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Abstract—Although demonstrating great success, previous multi-view unsupervised feature selection (MV-UFS) methods often
construct a view-specific similarity graph and characterize the local structure of data within each single view. In such a way, the
cross-view information could be ignored. In addition, they usually assume that different feature views are projected from a latent feature
space while the diversity of different views cannot be fully captured. In this work, we resent a MV-UFS model via cross-view local
structure preserved diversity and consensus learning, referred to as CvLP-DCL briefly. In order to exploit both the shared and
distinguishing information across different views, we project each view into a label space, which consists of a consensus part and a
view-specific part. Therefore, we regularize the fact that different views represent same samples. Meanwhile, a cross-view similarity
graph learning term with matrix-induced regularization is embedded to preserve the local structure of data in the label space. By
imposing the l2,1-norm on the feature projection matrices for constraining row sparsity, discriminative features can be selected from
different views. An efficient algorithm is designed to solve the resultant optimization problem and extensive experiments on six publicly
datasets are conducted to validate the effectiveness of the proposed CvLP-DCL.

Index Terms—Multi-view unsupervised feature selection, local structure preservation, feature projection, diversity and consensus
learning, cross-view similarity graph.

F

1 INTRODUCTION

W Ith the rapid development of data acquisition sensors
and data processing technologies, data are often rep-

resented by different feature descriptors. For an instance, in
image/video processing, different visual descriptors such as
Scale Invariant Feature Transform (SIFT) [1] , Local Binary
Patterns (LBP) [2], and Histogram of Oriented Gradient
(HOG) [3] are often used to describe each image/video
frame from different views. In biomedical research, for
different cells, the chemical response as well as the chemical
structure can be used to represent a certain drug, while the
sequence and gene expression values can represent a certain
protein in different aspects [4], [5]. In general, the data
represented by multiple views are regarded as multi-view
data in data mining and machine learning communities. In
the last decades, a variety of multi-view learning techniques
have been put forward to process the multi-view data [6],

• C. Tang and L. Wang are with the School of Computer Science,
China University of Geosciences, Wuhan 430074, P.R. China (E-mail:
tangchang@cug.edu.cn; lizhe.wang@gmail.com).

• X. Zheng and X. Liu are with the School of Computer, National Uni-
versity of Defense Technology, Changsha 410073, P.R. China (E-mail:
zxnudt@gmail.com, xinwangliu@nudt.edu.cn).

• W. Zhang is with Shandong Provincial Key Laboratory of Computer
Networks, Shandong Computer Science Center (National Supercomputer
Center in Jinan), Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250000, P.R. China (E-mail: wzhang@qlu.edu.cn).

• J. Zhang is with the College of Software, Beihang University, Beijing
100191, P.R. China (E-mail: zhang jing@buaa.edu.cn).

• J. Xiong is with School of Business Administration, Southwestern U-
niversity of Finance and Economics, Chengdu, Sichuan, 611130, China
(E-mail: xiongjian2017@swufe.edu.cn).

Manuscript received xx xx, xxxx; revised August xx, xxxx. (Corresponding
authors: Xinwang Liu and Wei Zhang)

[7], [8], [9], [10], [11], [12]. As a special case, multi-view
unsupervised feature selection (MV-UFS), which promotes
many learning task by selecting a small feature subset
from original multi-view data, has obtained more and more
attention since different views of data are usually with high
dimensionality and processing these data is confronted with
the curse of dimensionality problem [13]. In addition, it is
a challenging and time-consuming task to obtain the labels
from large number of data instances.

In the past few years, a variety of MV-UFS methods
have been introduced and they can be mainly categorized
into two classes. The first class of approaches first combines
different feature views together and then uses traditional
single-view UFS methods such as Laplacian score [14], trace
ratio [15], spectral feature selection [16] and minimum re-
dundancy spectral feature selection [17] are carried out on
the concentrated data. This kind of methods cannot exploit
the underlying correlations between different views. Instead
of concentrating different views, the other class of MV-UFS
methods aim to build models from multi-view data directly,
and they often excavate the diversity and complementary
information to promote the feature selection performance.
Typical methods in this class include Adaptive Multi-View
Feature Selection (AMFS) method [18], Adaptive Unsuper-
vised Multi-View Feature Selection (AUMFS) [19], Adaptive
Similarity and View Weight (ASVW) learning for Multi-
View Feature Selection [20], Robust Multi-View Feature
Selection (RMFS) [21] and Consensus Learning Guided
Multi-view Unsupervised Feature Selection (CGMV-UFS)
[22]. Since the diversity and complementary information
are important for multi-view learning, MV-UFS methods
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in the second class often perform better than those in the
first category. In this work, we focus on the second class of
methods which our proposed approach belongs to.

Without label information, the local properties of sam-
ples usually act as a priori to serve the feature selection task.
Therefore, traditional methods usually use various similar-
ity graphs to characterize the local geometrical manifold
structure of data and then rank the importance of each
feature. However, previous approaches often construct a
view-specific similarity graph within each single view, while
the cross view information could be ignored. In addition, in
order to capture the shared structure of different views, a
certain consensus latent feature space is often learned and
different feature views are assumed to be generated from
this space while the effect of the diversity and noises of
different views on the projection has not been taken into
account. In order to address above two issues, we present a
cross-view locality preserved diversity and consensus learn-
ing model for MV-UFS, referred to as CvLP-DCL briefly.
Instead of projecting multiple views into a consensus latent
feature space, we project each view of original data into a
label space. In order to capture both the shared and distin-
guishing information of different views, the label apace is
relaxed to a consensus part and a diversity part. In such
a way, different feature views are regularized to represent
the same samples. Different to previous multi-view learning
methods which exploit the common information and speci-
ficity of different views in the original feature space, we
capture these properties in the label space, which is more
straightforward and reasonable since multiple views must
share the same sample labels. Meanwhile, instead of using
only a view-specific similarity graph to preserve the local
structure of different samples in a single view separately, we
integrate a cross-view similarity graph learning term with
matrix-induced regularization into the model.

