C}_{1} \mathbf{y}\right\rangle_{\mathcal{H}^{k}}-\max _{\mathbf{y} \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}_{2}}(\mathbf{x}), \mathbf{C}_{2} \mathbf{y}\right\rangle_{\mathcal{H}^{k}}\right)^{2} \\
& \leq\left(\max _{\mathbf{y} \in \Theta}\left(\phi_{\boldsymbol{\gamma}_{1}}^{\top}(\mathbf{x}) \mathbf{C}_{1} \mathbf{y}-\phi_{\boldsymbol{\gamma}_{2}}^{\top}(\mathbf{x}) \mathbf{C}_{2} \mathbf{y}\right)\right)^{2} \\
& =\left(\max _{\mathbf{y} \in \Theta}\left(\phi_{\boldsymbol{\gamma}_{1}}^{\top}(\mathbf{x}) \mathbf{C}_{1}-\phi_{\boldsymbol{\gamma}_{2}}^{\top}(\mathbf{x}) \mathbf{C}_{2}\right) \mathbf{y}\right)^{2} \\
& =\max _{\mathbf{y} \in \Theta}\left(\sum_{v=1}^{k} y_{v}\left(\phi_{\boldsymbol{\gamma}_{1}}^{\top}(\mathbf{x}) \mathbf{C}_{1}-\phi_{\boldsymbol{\gamma}_{2}}^{\top}(\mathbf{x}) \mathbf{C}_{2}\right) \mathbf{e}_{v}\right)^{2} \\
& \leq \sum_{v=1}^{k}\left(\left(\phi_{\boldsymbol{\gamma}_{1}}^{\top}(\mathbf{x}) \mathbf{C}_{1}-\phi_{\boldsymbol{\gamma}_{2}}^{\top}(\mathbf{x}) \mathbf{C}_{2}\right) \mathbf{e}_{v}\right)^{2} \tag{20}
\end{align*}
$$

where the last inequality holds because $\sum_{v=1}^{k} y_{v}=1$.
Thus, we have

$$
\begin{align*}
& \mathbb{E}_{\beta} {\left[\left(G_{\boldsymbol{\gamma}_{1}, \mathbf{C}_{1}}-G_{\boldsymbol{\gamma}_{2}, \mathbf{C}_{2}}\right)^{2}\right] } \\
&=\mathbb{E}_{\beta}\left[\left(\sum _ { i = 1 } ^ { n } \beta _ { i } \left[\left(1-\max _{\mathbf{y}_{i} \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}_{1}}\left(\mathbf{x}_{i}\right), \mathbf{C}_{1} \mathbf{y}_{i}\right\rangle_{\mathcal{H}^{k}}\right)\right.\right.\right. \\
&\left.\left.\left.\quad-\left(1-\max _{\mathbf{y}_{i} \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}_{2}}\left(\mathbf{x}_{i}\right), \mathbf{C}_{2} \mathbf{y}_{i}\right\rangle_{\mathcal{H}^{k}}\right)\right]\right)^{2}\right] \\
&=\sum_{i=1}^{n}\left(\max _{\mathbf{y}_{i} \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}_{1}}\left(\mathbf{x}_{i}\right), \mathbf{C}_{1} \mathbf{y}_{i}\right\rangle_{\mathcal{H}^{k}}-\max _{\mathbf{y}_{i} \in \Theta}\left\langle\phi_{\boldsymbol{\gamma}_{2}}\left(\mathbf{x}_{i}\right), \mathbf{C}_{2} \mathbf{y}_{i}\right\rangle_{\mathcal{H}^{k}}\right)^{2} \\
& \leq \sum_{i=1}^{n} \sum_{v=1}^{k}\left(\left(\phi_{\boldsymbol{\gamma}_{1}}^{\top}\left(\mathbf{x}_{i}\right) \mathbf{C}_{1}-\phi_{\boldsymbol{\gamma}_{2}}^{\top}\left(\mathbf{x}_{i}\right) \mathbf{C}_{2}\right) \mathbf{e}_{v}\right)^{2} \\
&=\mathbb{E}_{\beta}\left[\left(H_{\boldsymbol{\gamma}_{1}, \mathbf{C}_{1}}-H_{\boldsymbol{\gamma}_{2}, \mathbf{C}_{2}}\right)^{2}\right] . \tag{21}
\end{align*}
$$

Using Hölder's inequality and Jensen's inequality, we have

$$
\begin{align*}
\mathbb{E}\left[\sup _{f \in \mathcal{F}} H_{f}\right] & =\mathbb{E}_{\beta}\left[\sup _{\mathbf{C}, \gamma} \sum_{i=1}^{n} \sum_{v=1}^{k} \beta_{i v} \phi_{\gamma}^{\top}\left(\mathbf{x}_{i}\right) \mathbf{C} \mathbf{e}_{v}\right] \\
& \leq \mathbb{E}_{\beta}\left[b \sum_{v=1}^{k}\left|\sum_{i=1}^{n} \beta_{i v}\right|\right] \tag{22}\\
& \leq b k \sqrt{n} .
\end{align*}
$$

Combining Lemmas ?? and ??, Eqs. (??) (??), and (??), we have

$$
\begin{aligned}
\Re_{n}(\mathcal{F}) & \leq \frac{1}{n} \sqrt{\pi / 2} \mathbb{E}\left[\sup _{f \in \mathcal{F}} G_{\boldsymbol{\beta}, \mathbf{C}}\right] \\
& \leq \frac{1}{n} \sqrt{\pi / 2} \mathbb{E}\left[\sup _{f \in \mathcal{F}} H_{\boldsymbol{\beta}, \mathbf{C}}\right] \\
& \leq \frac{1}{n} \sqrt{\pi / 2}(b k \sqrt{n}) \\
& =\frac{\sqrt{\pi / 2} b k}{\sqrt{n}}
\end{aligned}
$$

Putting the above inequality into Theorem ??, with probability at least $1-\delta$, the following holds for all $f \in \mathcal{F}$:

$$
\begin{equation*}
\mathbb{E}[f(\mathbf{x})] \leq \frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right)+\frac{\sqrt{\pi / 2} b k}{\sqrt{n}}+(1+b) \sqrt{\frac{\log 1 / \delta}{2 n}} \tag{23}
\end{equation*}
$$

This completes the proof.

