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Abstract— Multiple kernel clustering (MKC) is committed1

to achieving optimal information fusion from a set of base2

kernels. Constructing precise and local kernel matrices is proven3

to be of vital significance in applications since the unreliable4

distant–distance similarity estimation would degrade cluster-5

ing performance. Although existing localized MKC algorithms6

exhibit improved performance compared with globally designed7

competitors, most of them widely adopt the KNN mechanism8

to localize kernel matrix by accounting for τ -nearest neighbors.9

However, such a coarse manner follows an unreasonable strategy10

that the ranking importance of different neighbors is equal, which11

is impractical in applications. To alleviate such problems, this12

article proposes a novel local sample-weighted MKC (LSWMKC)13

model. We first construct a consensus discriminative affinity14

graph in kernel space, revealing the latent local structures.15

Furthermore, an optimal neighborhood kernel for the learned16

affinity graph is output with naturally sparse property and17

clear block diagonal structure. Moreover, LSWMKC implicitly18

optimizes adaptive weights on different neighbors with corre-19

sponding samples. Experimental results demonstrate that our20

LSWMKC possesses better local manifold representation and21

outperforms existing kernel or graph-based clustering algo-22

rithms. The source code of LSWMKC can be publicly accessed23

from https://github.com/liliangnudt/LSWMKC.24

Index Terms— Graph learning, localized kernel, multiview25

clustering, multiple kernel learning.26

I. INTRODUCTION27

CLUSTERING is one of the representative unsupervised28

learning techniques widely employed in data mining and29

machine learning [1]–[6]. As a popular algorithm, k-means has30

been well investigated [7]–[9]. Although achieving extensive31
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applications, k-means assumes that data can be linearly sepa- 32

rated into different clusters [10]. By employing kernel tricks, 33

the nonlinearly separable data are embedded into a higher 34

dimensional feature space and become linearly separable. 35

As a consequence, kernel k-means (KKM) is naturally devel- 36

oped for handling nonlinearity issues [10], [11]. Moreover, 37

to encode the emerging data generated from heterogeneous 38

sources or views, multiple kernel clustering (MKC) provides 39

a flexible and expansive framework for combining a set of 40

kernel matrices since different kernels naturally correspond to 41

different views [12]–[18]. Multiple KKM (MKKM) [19] and 42

various variants are further developed and widely employed 43

in many applications [15], [16], [20]–[23]. 44

Most of the kernel-based algorithms follow a common 45

assumption that all the samples are reliable to exploit the 46

intrinsic structures of data, and thus, such a globally designed 47

manner equally calculates the pairwise similarities of all 48

samples [15]–[17], [20], [21], [24], [25]. Nevertheless, in a 49

high-dimensional space, this assumption is incompatible with 50

the well-acknowledged theory that the similarity estimation 51

for distant samples is less reliable on account of the intrinsic 52

manifold structures are highly complex with curved, folded, 53

or twisted characteristics [26]–[29]. Furthermore, researchers 54

have found that preserving reliable local manifold structures 55

of data could achieve better effectiveness than globally pre- 56

serving all the pairwise similarities in unsupervised tasks and 57

can achieve better clustering performance, such as dimension 58

reduction [30]–[33] and clustering [34], [35]. 59

Therefore, many approaches are proposed to localize ker- 60

nels to enhance discrimination [36]–[40]. The work in [36] 61

develops a localized kernel maximizing alignment method that 62

merely aligns the original kernel with τ -nearest neighbors of 63

each sample to the learned optimal kernel. Along this way, the 64

KNN mechanism is introduced to kernel-based subspace seg- 65

mentation [38]. Moreover, a recently proposed simple MKKM 66

method [24] with min–max optimization is also localized in 67

the same way to consider local structures [40]. Besides, such a 68

localized manner also has been extended to handle incomplete 69

data [37]. Although showing improved performance, most 70

traditional localized kernel methods adopt the simple KNN 71

mechanism to select neighbors. 72

As can be seen in Fig. 1(a) and (b), previous localized MKC 73

methods with the KNN mechanism encounter two issues: 74

1) these methods follow the common assumption that all the 75

neighbors are reliable without considering their variation and 76
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Fig. 1. Illustration of (a) original average kernel, (b) localized average
kernel in KNN mechanism by carefully tuning τ within [0.1, 0.2, . . . , 0.9]
and present the optimal results (τ = 0.1), and (c) localized kernel learned by
proposed model on Mfeat dataset.

