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Appendix of “SimpleMKKM: Simple Multiple
Kernel K-means”
Xinwang Liu, Senior Member, IEEE

F

1 SUMMARY OF THE APPENDIX

In this appendix, we provide the generalization analysis of
the proposed algorithm and give the detailed proof.

2 THE GENERALIZATION ANALYSIS

Let Ĉ = [Ĉ1, · · · , Ĉk] be the learned matrix composed of
the k centroids and γ̂ the learned kernel weights by the pro-
posed SimpleMKKM, where Ĉv = 1

|Ĉv|

∑
j∈Ĉv

φγ̂(xj), 1 ≤
c ≤ k. By defining Θ = {e1, · · · , ek}, effective Sim-
pleMKKM clustering should make the following error small

1− Ex

[
maxy∈Θ〈φγ̂(x), Ĉy〉Hk

]
, (1)

where φγ̂(x) = [γ̂1φ
>
1 (x), ·, γ̂mφ>m(x)]> is the learned fea-

ture map associated with the kernel function Kγ̂(·, ·) and
e1, · · · , ek form the orthogonal bases of Rk. Intuitively, it
says the expected alignment between test points and their
closest centroid should be high. We show how the proposed
algorithm achieves this goal.

Let us define a function class first:

F =
{
f : x 7→ 1−maxy∈Θ〈φγ(x),Cy〉Hk

∣∣∣γ>1m = 1,

γp ≥ 0,C ∈ Hk, |Kp(x, x̃)| ≤ b, ∀p,∀x ∈ X
}
,

(2)
where Hk stands for the multiple kernel Hilbert space.

Theorem 1. For any δ > 0, with probability at least 1 − δ, the
following holds for all f ∈ F :

E [f(x)] ≤ 1

n

n∑
i=1

f(xi) +

√
π/2bk√
n

+ (1 + b)

√
log 1/δ

2n
.

(3)

3 PROOF OF THEOREM ??
In the following, we give the detailed proof of Theorem ??.
For an i.i.d. given sample {xi}ni=1, SimpleMKKM algorithm
is to minimize an empirical error, i.e.,

1− 1

n

n∑
i=1

max
yi∈Θ

〈φγ(xi),Cyi〉Hk , (4)
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where φγ(x) = [γ1φ
>
1 (x), · · · , γmφ>m(x)]> is the feature

map associated with the kernel function Kγ(·, ·) and Θ =
{e1, · · · , ek} in which e1, · · · , ek form the orthogonal bases
of Rk.

Let

R̂(C,γ, {Kp}mp=1) = 1− 1

n

n∑
i=1

max
yi∈Θ

〈φγ(xi),Cyi〉Hk . (5)

Our proof idea is to upper bound

sup
C,γ,{Kp}m

p=1

(
E
[
R̂(C,γ, {Kp}mp=1)

]
− R̂(C,γ, {Kp}mp=1)

)
,

(6)
and then upper bound the term R̂(C,γ, {Kp}mp=1) by the
proposed objective.

We assume that the kernel mapping of each kernel is
upper bounded, i.e., every entry of Kp (p ∈ {1, · · · ,m}), is
no larger than b. Let us define a function class first:

F =
{
f : x 7→ 1−max

y∈Θ
〈φγ(x),Cy〉Hk

∣∣∣γ>1m = 1, γp ≥ 0,

C ∈ Hk, |Kp(x, x̃)| ≤ b, ∀p,∀x, x̃ ∈ X
}
,

(7)
where Hk stands for the multiple kernel Hilbert space.

Then, Eq. (??) becomes

sup
f∈F

(
E [f(x)]− 1

n

n∑
i=1

f(xi)

)
. (8)

It is obvious that

φ>γ (x)φγ(x̃) =
∑m

p=1
γ2
pφ

>
p (x(p))φp(x̃

(p))

=
∑m

p=1
γ2
pKp(x

(p), x̃(p))

≥ −b
∑m

p=1
γ2
p ≥ −b

∑m

p=1
γp

= −b.

(9)

In the same way, it is easy to prove −b ≤ φ>γ (x)φγ(x̃) ≤ b.
For x in v-th cluster,

〈φγ(x),Cy〉H
= φ>γ (x)

(
1

|Cv|
∑

i∈Cv

φγ(xi)

)
=

m∑
p=1

γ2
p

(
1

|Cv|
∑

i∈Cv

φ>p (xi)φp(x)

)

≥ −b
m∑
p=1

γ2
p ≥ −b

m∑
p=1

γp ≥ −b.

(10)
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As a result, we have f(x, x̃) ≤ 1 + b.
By exploiting McDiarmid’s concentration inequality, we

have the following theorem [?].