This manuscript is an extension of the AAAI conference
version [23], and it differs [23] with following significant
additional contributions:

• Instead of directly combining the inter-view simi-
larity graph between pairwise views and the intra-
view similarity graph in each single view, we design
a cross-view similarity graph learning term with
matrix-induced regularization to learn a collabora-
tive similarity graph from each single graph for
preserving the locality of data for MV-UFS;

• By using the matrix-induced regularization, the im-
portance of different views can be adaptively learned
for serving the cross-view similarity graph learning;

• More extensive experimental comparisons are con-
ducted to evaluate and analyze the proposed
method.

2 RELATED WORK

In this part, we briefly introduce some recent research works
about MV-UFS. In [18], Wang et al. proposed a MV-UFS
method for human motion retrieval, in which the multi-
view of local feature descriptors are used to represent hu-
man motion data. For each view of data, a graph Lapla-
cian matrix is generated, then these view-specific Laplacian
matrices are linearly combined with weights to exploit

complementary information of different views. Finally, trace
ratio criteria is deployed to eliminate redundant features.
In order to identify important feature dimensions, AUMFS
[19] uses an l2,1-norm regularized sparse regression model
to project original data into cluster labels. In AUMFS, the
l2,1-norm is used to impose row sparsity on the projection
matrix for measuring feature importance. In addition, the
local geometrical structure of data is preserved by the
linearly combined weighted view-specific graph Laplacian
matrices. In RMFS [21], robust multi-view k-means is used
to obtain the pseudo labels for sparse feature selection,
the pseudo labels are generated by utilizing the heteroge-
neous information from multiple views. By considering that
previous methods such as AMFS and AUMFS ignore the
underlying shared structure across different feature views,
and the pre-computed similarity matrices are not accurate
for characterizing the local structure of data, ASVW [20]
leverages the learning mechanism to adaptively learn a
similarity graph shared by different views. To further learn
a compact feature representation, Wan et al. [24] proposed
to reduce original high-dimensional data to low dimensions
and unified different views to a combination weight matrix.
In order to capture both the common and complementary
information of different views, CGMV-UFS [22] constructs
a view-dependent graph Laplacian matrix for each view for
intra-view local structure preservation. Meanwhile, CGMV-
UFS learns a common label indicator matrix to regularize
that different feature views represent the same samples.
However, as aforementioned, almost all of previous meth-
ods are confronted with at least two issues, i.e., the cross-
view local structure is not taken into consideration and the
assumption of projecting multi-view data into a single label
space is too strict since there are noises and specificity in
each single view.

3 PROPOSED METHOD

3.1 Notations
Throughout this paper, matrices and vectors are denoted
as boldface capital letters and boldface lower case letter-
s, respectively. For an arbitrary matrix M ∈ Rm×n, Mij

denotes its (i, j)-th entry, mi and mj denote its i-th row
and j-th column, respectively. Tr(M) is the trace of M if
M is square and M> is the transpose of M. Im is the
identity matrix with size m × m (denoted by I if the
size is obviously known). The l2,1-norm of matrix M is

defined as ||M||2,1 =
∑m
i=1 ||mi|| =

∑m
i=1

√∑n
j=1Mij

2.

||M||F =
√∑m

i=1

∑n
j=1Mij

2 is the well-known Frobenius

norm of M. ||M||1 =
m∑
i=1

n∑
j=1
|Mij | represents the l1-norm of

matrix M, i.e., the absolute summation of its entries.
Supposing there are N data samples {xi}Ni=1 which

belong to c classes, and they are characterized by V d-
ifferent views of features, the data matrix is denoted as
X = [x1, · · · , xN ] ∈ Rd×N . Let xvi denote the v-th view
of the i-th sample, then the complete i-th sample xi =
[x1
i ; · · · ; xVi ] ∈ Rd consists of features from V views, and

the dimension of the v-th view xvi ∈ Rdv is dv , such
that d =

∑V
v=1 dv . The data matrix of the v-th view

can be represented as Xv = [xvi , · · · , xvN ] ∈ Rdv×N , then
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X = [Xv; · · · ; Xv]. The task of MV-UFS is to select the top K
discriminative features from those d features without label
information of data instances.

3.2 Formulation of CvLP-DCL
Although a lot of data consist of multi-view heterogeneous
features, they still share the same semantic information.
In order to capture this common information, we project
different views of features into a shared label space, which
represent original data in a relatively higher level manner.
Considering that each single view contains both the com-
mon information and distinguishing specificity, we relax the
common label space to a consensus part and a diversity part,
this can be mathematically formulated as follows:

min
Wv,Ȳ,Yv

V∑
v=1

L(Xv,Wv, Ȳ,Yv) + ξ
V∑
v=1

R(Wv,Yv), (1)

where L(Xv,Wv, Ȳ,Yv) is the projection operator for the v-
th view, and R(Wv,Yv) denotes certain regularization on
Wv and Yv . ξ is a positive constant for balancing the two
terms. Wv ∈ Rdv×c is the projection matrix for the v-th view,
Ȳ ∈ RN×c and Yv ∈ RN×c represents the consensus part
and the diversity part of the label space, respectively. Since Ȳ
denotes the pure label indicator matrix of data, we constrain
it as Ȳ ∈ {0, 1}N×c. However, it is difficult to solve Eq.
(1) with this discrete constrain, we use the orthogonality
constraint instead, i.e., Ȳ>Ȳ = I, Ȳ ≥ 0. In this work, we use
the regression model to formulate the projection process,
which can be written as:

L(Xv,Wv, Ȳ,Yv) = ||Xv>Wv − (Ȳ + Yv)||2F . (2)

In Eq. (2), the projected label space is decomposed into a
consensus part for capturing the consensus label represen-
tation of different views and a diversity part for capturing
the distinct diversity of each view.