ranking relationship. However, it is incompatible with common77

knowledge that the neighbors of a sample are adaptively78

varied, and some may have been corrupted by noise or out-79

liers. For instance, in social networking, a closer relationship80

means more essential and vice versa. 2) The KNN mechanism81

introduces a hyperparameter neighbor ratio, which is fixed82

for each sample and commonly predetermined empirically.83

Apart from this unreasonable fixed neighbor ratio, it incurs84

dataset-related parameter-tuning in a wide range to obtain85

satisfying clustering results. From experimental results, we can86

observe that the KNN mechanism still preserves apparent noise87

compared with the original average kernel.88

To alleviate these problems, we start our work with a89

natural thought that adaptively assigns a reasonable weight to90

each neighbor according to its ranking importance. However,91

there is no sufficient prior knowledge in kernel space to92

identify the ranking relationship among neighbors. Owing93

to the remarkable performance in exploring the complex94

nonlinear structures of various data, developing graph-based95

methods is greatly popular with scholars [27], [41]–[56].96

Considering kernel matrix can be regarded as affinity graph97

with additional positive semidefinite (PSD) constraint, it is98

practicable and more flexible to learn a discriminative affin-99

ity graph with naturally sparsity and clear block diagonal100

structures [41], [43], [47], [57].101

Based on the above-mentioned motivation and our inspi-102

ration from graph learning [41], [47], [48], [51], [57], [58],103

we develop a novel local sample-weighted MKC with consen-104

sus discriminative graph method (LSWMKC). Instead of using105

the KNN mechanism to localize the kernel matrix without106

considering the ranking importance of neighbors, we first learn107

a consensus discriminative affinity graph across multiple views108

in kernel space to reveal the latent manifold structures, and109

further heuristically learn an optimal neighborhood kernel.110

As Fig. 1(c) shows, the learned neighborhood kernel is natu-111

rally sparse with clear block diagonal structures. We develop112

an efficient iterative algorithm to simultaneously learn weights113

of base kernels, discriminative affinity graph, and localized114

consensus neighborhood kernel. Instead of empirically tun-115

ing or selecting a predefined neighbor ratio, our model can116

implicitly optimize adaptive weights on different neighbors117

with corresponding samples. Extensive experiments demon-118

strate that the learned neighborhood kernel can achieve clear119

local manifold structures, and it outperforms localized MKC120

methods in the KNN mechanism and other existing models.121

We briefly summarize the main contributions as follows:122

1) A novel local sample-weighted MKC algorithm is pro- 123

posed based on kernelized graph learning, which can 124

implicitly optimize adaptive weights on different neigh- 125

bors with corresponding samples according to their 126

ranking importance. 127

2) We learn an optimal neighborhood kernel with more 128

discriminative capacity by further denoising the graph, 129

revealing the latent local manifold representation in 130

kernel space. 131

3) We conduct extensive experimental evaluations 132

on 12 MKC benchmark datasets compared with the 133

existing 13 methods. Our proposed LSWMKC shows 134

apparent effectiveness over localized MKC methods in 135

the KNN mechanism and other existing methods. 136

II. BACKGROUND 137

This section introduces MKC and traditional KNN-based 138

localized MKC methods. 139

A. Multiple Kernel k-Means 140

For a data matrix X ∈ R
d×n , including n samples with 141

d-dimensional features from k clusters, nonlinear feature map- 142

ping ψ(·) : R
d �→ H achieves the transformation from sample 143

space R
d to a reproducing kernel Hilbert space (RKHS) 144

H [59]. Kernel matrix K is computed by 145

Ki j = κ
�
xi , x j

� = ψ(xi)
�ψ

�
x j

�
(1) 146

where κ(·, ·) : R
d × R

d �→ R denotes a PSD kernel function. 147

k-means is to minimize the clustering loss, that is, 148

min
S

n�
i=1

k�
q=1

Siq�xi − cq�2
2, s.t.

k�
q=1

Siq = 1 (2) 149

where S ∈ {0, 1}n×k denotes the indicator matrix, cq denotes 150

the centroid of q-th cluster and nq = �n
i=1 Siq denotes the 151

corresponding amount of samples. To deal with nonlinear 152

features, the samples are mapped into RKHS H. KKM is 153

formulated as 154

min
H

Tr
�
K

�
In − HH���

, s.t. H�H = Ik (3) 155

where partition matrix H ∈ R
n×k is computed by taking rank- 156

k eigenvectors of K and then exported to k-means to compute 157

the final results [10], [11]. 158

For multiple kernel learning scenarios, x can be represented 159

as ψω(x) = [ω1ψ1(x)�, ω2ψ2(x)�, . . . , ωmψm(x)�]�, where 160

ω = [ω1, . . . , ωm ]� denotes the coefficients of m base kernel 161

functions {κp(·, ·)}m
p=1. κω(·, ·) is expressed as 162

κω

�
xi , x j

� = ψω(xi)
�ψω

�
x j

� =
m�

p=1

ω2
pκp

�
xi , x j

�
. (4) 163

The objective of MKKM is formulated as 164

min
H,ω

Tr
�
Kω

�
In − HH���

165

s.t. H ∈ R
n×k, H�H = Ik, ωp ≥ 0 ∀p (5) 166

where the consensus kernel Kω = �m
p=1 ω

2
pKp is commonly 167

assumed as a combination of base kernels Kp. To control the 168
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contribution of different kernels, there are some strategies on169