Theorem 2. For any δ > 0, with probability at least 1 − δ, the
following holds for all f ∈ F :

E [f(x)]− 1

n

n∑
i=1

f(xi) ≤ 2Rn(F) + (1 + b)

√
log 1/δ

2n
,

(11)
where

Rn(F) =
1

n
E

[
sup
f∈F

∑n

i=1
σif(xi)

]
(12)

and σ1, . . . , σn are i.i.d. Rademacher random variables uniformly
distributed from {−1, 1}.

Now, we are going to upper bound Rn(F). Since there is
a maximization function in f , it is not easy to directly upper
Rn(F). Similar to the proof method in [?], we upper bound
it by introducing Gaussian complexities:

Gn(F) =
1

n
E
[
supf∈F

∑n

i=1
βif(xi)

]
, (13)

where β1, . . . , βn are i.i.d. Gaussian random variables with
zero mean and unit standard deviation.

The following two lemmas [?] will be used in our proof.

Lemma 1.

Rn(F) ≤
√
π/2Gn(F). (14)

Lemma 2. Let Gf =
∑n
i=1 βiG(xi, f) and Hf =∑n

i=1 βiH(xi, f) be two zero mean, separable Gaussian pro-
cesses. If for all f1, f2 ∈ F ,

E
[
(Gf1 −Gf2)2

]
≤ E[(Hf1 −Hf2)2]. (15)

Then,

E
[
supf∈F Gf

]
≤ E

[
supf∈F Hf

]
. (16)

In our case, let

Gγ,C =
n∑
i=1

βi

(
1− max

yi∈Θ
〈φγ(xi),Cyi〉Hk

)
(17)

and

Hγ,C =
n∑
i=1

φ>γ (xi)
k∑
v=1

βivCev. (18)

we are going to prove that

Eβ
[
(Gγ1,C1 −Gγ2,C2)2

]
≤ Eβ

[
(Hγ1,C1 −Hγ2,C2)2

]
.
(19)

Specifically, for any f1, f2 ∈ F , we have[(
1−max

y∈Θ

〈
φγ1

(x),C1y
〉
Hk

)
−
(

1−max
y∈Θ

〈
φγ2

(x),C2y
〉
Hk

)]2

=

(
max
y∈Θ

〈
φγ1

(x),C1y
〉
Hk −max

y∈Θ

〈
φγ2

(x),C2y
〉
Hk

)2

≤
(

max
y∈Θ

(
φ>γ1

(x)C1y − φ>γ2
(x)C2y

))2

=

(
max
y∈Θ

(
φ>γ1

(x)C1 − φ>γ2
(x)C2

)
y

)2

= max
y∈Θ

(
k∑
v=1

yv
(
φ>γ1

(x)C1 − φ>γ2
(x)C2

)
ev

)2

≤
∑k

v=1

((
φ>γ1

(x)C1 − φ>γ2
(x)C2

)
ev
)2
,

(20)
where the last inequality holds because

∑k
v=1 yv = 1.

Thus, we have

Eβ
[(
Gγ1,C1 −Gγ2,C2

)2]
=Eβ

[(∑n

i=1
βi
[(

1−maxyi∈Θ

〈
φγ1

(xi),C1yi
〉
Hk

)
−
(

1−maxyi∈Θ

〈
φγ2

(xi),C2yi
〉
Hk

)])2
]

=
n∑
i=1

(
max
yi∈Θ

〈
φγ1

(xi),C1yi
〉
Hk − max

yi∈Θ

〈
φγ2

(xi),C2yi
〉
Hk

)2

≤
n∑
i=1

k∑
v=1

((
φ>γ1

(xi)C1 − φ>γ2
(xi)C2

)
ev
)2

=Eβ
[
(Hγ1,C1 −Hγ2,C2)2

]
.

(21)
Using Hölder’s inequality and Jensen’s inequality, we have

E
[
supf∈F Hf

]
= Eβ

[
sup
C,γ

n∑
i=1

k∑
v=1

βivφ
>
γ (xi)Cev

]

≤ Eβ

[
b

k∑
v=1

∣∣∣∑n

i=1
βiv

∣∣∣]
≤ bk

√
n.

(22)

Combining Lemmas ?? and ??, Eqs. (??) (??), and (??), we
have

Rn(F) ≤ 1

n

√
π/2E[sup

f∈F
Gβ,C]

≤ 1

n

√
π/2E

[
sup
f∈F

Hβ,C

]
≤ 1

n

√
π/2

(
bk
√
n
)

=

√
π/2bk√
n

.

Putting the above inequality into Theorem ??, with proba-
bility at least 1− δ, the following holds for all f ∈ F :

E [f(x)] ≤ 1

n

n∑
i=1

f(xi) +

√
π/2bk√
n

+ (1 + b)

√
log 1/δ

2n
.

(23)
This completes the proof.