In order to select discriminative features, we impose row
sparsity on Wv by using the l2,1-norm regularization. In
addition, although each view contains some view-specific
information, they still represent the same data, and thus the
consensus label representation should be the main part. For
Yv , it just denotes the distinct variance or noisy information
for the v-th view. Therefore, we do not impose the orthog-
onality constraint on Yv , but impose the l1-norm instead to
constrain its sparsity. Finally, R(Wv,Yv) can be formulated
as:

R(Wv,Yv) = ||Wv||2,1 + ||Yv||1. (3)

For unsupervised feature selection [25], [26], [27], [28],
[29], the local geometrical structure works as a crucial priori.
In our work, we also preserve the local geometrical structure
of data by learning a collaborative similarity graph from
different views. Given V similarity graphs constructed from
V different views {Sv}Vv=1, we formulate the collaborative
similarity graph learning as follows:

min
S̄,γ
‖S̄−

V∑
v=1

γvSv‖2F , s.t.γv > 0,∀v, S̄1 = 1, S̄ij ≥ 0, (4)

where S̄ is the collaborative similarity graph which needs to
be learned, γ = [γ1, γ2, · · · , γV ] ∈ RV×1 is a vector which

consists of the view weights of different views, Sv is the
sample similarity matrix and each of its entry is defined as
Svij = exp(−||xvi − xvj ||2/σ2) .

By using the learned collaborative similarity graph, we
regularize that if two data samples are similar to each other,
their learned label vectors should also be close to each other,
of which the regularization can be derived as:

min
S̄,Ȳ

N∑
i,j=1

||ȳi − ȳj ||22S̄ij = min
S̄,Ȳ

Tr(Ȳ>LS̄Ȳ), (5)

where LS̄ = D̄− S̄ is the cross-view Laplacian matrix and D̄
is a diagonal matrix with its i-th diagonal entry calculated
as the sum of the i-th row in S̄, i.e., D̄ii =

∑N
j=1 S̄ij .

In order to prevent two highly similar views from be-
ing allocated with large weights simultaneously, we add a
matrix-induced regularization term to learn diverse weights
for different views, and the model can be mathematically
formulated as:

min
γ∈RV×1

+

V∑
p,q=1

γpγqMpq = γ>Mγ, s.t. γ>1 = 1, (6)

where M is a matrix which measures the correlation be-
tween different views. For two similarity matrices Sp and
Sq , if they are highly similar to each other, the corresponding
row/columns of two matrices will be highly related, and the
inner product of the row/column vectors from two matrices
should be large. Therefore, the sum of all the inner product
values, i.e., Tr(SpSq) should also be large. As a result, we
define Mpq = Tr(Sp>Sq).

By combining Eq.(2)-Eq.(6) together, we obtain the math-
ematical optimization model of CvLP-DCL as follows:

min
Wv,Ȳ,Yv,S̄,γ

V∑
v=1

{
‖(Xv>)Wv − (Ȳ + Yv)‖2F

+γv‖Yv‖1 + (1− γv)‖Wv‖2,1}

+ λTr(Ȳ>LS̄Ȳ) + α‖S̄−
V∑
v=1

γvSv‖2F +
β

2
γ>Mγ

s.t. Ȳ>Ȳ = I, Ȳ ≥ 0.Mpq = Tr(Sp>Sq),

γ>1 = 1, γv > 0, ∀v. S̄1 = 1, S̄ij ≥ 0.
(7)

As can be seen from Eq.(7), we use the learned view weights
to regularize ‖Yv‖1 and ‖Wv‖2,1 instead of fixing their
hyper parameters. There are two advantages: On one hand,
if γv is large, it means that the v-th view is important for
clustering, i.e., the v-th view is more likely to be close to
the consensus of different views. Therefore, the specificity
of the v-th view (represented as Yv) should not be ob-
vious. On the other hand, if the v-th view is important,
its features should also be allocated with large weights
during the feature selection process, i.e., ||Wv||2,1 should
be large. Therefore, we put γv and 1 − γv on Yv and
Wv respectively to regularize the diversity distribution and
feature selection capability. Moreover, the local geometrical
structure of data samples is preserved in the label space via
the learned collaborative similarity graph Laplacian regu-
larization term. In our CvLP-DCL model, the label learning,
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feature selection and collaborative similarity graph learning
are integrated into a unified framework, in which different
learning tasks can promote each other to obtain there final
optimized solutions. Note that the work in [30] also learns a
consensus guidance for unsupervised feature selection, our
proposed model is different to [30] in following aspects: 1)
Although the work in [30] also maps original features into
label space for multi-view feature selection, it dose not take
the diversity information of different views into account
during the mapping process. In our proposed CvLP-DCL,
we decompose the mapped label space into two parts: a
consensus part which is shared by all of the views and a
diversity part which is unique for each single view; 2) In
[30], different basic partitions must be given in advance,
while CvLP-DCL automatically generates label matrix dur-
ing the learning process; 3) In CvLP-DCL, we propose a
collaborative similarity graph learning model from different
views, the learned similarity graph is used to preserve the
local geometrical structure of original data in the label space;
4) In addition, we use a matrix-induced regularization term
to learn diverse weights for different feature views, which
can prevent two highly similar views from being allocated
with large weights simultaneously.

3.3 Optimal Solution of CvLP-DCL
The variables need to be solved in Eq.(7) include the pro-
jection matrices Wv , label matrices Ȳ and Yv , collaborative
similarity matrix S̄, and the vector γ which consists of view
weights. Since these variables are related to each other, it is
difficult to solve them at one step. Hence, we design an alter-
native iterative algorithm to solve the optimization problem.
At each time, we optimize the objective function w.r.t one
variable with others fixed and the procedure repeats until
meeting the convergence condition.

3.3.1 Optimize Ȳ by Fixing Other Variables
When other variables are fixed, Ȳ can be obtained by solving
the following problem:

min
Ȳ

V∑
v=1

‖Xv>Wv − (Ȳ− Yv)‖2F + λTr(Ȳ>LsȲ)

s.t. Ȳ>Ȳ = I, Ȳ ≥ 0.