ω, such as “kernel affine weight strategy” [51], “autoweighted170

strategy” [43], [48], and “sum-to-one strategy” [40]. Accord-171

ing to [19], (5) can be solved by alternatively optimizing ω172

and H.173

B. Construction of Localized Kernel in KNN Mechanism174

Most kernel-based methods assume that all the samples175

are reliable and calculate fully connected pairwise similarity.176

However, as pointed out in [26]–[29] and [60], the similarity177

estimation of distant–distance samples in high-dimensional178

space is unreliable. Many localized kernel-based works have179

been developed to alleviate this problem [36], [40], [61].180

Commonly, the localized kernel is constructed in the KNN181

mechanism.182

The construction of a localized kernel mainly includes183

two steps, i.e., neighbor searching and localized kernel con-184

struction. First, in average kernel space, the neighbors of185

each sample are identified by labeling its τ -nearest samples.186

Denoting the neighbor mask matrix as N ∈ {0, 1}n×n. The187

neighbor searching is defined as follows:188

Ni j =
�

1, x j ∈ KNN(xi),

0, otherwise
(6)189

where j denotes the neighbor index of i -th sample. For each190

row, there are round(τn) elements are labeled as neigh-191

bors, where neighbor ratio τ is commonly predetermined192

empirically and carefully tuned by grid search, such as τ193

varies within [0.1, 0.2, . . . , 0.9], and finally, obtain the optimal194

clustering results. If we set neighbor ratio τ = 1, the195

KNN structure will be full-connected. For the precomputed196

base kernels Kp, the corresponding localized kernel Kp(l) is197

formulated as198

Kp(l) = N 	 Kp (7)199

where 	 is the Hadamard product.200

Although the traditional KNN mechanism to localize ker-201

nel is simple and has improved performance than globally202

designed methods, this manner neglects a critical issue the203

variation of neighbors. Therefore, it is important and practical204

to assign reasonable weights to different neighbors accord-205

ing to their ranking relationship. Another issue is that the206

initial neighbor ratio τ of each sample is usually fixed and207

predetermined empirically and needs to be tuned to report208

the best clustering result. As Fig. 1(a) and (b) shows, the209

obtained localized kernels preserve much noise, which will210

incur degeneration of clustering performance.211

III. METHODOLOGY212

This section presents our proposed LSWMKC in detail213

and provides an efficient three-step optimization solution.214

Moreover, we analyze convergence, computational complexity,215

limitation, and extensions.216

A. Motivation217

From our aforementioned analysis of the traditional local-218

ized kernel method in the KNN mechanism, we find that:219

1) This seemingly simple method neglects the ranking impor- 220

tance of the neighbors, which may degrade the clustering per- 221

formance due to the impact of the unreliable distant–distance 222

relationship. 2) The neighbor ratio is commonly predetermined 223

empirically and needs to be tuned to report the best results. 224

The above-mentioned issues inspire us to rethink the 225

manner of constructing localized MKC, and a natural 226

motivation is to exploit their ranking relationship and assign 227

a reasonable weight to each neighbor. However, there is no 228

sufficient prior knowledge in kernel space to identify the 229

ranking importance of neighbors. In recent years, graph- 230

based algorithms have been greatly popular with scholars 231

to explore the nonlinear structures of data. An ideal affinity 232

graph exhibits two good properties: 1) clear block diagonal 233

structures with k connected blocks, each corresponding to one 234

cluster. 2) The affinity represents the similarity of pairwise 235

samples, and the intracluster affinities are nonzero, while the 236

extra-cluster affinities are zeros. Considering the kernel matrix 237

can be regarded as the affinity graph with additional PSD 238

constraint, a discriminative graph can reveal the latent local 239

manifold representation in kernel space. These issues inspire 240

us to exploit the capacity of graph learning in capturing 241

nonlinear structures of kernel space. 242

B. Proposed Formula 243

Here, we briefly introduce the affinity graph learning 244

method, which will be the base of our proposed model. 245

For sample set {x1, . . . , xn}, it is desirable to learn an 246

affinity graph Z ∈ R
n×n with distinct distance �xi − x j�2

2 247

corresponding to small similarity zi j , which is formulated as 248

min
Z

n�
i, j=1

��xi − x j

��2
2zi j + γ z2

i j 249

s.t. Zi,:1n = 1, zi j ≥ 0, zii = 0 (8) 250

where γ is a hyperparameter, Zi,:1n = 1 is for normalization, 251

zi j ≥ 0 is to ensure the nonnegative property, and zii = 0 can 252

avoid trivial solutions. Commonly, the second term �2 norm 253

regularization is to avoid undesired trivial solutions [42], [62]. 254

However, the existing graph-based methods are developed 255

in sample space R
d , rather than RKHS H kernel space, 256

significantly limiting their applications. To fill this gap and 257

exploit their potent capacity to capture nonlinear structures in 258

kernel space, by using kernel tricks, the first term of (8) can 259

be extended as 260

min
Z

n�
i, j=1

�ψ(xi )− ψ(x j )�2
2zi j 261

= min
Z

n�
i, j=1

(ψ(xi )
�ψ(xi )−2ψ(xi)

�ψ(x j )+ψ(x j)
�ψ(x j ))zi j 262

= min
Z

n�
i, j=1

(κ(xi , xi)− 2κ(xi, x j)+ κ(x j, x j ))zi j 263

= min
Z

2n −
n�

i, j=1

2κ(xi, x j )zi j ⇔ min
Z

n�
i, j=1

−κ(xi, x j)zi j 264

s.t. Zi,:1n = 1, zi j ≥ 0, zii = 0. (9) 265



IE
EE P

ro
of

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Note that the condition for (9) is that we assume266

κ(xi, xi ) = 1. However, it is not always valid for all the kernel267

functions. A common choice is the Gaussian kernel which268

satisfies κ(xi , xi) = 1. The present work utilizes this manner or269

directly downloads the public kernel datasets. Moreover, all the270

base kernels are first centered and then normalized following271

[63] and [64], which further guarantees κ(xi , xi) = 1.272

We have the following insights from the kernelized affinity273

graph learning model: 1) compared with using �xi − x j�2
2 to274

estimate the pairwise distance in sample space, we should275

adopt −κ(xi, x j) in kernel space. 2) Such compact form276

achieves affinity graph learning in kernel space to explore the277

complex nonlinear structures.278

In multiple kernel learning scenarios, it is commonly279

assumed that the ideal kernel is optimally combined by given280

base kernels, and (9) can be extended as281

min
Z,ω

m�
p=1

n�
i, j=1

−ωpκp(xi , x j)zi j + γ z2
i j282

s.t.

�
Zi,:1n = 1, zi j ≥ 0, zii = 0�m

p=1 ω
2
p = 1, ωp ≥ 0

(10)283

where ωp is the weight of p-th base kernel. Since using284 �m
p=1 ω = 1 will only activate the best kernel, and it incurs285

the multi-kernel scenario degraded into the undesirable single-286

kernel scenario. We employ the squared �2 norm constraint of287

ωp to smooth the weights and avoid the sparse trivial solution.288

Other weight strategies can refer to [43], [48], and [51].289

The above-mentioned formula achieves multiple kernel-based290

graph learning by jointly optimizing kernel weights and291

consensus affinity graph. Specifically, the learned consensus292

discriminative graph reveals kernel space’s intrinsic local293

manifold structures by graph learning mechanism and fuses294

latent clustering information across multiple kernels by weight295

learning mechanism.296

Recall we aim to estimate the ranking relationship of297

neighbors with corresponding samples in kernel space. The298

above-mentioned discriminative consensus graph inspires us to299

further learn an optimal neighborhood kernel, which obtains a300

consensus kernel with naturally sparse properties and precise301

block diagonal structures. This idea can be naturally modeled302

by minimizing squared F-norm loss �K∗−Z�2
F with constraints303

K∗ � 0 and K∗ = K∗�. We define the optimization goal as304

follows:305

min
Z,K∗,ω

−Tr

⎛
⎝ m�

p=1

ωpKpZ�
⎞
⎠ + �G 	 Z�2

F + α�K∗ − Z�2
2306

s.t.

⎧⎪⎨
⎪⎩

Z1n = 1n, Z ≥ 0, Zii = 0

K∗ � 0, K∗ = K∗�,
m�

p=1

ω2
p = 1, ωp ≥ 0

(11)307

where G = 1�
n ⊗ γ , γ = (

√
γ1,

√
γ2, . . . ,

√
γn)

� denotes308

hyperparameter γi with corresponding i -row of Z, ⊗ is outer309

product, 	 is the Hadamard product, and α is the balanced310

hyperparameter for neighborhood kernel construction.311

Note that n hyperparameters γ corresponding to n rows of Z312

respectively, which is due to the following considerations: 1) as313

our analysis in (10), reasonable hyperparameters γ can avoid 314

trivial solutions, i.e., γ → 0 or γ → ∞ will incur undesired 315

extremely sparse or dense affinity matrix, respectively. 2) 316

Section III-C2 also illustrates the subproblem of optimizing Z 317

involves n-row formed independent optimization. It is reason- 318

able to assign different γi to each problem, considering their 319

variations. Such issues inspire us to learn reasonable γ instead 320

of empirical and time-consuming parameter tuning. We derive 321

a theoretical solution in Section III-D and experimentally 322

validate the ablation study on tuning γ by grid search in 323

Section IV-J. 324

From the above-mentioned formula, our proposed 325

LSWMKC model jointly optimizes the kernel weights, the 326

consensus affinity graph, and the consensus neighborhood 327

kernel into a unified framework. Although the formula is 328

straightforward, LSWMKC has the following merits: 1) it 329

addresses localized kernel problems via a heuristic manner, 330

rather than the traditional KNN mechanism, which achieves 331

implicitly optimizing adaptive weights on different neighbors 332

with corresponding samples according to their ranking 333

relationship. 2) Instead of tuning hyperparameter γ by grid 334

search, we propose an elegant solution to predetermine it. 3) 335

More advanced graph learning methods in kernel space can 336

be easily introduced to this framework. 337

C. Optimization 338

Simultaneously optimizing all the variables in (11) is dif- 339

ficult since the optimization objective is not convex. This 340

section provides an effective alternate optimization strategy by 341

optimizing each variable with others been fixed. The original 342

problem is separated into three subproblems such that each 343

one is convex. 344

1) Optimization ωp With Fixed Z and K∗: With fixed Z and 345

K∗, the objective in (11) is formulated as 346

max
ω

m�
p=1

ωpδp, s.t.
m�

p=1

ω2
p = 1, ωp ≥ 0 (12) 347

where δp = Tr(KpZ�). This problem could be easily solved 348

with closed-form solution as follows: 349

ωp = δp��m
p=1 δ

2
p

. (13) 350

The computational complexity is O(mn2). 351

2) Optimization Z With Fixed K∗ and ωp: With fixed K∗
352

and ωp, (11) is transformed to n subproblems, and each one 353

can be independently solved by 354

min
Zi,:

(γi + α)Zi,:Z�
i,: −

⎛
⎝2αK∗

i,: +
m�

p=1

ωpKp[i,:]

⎞
⎠Z�

i,: 355

s.t. Zi,:1n = 1, Zi,: ≥ 0, Zii = 0 (14) 356

where Kp[i,:] denotes the i -th row of the p-th base kernel. 357

Furthermore, (14) can be rewritten as quadratic program- 358

ming (QP) problem 359

min
Zi,:

1

2
Zi,:AZ�

i,: + ei Z�
i,: 360

s.t. Zi,:1n = 1, Zi,: ≥ 0, Zii = 0 (15) 361
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where A = 2(γi +α)In, ei = −(2αK∗
i,:+

�m
p=1 ωpKp[i,:]). The362

global optimal solution of QP problem can be easily solved363

by the toolbox of MATLAB. Since Zi,: is a n-dimensional row364

vector, the computational complexity of (15) is O(n3 + mn)365

and the total complexity is O(n4 + mn2).366

Furthermore, (15) can be simplified as367

min
Zi,:

1

2

��Zi,: − Ẑi,:
��2

2368

s.t. Zi,:1n = 1, Zi,: ≥ 0, Zii = 0 (16)369

where Ẑi,: = −(ei/(2(α + γi))).370

Mathematically, the following Theorem 1 illustrates that the371

solution of (16) can be analytically solved.372

Theorem 1: The analytical solution of (16) is as follows:373

Zi,: = max
�
Ẑi,: + βi 1�

n , 0
�
, Zii = 0 (17)374

where βi can be solved by Newton’s method efficiently.375

Proof: For i -th row of Z, the Lagrangian function of (16)376

is as follows:377

L�
Zi,:, βi , ηi

� = 1

2

��Zi,: − Ẑi,:
��2

2 − βi
�
Zi,:1n − 1

� − ηi Z
�
i,:378

(18)379

where scalar βi and row vector ηi are Lagrangian multipliers.380

According to the KKT condition381 �
Zi,: − Ẑi,: − βi 1�

n − ηi = 0�

ηi 	 Zi,: = 0�.
(19)382

We have383

Zi,: = max
�
Ẑi,: + βi 1�

n , 0
�
, Zii = 0. (20)384

Note that Zi,:1n increases monotonically with respect to385

βi according to (20), βi can be solved by Newton’s method386

efficiently with the constraint Zi,:1n = 1. This completes the387

proof.388

By computing the closed-formed solution, the computational389

complexity of (15) is reduced to O(mn), which is mainly from390

computing ei . The total complexity is O(mn2).391

3) Optimization K∗ With Fixed Z and ωp: With fixed Z and392

ωp, the original objective (11) can be converted to393

min
K∗

��K∗ − Z
��2

F394

s.t. K∗ � 0, K∗ = K∗�. (21)395

However, this seemingly simple subproblem is hard to be396

directly solved. Theorem 2 provides an equivalent solution.397

Theorem 2: The optimization in (21) has the same solution398

as (22)399

min
K∗

����K∗ − 1

2
(Z + Z�)

����
2

F
400

s.t. K∗ � 0, K∗ = K∗�. (22)401

Proof: According to the PSD property of K∗, we can402

derive that the original optimization objective �K∗ − Z�2
F403

in (21) is equivalent to �K∗ − Z��2
F. Therefore, the solution404

of (21) is the same as (22). This completes the proof.405

According to Theorem 2, supposing the eigenvalue decom-406

position result of (Z + Z�)/2 is UZ�ZU�
Z . The optimal K∗

407

can be easily obtained by imposing K∗ = UZ�U�
Z , where 408

� = max(�Z, 0). Note that the learned K∗ can further denoise 409

the Z from the above-mentioned optimization. Once we obtain 410

K∗, it is exported to KKM to calculate the final results. 411

D. Initialize the Affinity Graph Z and Hyperparameter γi 412

For graph-based clustering methods, the performance is sen- 413

sitive to the initial affinity graph. A bad graph construction will 414

degrade the overall performance. For the proposed algorithm, 415

we aim to learn a neighborhood kernel K∗ of the consensus 416

affinity graph Z. This section proposes a strategy to initialize 417

the affinity matrix Z and the hyperparameter γi . 418

Recalling our objective in (11), a sparse discriminative 419

affinity graph is preferred. Theoretically, by constraining γi 420

within reasonable bounds, Z will be naturally sparse. The c 421

nonzero values of Zi,: denotes the affinity of each instance 422

corresponding to its initialized neighbors. Therefore, with all 423

the other parameters fixed, we learn an initialized Z with the 424

maximal γi . Based on our objective in (11), by constraining 425

the �0-norm of Zi,: to be c, we solve the following problem: 426

max
γi

γi , s.t. �Zi,:�0 = c. (23) 427

Recall the subproblem of optimizing Z in (16), its equivalent 428

form can be written as follows: 429

min
Zi,:1n=1, Zi,:≥0, Zii =0

1

2

����Zi,: + ei

2(α + γi)

����
2

2

(24) 430

where ei = −(2αK∗
i,: + �m

p=1 ωpKp[i,:]). The Lagrangian 431

function of (24) is 432

L�
Zi,:, ζ,λi

� = 1

2

����Zi,: + ei

2(α + γi)

����
2

2

−ζ �Zi,:1n − 1
� − λi Z�

i,: 433

(25) 434

where scalar ζ and row vector λi ≥ 0� denote the Lagrange 435

multipliers. The optimal solution Z∗
i,: satisfy that the derivative 436

of (25) equal to zero, that is, 437

Z∗
i,: +

ei

2(α + γi )
− ζ1�

n − λi = 0�. (26) 438

For the j -th element of Z∗
i,:, we have 439

z∗
i j + ei j

2(α + γi)
− ζ − λi j = 0. (27) 440

According to the KKT condition that zi jλi j = 0, we have 441

z∗
i j = max

�
− ei j

2(α + γi)
+ ζ, 0

�
. (28) 442

To construct a sparse affinity graph with c valid neigh- 443

bors, we suppose each row ei1, ei2, . . . , ein are ordered in 444

ascending order. Naturally, eii ranks first. Considering Zii = 445

0, the invalid eii should be neglected since the similarity 446

with itself is useless. That is Zi,2,Zi,3, . . . ,Zi,c+1>0 and 447

Zi,c+2,Zi,c+3, . . . ,Zi,n = 0, we further derive 448

− ei,c+1

2(α + γi)
+ ζ > 0, − ei,c+2

2(α + γi)
+ ζ ≤ 0. (29) 449
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According to (28) and constraint Zi,:1n = 1, we obtain450

c+1�
j=2

�
− ei j

2(α + γi)
+ ζ

�
= 1. (30)451

ζ is formulated as452

ζ = 1

c
+ 1

2c(α + γi)

c+1�
j=2

ei j . (31)453

Therefore, we have454

c

2
ei,c+1 − 1

2

c+1�
j=2

ei j − α < γi ≤ c

2
ei,c+2 − 1

2

c+1�
j=2

ei j − α.455

(32)456

According to the aforementioned derivation, to satisfy457

�Z∗
i,:�0 = c, the maximal γi is as follows:458

γi = c

2
ei,c+2 − 1

2

c+1�
j=2

ei j − α. (33)459

In the meantime, the initial z∗
i j is as follows:460

z∗
i j =

⎧⎨
⎩

ei,c+2 − ei, j+1

cei,c+2 − �c+1
h=2 eih

, j ≤ c

0, j > c.
(34)461

From the above-mentioned analysis, we initialize a sparse462

discriminative affinity graph with each row having c nonzero463

values and derive the maximal γi . Note that (32) involves464

an undesired hyperparameter α, to get rid of its impact,465

we directly impose α = 0. Once the initial γi are computed,466

these coefficients will remain unchanged during the iteration.467

According to the initialization, we have the following obser-468

vations: 1) the construction is simple with basic operations,469

but can effectively initialize a sparse discriminative affinity470

graph with block-diagonal structures, contributing to the sub-471

sequent learning process. 2) The hyperparameter γi can be472

predetermined to avoid the undesired tuning by grid search.473

3) Initializing the affinity graph involves a parameter, i.e., the474

number of neighbors c. For most cases, 5 ≤ c ≤ 10 is likely475

to achieve reasonable results and c is fixed at 5 in this work.476

E. Analysis and Extensions477

1) Computational Complexity: According to the aforemen-478

tioned alternate optimization steps, the computational com-479

plexity of our LSWMKC model includes three parts. Updating480

ωp in (12) needs O(mn2) to obtain the closed-form solution.481

When updating Z, the complex QP problem in (15) is trans-482

formed into an equivalent closed-form solution in (16) whose483

computational complexity is O(mn2). Updating K∗ in (22)484

needs O(n3) cost by eigenvalue decomposition. Commonly,485

n � m, the total computational complexity of our LSWKMC486

is O(n3) in each iteration.487

For the postprocessing of K∗, we perform KKM to obtain488

the clustering partition and labels whose computational com-489

plexity is O(n3). Although the computational complexity of490

our LSWMKC algorithm is the same as the compared mod-491

els [14]–[16], [19], [24], [36], [40], [48], [51], its clustering492

Algorithm 1 LSWMKC
Input: Base kernel matrices {Kp}m

p=1, clusters k,
neighbors c, hyperparameter α.

Initialize: Z by (34); K∗ = �m
p=1 ωpKp; γi by (33);

ωp = √
1/m.

while not converged do
Compute ωp according to (12);
Compute Z according to (16);
Compute K∗ according to (22);

end
Output: Perform kernel k-means on K∗.

performance exhibits significant improvement, as reported in 493

Section IV-D. 494

2) Convergence: Jointly optimizing all the variables in (11) 495

is problematic since our algorithm is nonconvex. Instead, 496

as Algorithm 1 shows, we adopt an alternate optimization 497

manner, and each of the subproblems is strictly convex. For 498

each subproblem, the objective function decreases monoton- 499

ically during iteration. Consequently, as pointed out in [65], 500

the proposed model can theoretically obtain a local minimum 501

solution. 502

3) Limitation and Extension: The proposed model provides 503

a heuristic insight into the localized mechanism in kernel 504

space. Nevertheless, we should emphasize the promising per- 505

formance obtained at the expense of O(n3) computational 506

complexity, which limits wide applications in large-scale clus- 507

tering. Introducing more advanced and efficient graph learning 508

methods to this framework deserve future investigation, espe- 509

cially for prototype or anchor learning [49], [52], [66], which 510

may reduce the complexity from O(n3) to O(n2), even O(n). 511

Moreover, the present work still requires postprocessing to get 512

the final clustering results, i.e., k-means. Interestingly, several 513

concise strategies, such as rank constraint [41], [48], [52] or 514

one-pass manner [25], provide promising solutions of directly 515

obtaining the clustering labels, these deserve further research. 516

IV. EXPERIMENT 517

This section conducts extensive experiments to evaluate the 518

performance of our proposed algorithm, including clustering 519

performance, running time, comparison with the KNN mech- 520

anism, kernel weights, visualization, convergence, parameter 521

sensitivity analysis, and ablation study. 522

A. Datasets 523

Table I lists 12 widely employed multi-kernel benchmark 524

datasets, including the following: 525

1) YALE1 includes 165 face gray-scale images from 526

15 individuals with different facial expressions or con- 527

figurations, and each subject includes 11 images. 528

2) MSRA derived from MSRCV1 [67], contains 529

210 images with seven clusters, including airplane, 530

bicycle, building, car, caw, face, and tree. 531

1http://vision.ucsd.edu/content/yale-face-database
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TABLE I