(8)

Then, Eq.(8) can be rewritten as the following equal trace
form:

min
Ȳ

V∑
v=1

Tr(−2(Wv)
>XvȲ + 2(Yv)>Ȳ) + Tr(Ȳ>Ȳ)

+ λTr(Ȳ>LS̄Ȳ),

s.t. Ȳ>Ȳ = I, Ȳ ≥ 0.

(9)

By adding an extra penalty term ρ||Ȳ>Ȳ − I||2F and in-
troduce a Lagrange multiplier Φ to eliminate the orthogonal
constraint and remove the inequality constraint, respective-
ly. Then we have the following Lagrange function:

F(Ȳ,Φ) =
V∑
v=1

Tr(−2(Wv)
>XvȲ + 2(Yv)>Ȳ) + Tr(Ȳ>Ȳ)

+ λTr(Ȳ>LS̄Ȳ) + ρ||Ȳ>Ȳ− I||2F − Tr(Φ>Ȳ).
(10)

By taking the derivative of F(Ȳ,Φ) w.r.t Ȳ, and setting it to
zero, we have

∂F (Ȳ,Φ)

∂Ȳ
=

V∑
v=1

2Yv − 2(Xv)>Wv + 2λLS̄Ȳ

+ 2Ȳ + 4ρȲ(Ȳ>Ȳ− I)− Φ = 0.

(11)

Then, we can get Φ:

Φ = 2(I + λLS̄)Ȳ + 4ρȲ(Ȳ>Ȳ− I) +
V∑
v=1

2Yv − 2(Xv)>Wv

(12)
Based on the Karush-Kuhn-Tucker condition [31], i.e.,
Φij Ȳij = 0, we get the following equation:

[2(I + λLS̄)Ȳ + 4ρȲ(Ȳ>Ȳ− I) +
V∑
v=1

2Yv − 2Xv>Wv]ij Ȳij = 0.

(13)
Then, Ȳ can be updated via following strategy:

Ȳij ← Ȳij
[2ρȲ +

V∑
v=1

Xv>Wv]ij

[(I + λLS̄)Ȳ + 2ρȲȲ>Ȳ +
V∑
v=1

Yv]ij

. (14)

In this work, in order to constrain the orthogonality of Ȳ, we
set ρ a relatively large value, ρ = 106 in our experiments.

3.3.2 Optimize Yv by Fixing Other Variables

By fixing other variables, Yv can be updated by solving the
following optimization problem:

min
Yv
‖Xv>Wv − (Ȳ− Yv)‖2F + γv‖Yv‖1, (15)

which can be solved by using the soft-thresholding operator
obtained as follows:

Yv = sign(Xv>Wv − Ȳ)max(|Xv>Wv − Ȳ| − γv

2
, 0). (16)

3.3.3 Optimize Wv with Other Variables Fixed

When other variables are fixed, solving Wv is equal to the
following problem:

min
Wv
‖Xv>Wv − (Ȳ− Yv)‖2F + (1− γv)‖Wv‖2,1, (17)

Which can be solved by using the iterative re-weighted
least-squares algorithm. Since there is an l2,1-norm regular-
ization in Eq.(17), we cannot obtain its closed form solution.
By taking the derivative of objective function in Eq.(17) w.r.t
Wv and setting it to zero, we obtain:

XvXv>Wv − Xv(Ȳ + Yv) + (1− γv)GvWv = 0 (18)

where Gv is a diagonal matrix with its i-th diagonal entry
calculated as Gv

ii = 1
2‖Wv(i,:)‖22

. According to Eq.(18), Wv can
be updated as:

Wv = (XvXv> + (1− γv)Gv)−1(Xv(Ȳ + Yv). (19)

Then Wv and Gv can be updated in an alternative manner.
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3.3.4 Optimize S̄ by Fixing Other Variables
With other variables fixed, we can obtain S̄ by solving the
following problem:

min
S̄

λTr(Ȳ>LS̄Ȳ) + α‖S̄−
V∑
v=1

γvSv‖2F

s.t. S̄1 = 1, S̄ij ≥ 0.

(20)

By setting Θij = ||ȳi − ȳj ||22, and Sγ =
∑V
v=1 γ

vSv , Eq.(20)
can be rewritten as:

min
S̄

α‖S̄− Sγ‖2F +
1

2
λ

N∑
i,j=1

ΘijS̄ij

s.t. S̄1 = 1, S̄ij ≥ 0.

(21)

Eq.(21) can be solved by using alternative optimization
of each row of S̄. For the i-th row, the corresponding
optimization problem is equal as follows:

min
si

α‖s̄i − (sγi −
λ

4α
θi)‖2F

s.t. s̄i1 = 1, s̄i ≥ 0.
(22)

Let η = s̄i> and ν = (sγi − λ
4αθi)>, then the Lagrangian

function of problem (22) can be written as:

min
η
‖η − ν‖22 − τ(η>1− 1)− ξ>η (23)

where τ and ξ are a scalar and a Lagrangian coefficient
vector, respectively. Denoting the optimal solution and the
associate Lagrangian coefficients of above problem as η∗ ,
τ∗ and ξ∗. According to the KKT condition [31], we can
establish the following equations:

∀i, η∗i − νj − τ∗ − ξ∗i = 0,

∀i, η∗i ≥ 0,

∀i, ξ∗i ≥ 0,

∀i, η∗i ξ
∗
i = 0,

(24)

where η∗i is the i-th element of η∗. Based on the constraint
η>1 = 1, we have τ∗ = 1−1>ν−1>ξ∗

N and η∗ = (ν − 11>

N ν +
1
N 1− 1>ξ∗

N 1) + ξ∗.
Let ξ̂∗ = 1>ξ∗

N and u = ν − 11>

N ν + 1
N 1, then η∗ =

u + ξ∗ − ξ̂∗1. So ∀i we have

η∗i = ui + ξ∗i − ξ̂∗ (25)

According to Eqs.(24) and (25) we know ui + ξ∗i − ξ̂∗ =
(ui − ξ̂∗)+, here x+ = max(x, 0). Then we have

η∗i = (ui − ξ̂∗)+ (26)

Therefore, if ξ̂∗ is known, the optimal solution η∗ can be
easily obtained.