DATASETS SUMMARY

3) Caltech101-7 and Caltech101-mit2 originated from532

Caltech101, including 101 object categories (e.g., “face,”533

“dollar bill,” and “helicopter”) and a background cate-534

gory.535

4) PsortPos and PsortNeg3 are bioinformatics MKL536

datasets used for protein subcellular localization537

research.538

5) BBC and BBCSport4 are two news corpora datasets539

derived from BBC News, consisting of various docu-540

ments corresponding to stories or sports news in five541

areas.542

6) ProteinFold5 is a bioinformatics dataset containing543

694 protein patterns and 27 protein folds.544

7) Handwritten6 and Mfeat7 are image datasets originated545

from the UC Irvine Machine Learning (UCI ML) repos-546

itory, including 2000 digits of handwritten numerals547

(“0”–“9”).548

8) Scene-158 contains 4485 gray-scale images, 15 envi-549

ronmental categories, and three features [Generalized550

Search Trees (GIST), Pyramid Histogram of Gradients551

(PHOG), and Local Binary Patterns (LBP)].552

All the precomputed base kernels within the datasets are553

publicly available on websites and are centered and then554

normalized following [63] and [64].555

B. Compared Algorithms556

Thirteen existing multiple kernel or graph-based algo-557

rithms are compared with our proposed model, including the558

following:559

1) Avg-KKM combines base kernels with uniform weights.560

2) MKKM [19] optimally combines multiple kernels by561

alternatively performing KKM and updating the kernel562

weights.563

3) Localized Multiple Kernel k-means (LMKKM) [14]564

can optimally fuse base kernels via an adaptive sample-565

weighted strategy.566

4) Multiple Kernel k-Means Clustering with Matrix-567

Induced Regularization (MKKM-MR) [15] improve568

2http://www.vision.caltech.edu/Image_Datasets/Caltech101/
3https://bmi.inf.ethz.ch/supplements/protsubloc
4http://mlg.ucd.ie/datasets/bbc.html
5mkl.ucsd.edu/dataset/protein-fold-prediction
6http://archive.ics.uci.edu/ml/datasets/
7https://datahub.io/machine-learning/mfeat-pixel
8https://www.kaggle.com/yiklunchow/scene15

the diversity of kernels by introducing a matrix-induced 569

regularization term. 570

5) Multiple Kernel Clustering with Local Alignment 571

Maximization (LKAM) [36] introduces localized ker- 572

nel maximizing alignment by constraining τ -nearest 573

neighbors of each sample. 574

6) Optimal Neighborhood Kernel Clustering 575

(ONKC) [16] regards the optimal kernel as the 576

neighborhood kernel of the combined kernel. 577

7) Self-weighted Multiview Clustering with Multiple 578

Graphs (SwMC) [57] eliminates the undesired hyper- 579

parameter via a self-weighted strategy. 580

8) Multi-view Clustering via Late Fusion Alignment 581

Maximization (LF-MVC) [17] aims to achieve max- 582

imal alignment of consensus partition and base ones via 583

a late fusion manner. 584

9) Simultaneous Global and Local Graph Struc- 585

ture Preserving for Multiple Kernel Clustering 586

(SPMKC) [51] simultaneously performs consensus ker- 587

nel learning and graph learning. 588

10) Simple Multiple Kernel k-means (SMKKM) [24] 589

proposes a novel min–max optimization based on kernel 590

alignment criterion. 591

11) Consensus Affinity Graph Learning for Multiple 592

Kernel Clustering (CAGL) [48] proposes a multi- 593

kernel graph-based clustering model to directly learn a 594

consensus affinity graph with rank constraint. 595

12) One Pass Late Fusion Multi-view Clustering 596

(OPLFMVC) [25] can directly learn the cluster labels 597

on the base partition level. 598

13) Localized Simple Multiple Kernel k-means 599

(LSMKKM) [40] is localized SMKKM in the 600

KNN method. 601

C. Experimental Settings 602

Regarding the benchmark datasets, it is commonly assumed 603

that the true number of clusters k is known. For the methods 604

involving k-means, the centroid of clusters is repeatedly and 605

randomly initialized 50 times to reduce its randomness and 606

report the best results. Regarding all the compared algorithms, 607

we directly download the public MATLAB code and carefully 608

tune the hyperparameters following the original suggestion. 609

For our proposed LSWMKC, the balanced hyperparameter 610

α varies in [20, 21, . . . , 210] by grid search. The clustering 611

performance is evaluated by four widely employed criteria, 612

including clustering accuracy (ACC), normalized mutual infor- 613

mation (NMI), purity, and adjusted rand index (ARI). The 614

experimental results are obtained from a desktop with Intel 615

Core i7 8700K CPU (3.7 GHz), 64-GB RAM, and MATLAB 616

2020b (64bit). 617

D. Experimental Results 618

Table II reports ACC, NMI, Purity, and ARI comparisons 619

of 14 algorithms on 12 datasets. Red bold denotes the optimal 620

results. Blue bold denotes the suboptimal results while “-” 621

denotes unavailable results due to overmuch execution time. 622

According to the experimental results, it can be seen that the 623

following holds. 624

1) Our proposed LSWMKC algorithm achieves optimal or 625

suboptimal performance on most datasets. Particularly, 626
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TABLE II

ACC, NMI, PURITY, AND ARI COMPARISONS OF 14 CLUSTERING ALGORITHMS ON 12 BENCHMARK DATASETS

CAGL can be regarded as the strongest competitor in627

affinity graph multi-kernel clustering, our LSWMKC628

still exceeds CAGL with a large margins improvement629

of 13.34%, 16.26%, 20.41%, 8.09%, 25.00%, 9.20%,630

10.00%, and 26.28% on the YALE, PsortPos, BBC,631

BBCSport, PsortNeg, Handwritten, Mfeat, and Scene15632

datasets, respectively, in terms of ACC, which well633

demonstrates the superiority of our model over existing634

methods.635

2) Compared with LKAM and LSMKKM that utilize636

the KNN mechanism to localize base kernel, our637

LSWMKC still exhibits promising performance. Espe-638

cially, LSMKKM can be regarded as the most compet-639

itive method in multi-kernel clustering, the ACC of our640

LSWMKC exceeds that of them 7.42%, 0.43%, 11.99%,641

22.66%, 20.13%, 7.08%, 2.39%, 0.97%, 0.55%, and642

4.78% on ten datasets, respectively, which sufficiently643

illustrates the reasonableness of our model. Similarly,644

NMI, Purity, and ARI of our algorithm also outperform645

other methods on most datasets.646

In summary, the quantitative comparison results can ade-647

quately substantiate the promising capability of our LSWMKC648

algorithm. The superiority of our algorithm can be attributed649

to the following two aspects: 1) our MKC model first learns a 650

discriminative graph to explore the intrinsic local manifold 651

structures in kernel space, which can reveal the ranking 652

relationship of samples. The noise or outliers are sufficiently 653

removed, which directly serves for clustering. 2) An optimal 654

neighborhood kernel is obtained with naturally sparse property 655

and clear block diagonal structures, which can further denoise 656

the affinity graph. Our model achieves implicitly optimizing 657

adaptive weights on different neighbors with corresponding 658

samples in kernel space. Compared with the existing KNN 659

mechanism, the unreliable distant–distance neighbors in our 660

model can be removed or assigned small weights. The obtained 661

localized kernel is more reasonable in comparison with the 662

one from the KNN mechanism. Such two aspects conduce to 663

obvious improvement in applications. 664

E. Running Time Comparison 665

Fig. 2 plots the time-consuming comparison of 14 algo- 666

rithms. To simplify, the elapsed time of OPLFMVC is set 667

as the baseline and we take the logarithm of all results. 668

As our analysis that our LSWMKC shares the same computa- 669

tional complexity with MKKM, LMKKM, LKAM, ONKC, 670

SMKKM, SPMKC, CAGL, and LSMKKM, the empirical 671
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Fig. 2. Relative logarithm time-consuming comparison of 14 models on 12 datasets.