Note that Eq.(25) can be rewritten as ξ∗i = η∗i +
ξ̂∗ − ui. Similarly, we have ξ∗j = (ξ̂∗ − uj)+ and ξ̂∗ =

1
N−1

∑N−1
i=1 (ξ̂∗− ui)+ based on Eq.(24). Defining a function

as

f(ξ̂) =
1

N − 1

N−1∑
i=1

(ξ̂∗ − ui)+ − ξ̂. (27)

Let f(ξ̂) = 0 and we can solve the root finding problem to
obtain ξ∗.

Note that ξ∗ ≥ 0, f ′(ξ̂) and f ′(ξ̂) is convex and piecewise
linear, the Newton method is used to find the root of f(ξ̂) =
0 efficiently, i.e,

ξ̂t+1 = ξ̂t −
f(ξ̂)

f ′(ξ̂)
. (28)

In such a manner, η∗ , τ∗ and ξ∗ can be optimized alterna-
tively.

3.3.5 Optimize γ by Fixing Other Variables

When other variables are fixed, the view weights can be
learned by solving following problem:

min
γ

γv‖Fv‖1 + (1− γv)‖Wv‖2,1 + α‖S̄−
V∑
v=1

γvSv‖2F

+
β

2
γ>Mγ

s.t. γ>1 = 1, γv > 0,∀v
(29)

Eq.(29) can be transferred to a quadratic programming
problem with linear constraints as follows:

min
γ

2α+ β

2
γ>Mγ + f>γ

s.t. γ>1 = 1, γv > 0,∀γ
(30)

where Mij = Tr(Si>Sj), fi = ‖Fv‖1 + ‖Wv‖2,1 −
2αTr(S>Si).

Eq.(30) can be easily solved by using some standard
quadratic programming solving toolbox.

We summarize the optimization procedure of CvLP-DCL
in Algorithm 1.

Algorithm 1 Iterative algorithm for solving CvLP-DCL

Input: Multi-view data matrices {Xv ∈ Rdv×N}Vv=1, pa-
rameters: λ, α, and β. A small constant ε = 0.0000001.

Initialize: Y1, · · · ,Yv , W1, · · · ,Wv . S̄ = 1
N

V∑
v=1

Sv

while not converged do
1. Update Ȳ by solving Eq.(8);
2. Update Yv via Eq.(16);
3. Update Wv by solving Eq.(17);
4. Update S̄ by solving Eq.(20);
5. Update γ by solving Eq.(30);
6. Check convergence condition: (objt−1−objt)/objt < ε.
end while
Output: W1, · · · ,Wv .
Feature selection: Sort the l2-norm of the rows of
{Wv}Vv=1 in decent order and select the largest K values.
The feature dimension indexes with the the largest K
values are selected to form the feature subset.

3.4 Theoretical Analysis of the Proposed Algorithm

In this section, we give a brief theoretical analysis of Al-
gorithm 1, including convergence analysis and complexity
analysis.
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3.5 Convergence Analysis
Since there are a number of variables need to be alter-
natively updated in Algorithm 1, it is not easy to give a
detailed theoretical convergence proof. Here we give a brief
convergence analysis of each single step. In step 1 of Al-
gorithm 1, since we use the Karush-Kuhn-Tucker condition
to update Ȳ, the objective value of Eq.(9) can be ensured
to monotonically decrease. In step 2 for updating Yv , the
soft-thresholding operator can ensure the global optimal
solution of Eq.(15). As to step 3, Wv and Gv are iteratively
updated via the iterative re-weighted least-squares algorith-
m, of which the convergence can be also guaranteed. For
updating S̄ in step 4, the Karush-Kuhn-Tucker condition
and the Newton method can also ensure the convergence.
As to the final step for updating γ, the convergence of the
quadratic programming problem can be also guaranteed. In
the experimental section, the strong convergence behaviour
of the proposed algorithm will also be empirically validated
in the experiments section.

3.6 Time Complexity Analysis
For updating Ȳ, the main computation lies in calculat-
ing Eq.(14), which only consists of some matrix multi-
plication operations, and its computational complexity is
O(N max(dv, N)c). As to updating Yv , there also only
consists of a matrix multiplication operation, i.e., (Xv)>Wv ,
of which the computational complexity is O(Ndvc). For
solving Wv , since we need to compute the inverse of a
dv×dv matrix, the computational complexity isO(d3

v). As to
solving S̄ and γ, they have linear computational complexity.
Therefore, the total main computation complexity of Algo-
rithm 1 is O(N max(dv, N)c + T1(d3

v)) for each iteration,
where T1 is the inner iteration time for updating Wv .

4 EXPERIMENTS

In this section, extensive experiments are conducted to
evaluate the performance of CvLP-DCL on some real-world
benchmark datasets. In addition, we compare the proposed
CvLP-DCL with several other state-of-the-art UFS methods
to validate its efficacy.

4.1 Datasets
In this work, six publicly available multi-view datasets are
used in our experiments. They are:
Handwritten is obtained from the UCI machine learning
repository [32], and consists of handwritten digits from 0 to
9. There are 2000 data samples in total and each sample is
described by 6 different features.
Caltech101-7 is an image dataset captured for object recog-
nition problem [33]. There are 101 different categories of
images in this dataset. Following previous works [34], [35],
7 classes with 1474 images are used in our experiments. Six
different features are extracted for each image.
Reuters is a documents dataset which consists of five differ-
ent languages and their translations [36]. There are 6 classes
of all the documents. We use the subset that are written in
English and all their translations in all the other 4 languages
(French, German, Spanish and Italian).
NUSWIDEOBJ is a dataset for object recognition. There are

30000 images in 31 categories [37] in total. Five different
features for each sample are used in our experiments.
MSRCV1 is an image dataset which contains 240 images
with 8 object classes [38]. Seven classes of samples includ-
ing tree, building, airplane, cow, face, car and bicycle are
selected in our experiments, and each sample is represented
by 6 types of features.
BBCSport is a documents dataset collected from the BBC
Sport website, the content corresponds to 5 topical areas
of sports news, two kinds of feature are entreated for each
sample. [39].

The detailed information including feature dimensions
and types of these datasets are summarized in Table 1.

4.2 Experimental Setup
Similar to previous works [20], [22], [24], [40], the k-means
clustering is performed on the selected features to evaluate
the performance of our proposed CvLP-DCL. Two common-
ly used evaluation metrics including accuracy (ACC) and
normalized mutual information (NMI) are used to evaluate
the quality of the selected feature subsets obtained from dif-
ferent feature selection algorithms. Let ti and ri respectively
represent the true label of xi and the clustering results. Then
ACC can be defined as follows:

ACC =

∑N
i=1 δ(ri,map(ti))

N
, (31)

where δ(x, y) = 1 if x = y, otherwise δ(x, y) = 0. map(ti) is
the best mapping function which permutes clustering labels
to match the true labels using the KuhnMunkres algorithm.
Given two variables R and T , NMI is defined as

NMI(R, T ) =
I(R, T )√
H(R)H(T )

, (32)

where H(R) and H(T ) are the entropies of R and T ,
respectively, and I(R, T ) is the mutual information between
R and T . For clustering task, R and T are the clustering
results and the true labels, respectively. NMI reflects the
degree of correlation between clustering results and ground
truth labels. For both two metrics, larger values represent
better performance.

Meanwhile, We also compare the proposed CvLP-DCL
with other seven different single view and multi-view un-
supervised feature selection methods, they are as follows:

• Baseline: As the most classical and basic clustering
algorithm, k-means is used for clustering by simply
combining all features into a single view.

• Laplacian score (LS) [14] and spectral feature selec-
tion (SPEC) [16]: Two representative and classical
single view unsupervised feature selection methods.
The multi-view features are also firstly combined
together for these two algorithms;

• Consensus guided unsupervised feature selection
(CGUFS) [30], which is a single-view unsupervised
feature selection method and introduces consensus
clustering to generate pseudo labels for feature selec-
tion. We also combine multi-view features together
for this algorithm;

• AMFS [18]: Adaptive multi-view feature selection,
which is an unsupervised feature selection approach
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TABLE 1
The detailed information of the multi-view datasets used in our experiments

Feature index Handwritten Caltech101-7 Reuters NUSWIDEOBJ MSRCV1 BBCSport

1 Pix(240) Gabor(48) English(21531) CH(65) CENT(1302) View one(3183)
2 Fou(76) WM(40) France(24892) CM(226) CMT(48) View two(3203)
3 Fac(216) CENTRIST(254) German(34251) CORR(145) GIST(512) -
4 ZER(47) HOG(1984) Italian(15506 EDH(74) HOG(100) -
5 KAR(64) GIST(512) Spanish(11547) WT(129) LBP(256) -
6 MOR(6) LBP(928) - - SIFT(210) -

No. of samples 2000 1474 18758 26315 210 544
No. of classes 20 7 6 31 7 5

TABLE 2
Clustering results (ACC% ± std%) of different algorithms on different datasets by implementing K-means and GMC on the selected features.

Datasets handwritten Caltech101-7 Reuters NUSWIDEOBJ MSRCV1 BBCSport

Baseline K-means 58.20±4.89 K-means 40.86±3.70 K-means 45.20±2.51 K-means 14.62±0.43 K-means 47.67±2.87 K-means 53.37±1.41
GMC 65.34 GMC 43.92 GMC 47.34 GMC 16.56 GMC 48.93 GMC 56.75

LS K-means 60.71±5.32 K-means 41.17±3.37 K-means 31.42±1.01 K-means 13.26±0.31 K-means 52.21±5.65 K-means 43.04±4.25
GMC 64.23 GMC 44.85 GMC 34.45 GMC 15.27 GMC 54.82 GMC 47.72

SPEC K-means 65.53±6.47 K-means 45.15±2.67 K-means 27.20±0.00 K-means 14.06±0.46 K-means 36.74±5.41 K-means 36.05±0.10
GMC 66.74 GMC 49.02 GMC 28.52 GMC 16.35 GMC 39.04 GMC 40.85

CGUFS K-means 68±4.89 K-means 49.31±3.08 K-means 31.79±0.98 K-means 15.82±0.37 K-means 42.31±4.27 K-means 41.06±1.22
GMC 71.54 GMC 53.66 GMC 36.15 GMC 17.04 GMC 48.92 GMC 47.84

AMFS K-means 69.41±1.81 K-means 52.37±2.86 K-means 39.84±1.31 K-means 16.10±0.38 K-means 58.41±4.96 K-means 48.02±1.12
GMC 72.92 GMC 55.77 GMC 43.73 GMC 18.53 GMC 59.62 GMC 52.74

RMFS K-means 71.04±3.21 K-means 54.37±2.64 K-means 39.94±1.24 K-means 16.23±0.53 K-means 62.94±5.27 K-means 48.32±1.07
GMC 73.48 GMC 58.07 GMC 44.65 GMC 19.16 GMC 65.67 GMC 53.27

ASVW K-means 72.13±4.91 K-means 56.24±5.18 K-means 41.48±1.97 K-means 16.52±0.49 K-means 65.41±4.62 K-means 51.77±1.21
GMC 73.91 GMC 57.92 GMC 45.82 GMC 20.08 GMC 67.79 GMC 56.86

CGMV-UFS K-means 75.45±5.99 K-means 58.25±5.46 K-means 43.16±2.33 K-means 17.25±0.40 K-means 68.93±6.22 K-means 54.03±1.05
GMC 77.84 GMC 60.63 GMC 47.88 GMC 21.52 GMC 70.81 GMC 59.57

ACSL K-means 73.28±4.05 K-means 57.68±4.20 K-means 40.47±2.62 K-means 15.57±0.46 K-means 49.38±5.33 K-means 52.34±1.14
GMC 75.66 GMC 60.4 GMC 45.39 GMC 19.45 GMC 52.39 GMC 58.35