Fig. 3. Visualization of neighbor index and localized K(l) in KNN mechanism, the affinity graph Z, and localized K∗ of the proposed algorithm on BBCSport
and Mfeat datasets. (a) KNN (neighbor index). (b) KNN (K(l)). (c) Proposed (Z). (d) Proposed (K∗). (e) KNN (neighbor index). (f) KNN (K(l)). (g) Proposed
(Z). (h) Proposed (K∗).

TABLE III

ACC, NMI, PURITY, AND ARI COMPARISONS OF OUR PROPOSED ALGORITHM AND KNN MECHANISM ON 12 BENCHMARK DATASETS

Fig. 4. Comparison of the learned kernel weights of different algorithms on six datasets. Other datasets’ results are provided in the supplementary material.
(a) YALE. (b) BBC. (c) BBCSport. (d) Handwritten. (e) Mfeat. (f) Scene15.
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Fig. 5. Evolution of data distribution by t-SNE on Handwritten dataset. (a) Initialized. (b) First iteration. (c) Fifth iteration. (d) Tenth iteration. (e) Twentieth
iteration.

Fig. 6. Evolution of affinity graph Z and neighborhood kernel K∗ learned by our proposed algorithm on Handwritten dataset. (a) Initialized (Z). (b) First
iteration (Z). (c) Third iteration (Z). (d) Fifth iteration (Z). (e) Tenth iteration (Z). (f) Initialized (K∗). (g) First iteration (K∗). (h) Third iteration (K∗). (i) Fifth
iteration (K∗). (j) Tenth iteration (K∗).

Fig. 7. Convergence of the proposed LSWMKC on six datasets. Other datasets’ results are provided in the supplementary material. (a) YALE. (b) BBC.
(c) BBCSport. (d) Handwritten. (e) Mfeat. (f) Scene15.

time evaluation also demonstrates that our LSWMKC costs672

comparative and even shorter running time. More importantly,673

our LSWMKC exhibits promising performance.674

F. Comparing With KNN Mechanism675

Recall our motivation to learn localized kernel by con-676

sidering the ranking importance of neighbors in contrast to677

the traditional KNN mechanism. Here, we conduct com-678

parison experiments with the KNN mechanism (labeled as679

KNN). Specifically, we tune the neighbor ratio τ varying in680

[0.1, 0.2, . . . , 0.9] by grid search in average kernel space and681

report the best results. As Table III shows, our algorithm682

consistently outperforms the KNN mechanism. Moreover,683

as Fig. 3 shows, for the KNN mechanism, we plot the684

visualization of the neighbor index and K(l), for our model,685

we visualize the learned affinity graph Z and neighborhood686

kernel K∗ on the BBCSport and Mfeat datasets. Regarding687

the KNN mechanism, the neighbor index involves noticeable 688

noise, especially on the BBCSport dataset, caused by the 689

unreasonable neighbor-building strategy. Such coarse localized 690

manner directly incurs the corrupted K(l) with much noise. 691

In contrast, the affinity graphs learned by our neighbor learning 692

mechanism achieve more precise block st 693

ructures, which directly serve for learning localized K∗. All 694

the above-mentioned results sufficiently illustrate the effective- 695

ness of our neighbor-building strategy. 696

G. Kernel Weight Analysis 697

We further evaluate the distribution of the learned kernel 698

weights on 12 datasets. As Fig. 4 shows, the kernel weight 699

distributions of MKKM-MR, ONKC, and LKAM vary greatly 700

and are highly sparse on most datasets. Such sparsity would 701

incur clustering information across multiple views that cannot 702

be fully utilized. In contrast, the weight distributions of our 703



IE
EE P

ro
of

LI et al.: LOCAL SAMPLE-WEIGHTED MKC WITH CONSENSUS DISCRIMINATIVE GRAPH 11

Fig. 8. Parameter sensitivity study of hyperparameter α on BBC, BBCSport, and Caltech101-mit datasets. (a) BBC (ACC). (b) BBC (NMI). (c) BBCSport
(ACC). (d) BBCSport (NMI). (e) Caltech101-mit (ACC). (f) Caltech101-mit (NMI).

Fig. 9. Ablation study of γ by grid search on Caltech101-7 and BBCSport datasets. Other datasets’ results are provided in the supplementary material.
(a) Caltech101-7 (ACC). (b) Caltech101-7 (NMI). (c) Caltech101-7 (Purity). (d) BBCSport (ACC). (e) BBCSport (NMI). (f) BBCSport (Purity).