CRV-DCL K-means 76.47±4.23 K-means 59.23±5.25 K-means 45.07±2.14 K-means 17.86±0.39 K-means 69.58±5.72 K-means 54.95±1.16
GMC 79.06 GMC 62.58 GMC 49.36 GMC 22.06 GMC 71.85 GMC 60.17

CvLP-DCL K-means 77.89±4.04 K-means 61.06±4.17 K-means 46.78±2.27 K-means 20.03±0.63 K-means 72.22±5.31 K-means 56.68±1.32
GMC 82.71 GMC 64.61 GMC 49.84 GMC 22.85 GMC 75.79 GMC 61.53
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Fig. 1. The clustering accuracy (ACC) of using different selected features by different methods on different datasets.

proposed for human motion retrieval by using mul-
tiple features;

• ASVW [20]: Adaptive similarity learning with view
weight for multi-view feature selection, which aims

to learn a uniform similarity graph shared by differ-
ent views to constrain the local structure of multi-
view data;

• RMFS [21]: Robust multi-view feature selection,
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TABLE 3

Clustering results (NMI% ± std%) of different algorithms on different datasets by implementing K-means and GMC on the selected features.

Datasets handwritten Caltech101-7 Reuters NUSWIDEOBJ MSRCV1 BBCSport

Baseline K-means 59.11±1.89 K-means 27.19±1.00 K-means 29.16±2.51 K-means 14.00±0.17 K-means 39.69±2.40 K-means 30.10±1.28
GMC 62.92 GMC 31.26 GMC 33.24 GMC 19.02 GMC 42.62 GMC 33.34

LS K-means 59.97±1.44 K-means 26.36±1.07 K-means 7.63±0.91 K-means 12.13±0.18 K-means 42.63±4.01 K-means 16.79±6.54
GMC 63.06 GMC 30.95 GMC 10.92 GMC 16.74 GMC 45.83 GMC 21.26

SPEC K-means 68.45±3.98 K-means 12.35±1.06 K-means 6.04±0.00 K-means 12.82±0.19 K-means 22.30±5.14 K-means 13.24±0.06
GMC 73.91 GMC 17.82 GMC 9.88 GMC 17.83 GMC 26.24 GMC 18.71

CGUFS K-means 63.27±1.66 K-means 24.47±1.08 K-means 10.34±0.86 K-means 15.36±0.21 K-means 26.84±4.92 K-means 17.27±1.31
GMC 66.97 GMC 29.55 GMC 16.58 GMC 18.36 GMC 34.19 GMC 20.11

AMFS K-means 65.09±0.64 K-means 35.53±2.03 K-means 24.30±0.94 K-means 16.51±0.17 K-means 50.37±4.80 K-means 19.86±3.37
GMC 70.52 GMC 38.94 GMC 29.68 GMC 20.62 GMC 54.27 GMC 22.77

RMFS K-means 67.75±1.60 K-means 40.97±1.69 K-means 25.21±1.19 K-means 16.58±0.26 K-means 56.61±3.17 K-means 23.62±1.23
GMC 72.43 GMC 43.27 GMC 29.63 GMC 22.77 GMC 60.06 GMC 27.87

ASVW K-means 68.92±1.37 K-means 46.41±1.92 K-means 26.75±1.27 K-means 16.87±0.21 K-means 57.20±3.61 K-means 27.29±2.54
GMC 74.52 GMC 50.76 GMC 30.37 GMC 22.28 GMC 61.73 GMC 32.58

CGMV-UFS K-means 71.83±2.18 K-means 48.71±3.33 K-means 27.76±1.06 K-means 18.96±0.19 K-means 60.50±5.46 K-means 31.94±1.39
GMC 75.67 GMC 52.37 GMC 32.51 GMC 23.54 GMC 65.31 GMC 35.49

ACSL K-means 70.23±5.41 K-means 47.39±2.09 K-means 26.18±1.14 K-means 17.28±0.35 K-means 59.58±4.76 K-means 28.57±1.19
GMC 74.29 GMC 51.94 GMC 31.36 GMC 23.02 GMC 63.69 GMC 33.42

CRV-DCL K-means 72.65±2.20 K-means 49.86±3.14 K-means 29.14±1.02 K-means 19.76±0.23 K-means 62.36±5.38 K-means 32.41±1.35
GMC 77.22 GMC 53.16 GMC 33.29 GMC 24.51 GMC 66.25 GMC 37.3

CvLP-DCL K-means 74.11±2.03 K-means 51.71±2.49 K-means 32.22±1.73 K-means 21.84±0.41 K-means 64.07±5.23 K-means 34.62±1.74
GMC 79.06 GMC 56.88 GMC 36.72 GMC 25.75 GMC 67.49 GMC 39.47
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Fig. 2. The normalized mutual information (NMI) of using different selected features by different methods on different datasets.

which applies robust multi-view k-means to generate
pseudo labels, and the labels are used to regularize
sparse feature selection;

• CGMV-UFS [22]: Consensus learning guided MV-
UFS, which aims to learn the consensus cluster in-
dicator matrix of multiple views by using the non-
negative matrix factorization;

• ACSL [41]: Adaptive collaborative similarity learn-
ing for MV-UFS, which dynamically learns the col-
laborative similarity structure, and the similarity
learning and feature selection are integrated into a
unified framework.

• CRV-DCL [23]: The previous model proposed in our
AAAI 2019 version.

There are several parameters need to be set in CvLP-
DCL as well as other methods. For LS, SPEC, CGMV-UFS,

CRV-DCL, ACSL and CvLP-DCL, the neighborhood size
for constructing the intra-view similarity graph is set to 5
For AMFS, r is set to 2 as suggested in the corresponding
paper. For ASVW, we turn the regularization parameter λ
in
{

10−3, 10−2, 10−1, 1, 10, 102, 103
}

. As to λ, α and β in
CvLP-DCL, we also tune their values by a “grid-search”
strategy from

{
10−3, 10−2, 10−1, 1, 10, 102, 103

}
. For other

parameters in different methods, they are set to default
values or tuned as suggested in the original papers to obtain
the optimal results. For each method, the best results by
tuning the parameters are reported for fair comparison.

Since the optimal number of selected features for a
certain dataset is hard to determine, we vary the number
of selected features in a range for all datasets and report
the best clustering results for each method. For all of
the datasets, the selected feature numbers are varied from
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{10, 40, 70, · · · , 250, 280}. After obtaining the feature sub-
sets, we implement two clustering methods on the selected
features, i.e., the commonly used K-means and a recently
proposed graph based multi-view clustering method, GMC
[42]. Since K-means is sensitive to the initialization, we run
it 20 times on the selected feature subsets with random
starting points for eliminating the bias of initialization.
Then, the average results with standard deviation of the 20
times running of K-means are recorded and reported. As
to GMC, we use the recommended settings as reported in
original paper for each dataset to obtain the final results.

4.3 Experimental Results

The ACC and NMI of different methods on different dataset-
s are summarized in Table 2 and Table 3, respectively.
From the results, we can see that the proposed CvLP-
DCL consistently performs the best on all of the datasets
when compared with other methods. As to handwritten,
Caltech101-7 and MSRCV1, our method outperforms the
baseline with more than 20% in terms of both ACC and NMI
by using the K-means algorithm on the selected feature
subsets. As to NUSWIDEOBJ, CvLP-DCL also obtains 5%
improvement than the baseline. For Reuters and BBCSport,
CvLP-DCL still outperforms all of other methods including
the baseline. Therefore, the results validate the superiority
of the proposed CvLP-DCL when compared with other
methods. With a small subset of selected features, CvLP-
DCL obtains better clustering results. In addition, compared
with traditional single view unsupervised feature selection
methods, the multi-view methods perform significantly bet-
ter. We can see that CvLP-DCL can get more than 10%
improvements in average when compared to the best result
of all the other single-view methods. This is caused by the
fact that single view methods characterize the structures of
each data view independently and combine them by simply
stacking. CvLP-DCL also consistently outperforms CRV-
DCL on all datasets, which also demonstrates the efficacy of
the cross-view similarity graph learning and regularization
strategy.

As far as we know, there is no success way to determine
the optimal number of selected features. Therefore, in order
to illustrate the effect of feature selection to clustering, we
show the clustering performance of different algorithms
with respect to different numbers of selected features on
different datasets. In Figure 1 and Figure 2, we plot the
ACC and the NMI values with respect to the numbers of
selected features on different datasets, respectively. As can
be seen from the results, the proposed method can steadily
perform better than other methods over a range of selected
features. It should be noted that when using fewer features,
our method can obtain higher clustering accuracy than
the baseline excluding the Reuters and BBCSport datasets,
which demonstrates that the selected subset of the features
can not only reduce the computation cost, but also improve
the clustering performance. As to Reuters and BBCSport,
when the number of selected features is fewer than 80, our
method dose not perform better than the baseline. However,
when we select more features, the proposed CvLP-DCL can
steadily perform better than other methods.
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Fig. 4. Objective function values of Eq. (7) with varying iteration times
on different datasets.

4.4 Parameter Sensitivity
There are three parameters in our model as formulated by
Eq. (7) (i.e., λ, α and β). To further demonstrate the per-
formance of the proposed method, we study its sensitivity
w.r.t. different parameters. Due to the page space limitation,
we only report the ACC and NMI of handwritten dataset
by using the k-means algorithm. At each time, we fix two
parameters and show the performance of our method by
varying the rest one parameter. Figure 3 plots the ACC
and NMI values given by CvLP-DCL for different λ, α, β
and selected features. The experimental results show that
our CvLP-DCL is not very sensitive to the three hyper-
parameters, but it is relatively sensitive to the number
of selected features. However, this is a common problem
for most unsupervised feature selection methods since the
optimal feature set for each dataset is hard to determine.

4.5 Efficacy of the Learned Uniform Similarity Graph
In our proposed model as described by Eq. (7), we learn
a cross-view similarity graph S̄ from multiple view-specific
similarity graphs Sv(v = 1, . . . , V ), and then S̄ is used to
regularize the local geometrical structure of original data
in the label space. In order to validate the efficacy of the
cross-view similarity graph learning process, we take the
handwritten dataset as an example and intuitively show the
initial similarity graphs of the 2nd, 4th and 6th view (S2,
S4 and S6), and the learned cross-view similarity graph (S̄)
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Fig. 3. ACC and NMI of CvLP-DCL with different λ, α, β, and number of selected features on handwritten dataset. The first row presents the ACC
with varying parameters and the second row shows the NMI with varying parameters.

in Figure 5. As can be seen, there are some noisy values in
the initial view-specific similarity graphs. After the learning
process, the noisy values can be effectively removed and a
cleaner cross-view similarity graph with diagonal structure
is obtained. As a result, the learned cross-view similarity
graph can better preserve the locality of original data.

4.6 Empirically Convergence Validation

In Section 3.5, we theoretically analyse the convergence
property of Algorithm 1. In this section, we empirically
validate its convergence property. As shown in Figure 4,
we plot the objective function values of Eq. (7) with varying
iteration times on different datasets (λ, α and β are fixed
to 1), the results show that Algorithm 1 converges very fast
and the objective function value goes stable almost within
20 iterations.

5 CONCLUSIONS

This paper introduces a novel multi-view unsupervised
feature selection method via cross-view local structure p-
reserved diversity and consensus representation learning.
The proposed method captures both the common informa-
tion and distinguishing knowledge across different views
by projecting each view of original data into a common
label space, which is composed of a consensus part and
a diversity part. Meanwhile, in order to preserve the local
structure of samples in the label space, multiple pre-defined
view-specific similarity graphs are used to learn a shared
similarity graph across different views. Experiments results

with parameter sensitivity analysis on real-world multi-
view datasets demonstrate the efficacy of the proposed
method.
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