proposed algorithm are nonsparse on all the datasets, and704

thus, the latent clustering information can be significantly705

exploited.706

H. Visualization707

To visually demonstrate the learning process of the proposed708

localized building strategy, Fig. 5 plots the t-SNE visual709

results on the Handwritten dataset, which clearly shows the710

separation of different clusters during the iteration. Moreover,711

Fig. 6 plots the evolution of the learned affinity graph Z712

and neighborhood kernel K∗ on the Handwritten dataset.713

Clearly, the noises are gradually removed and the clustering714

structures become clearer. Besides, K∗ can further denoise Z,715

which exhibits more evident block diagonal structures. These716

results can well illustrate the effectiveness of our localized717

strategy.718

I. Convergence and Parameter Sensitivity719

According to our previous theoretical analysis, the con-720

vergence of our LSWMKC model has been verified with721

a local optimal. Here, experimental verification is further722

conducted to illustrate this issue. Fig. 7 reports the evolvement723

of optimization goals during iteration. Obviously, the objective724

function values monotonically decrease and quickly converge725

during the iteration.726

We further evaluate the parameter sensitivity of α by grid727

search varying in [20, 21, . . . , 210] on the BBC, BBCSport, and728

Caltech101-mit datasets. From Fig. 8, we find the proposed729

method exhibits much better performance compared with the730

KNN mechanism in a wide range of α, making it practical in731

real-world applications.732

J. Ablation Study on Tuning γ by Grid Search733

To evaluate the effectiveness of our learning γ man-734

ner in Section III-D, we perform ablation study by tun-735

ing γ in [2−5, 2−4, . . . , 25]. The range of α still varies in 736

[20, 21, . . . , 210]. Fig. 9 plots the results on the Caltech101-7 737

and BBCSport datasets. The red line denotes our reported 738

results. The green dashed line denotes the tuning results, for 739

simplicity, α is fixed at the index of the optimal results. 740

As can be seen, our learning manner exceeds the tuning 741

manner with a large margin in a wide range of γ. Although 742

tuning manner may achieve better performance at several 743

values of γ , it is mainly due to tuning by grid search 744

enlarges the search region of hyperparameter γ, it dramatically 745

increases the running time as well. In contrast, our learning 746

manner can significantly reduce the search region and achieve 747

comparable or much better performance. 748

V. CONCLUSION 749

This article proposes a novel localized MKC algorithm 750

LSWMKC. In contrast to traditional localized methods in the 751

KNN mechanism, which neglects the ranking relationship of 752

neighbors, this article adopts a heuristic manner to implicitly 753

optimize adaptive weights on different neighbors according to 754

the ranking relationship. We first learn a consensus discrimina- 755

tive graph across multiple views in kernel space, revealing the 756

latent local manifold structures. We further learn a neighbor- 757

hood kernel with more discriminative capacity by denoising 758

the consensus graph, which achieves naturally sparse property 759

and clearer block diagonal property. Extensive experimental 760

results on 12 datasets sufficiently demonstrate the superiority 761

of our proposed algorithm over the existing 13 methods. Our 762

algorithm provides a heuristic insight into localized methods 763

in kernel space. 764

However, we should emphasize the promising performance 765

obtained at the expense of O(n3) computational complexity, 766

which restricts applications in large-scale clustering. Intro- 767

ducing more advanced and efficient graph learning strategies 768

deserve future investigation, especially for prototype or anchor 769
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learning, which may reduce the complexity from O(n3) to770

O(n2), even O(n). Moreover, the present work still requires771

postprocessing to get the final clustering labels, i.e., k-means.772

Interestingly, several concise strategies, such as rank constraint773

or one-pass mechanism, provide promising solutions to this774

issue, which deserves further research.775
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Local Sample-Weighted Multiple Kernel Clustering
With Consensus Discriminative Graph

Liang Li , Siwei Wang , Xinwang Liu , Senior Member, IEEE, En Zhu , Li Shen,

Kenli Li , Senior Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract— Multiple kernel clustering (MKC) is committed1

to achieving optimal information fusion from a set of base2

kernels. Constructing precise and local kernel matrices is proven3

to be of vital significance in applications since the unreliable4

distant–distance similarity estimation would degrade cluster-5

ing performance. Although existing localized MKC algorithms6

exhibit improved performance compared with globally designed7

competitors, most of them widely adopt the KNN mechanism8

to localize kernel matrix by accounting for τ -nearest neighbors.9

However, such a coarse manner follows an unreasonable strategy10

that the ranking importance of different neighbors is equal, which11

is impractical in applications. To alleviate such problems, this12

article proposes a novel local sample-weighted MKC (LSWMKC)13

model. We first construct a consensus discriminative affinity14

graph in kernel space, revealing the latent local structures.15

Furthermore, an optimal neighborhood kernel for the learned16

affinity graph is output with naturally sparse property and17

clear block diagonal structure. Moreover, LSWMKC implicitly18

optimizes adaptive weights on different neighbors with corre-19

sponding samples. Experimental results demonstrate that our20

LSWMKC possesses better local manifold representation and21

outperforms existing kernel or graph-based clustering algo-22

rithms. The source code of LSWMKC can be publicly accessed23

from https://github.com/liliangnudt/LSWMKC.24

Index Terms— Graph learning, localized kernel, multiview25

clustering, multiple kernel learning.26

I. INTRODUCTION27

CLUSTERING is one of the representative unsupervised28

learning techniques widely employed in data mining and29

machine learning [1]–[6]. As a popular algorithm, k-means has30

been well investigated [7]–[9]. Although achieving extensive31
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applications, k-means assumes that data can be linearly sepa- 32

rated into different clusters [10]. By employing kernel tricks, 33

the nonlinearly separable data are embedded into a higher 34

dimensional feature space and become linearly separable. 35

As a consequence, kernel k-means (KKM) is naturally devel- 36

oped for handling nonlinearity issues [10], [11]. Moreover, 37

to encode the emerging data generated from heterogeneous 38

sources or views, multiple kernel clustering (MKC) provides 39

a flexible and expansive framework for combining a set of 40

kernel matrices since different kernels naturally correspond to 41

different views [12]–[18]. Multiple KKM (MKKM) [19] and 42

various variants are further developed and widely employed 43

in many applications [15], [16], [20]–[23]. 44

Most of the kernel-based algorithms follow a common 45

assumption that all the samples are reliable to exploit the 46

intrinsic structures of data, and thus, such a globally designed 47

manner equally calculates the pairwise similarities of all 48

samples [15]–[17], [20], [21], [24], [25]. Nevertheless, in a 49

high-dimensional space, this assumption is incompatible with 50

the well-acknowledged theory that the similarity estimation 51

for distant samples is less reliable on account of the intrinsic 52

manifold structures are highly complex with curved, folded, 53

or twisted characteristics [26]–[29]. Furthermore, researchers 54

have found that preserving reliable local manifold structures 55

of data could achieve better effectiveness than globally pre- 56

serving all the pairwise similarities in unsupervised tasks and 57

can achieve better clustering performance, such as dimension 58

reduction [30]–[33] and clustering [34], [35]. 59

Therefore, many approaches are proposed to localize ker- 60

nels to enhance discrimination [36]–[40]. The work in [36] 61

develops a localized kernel maximizing alignment method that 62

merely aligns the original kernel with τ -nearest neighbors of 63

each sample to the learned optimal kernel. Along this way, the 64

KNN mechanism is introduced to kernel-based subspace seg- 65

mentation [38]. Moreover, a recently proposed simple MKKM 66

method [24] with min–max optimization is also localized in 67

the same way to consider local structures [40]. Besides, such a 68

localized manner also has been extended to handle incomplete 69

data [37]. Although showing improved performance, most 70

traditional localized kernel methods adopt the simple KNN 71

mechanism to select neighbors. 72

As can be seen in Fig. 1(a) and (b), previous localized MKC 73

methods with the KNN mechanism encounter two issues: 74

1) these methods follow the common assumption that all the 75

neighbors are reliable without considering their variation and 76

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. Illustration of (a) original average kernel, (b) localized average
kernel in KNN mechanism by carefully tuning τ within [0.1, 0.2, . . . , 0.9]
and present the optimal results (τ = 0.1), and (c) localized kernel learned by
proposed model on Mfeat dataset.

ranking relationship. However, it is incompatible with common77

knowledge that the neighbors of a sample are adaptively78

varied, and some may have been corrupted by noise or out-79

liers. For instance, in social networking, a closer relationship80

means more essential and vice versa. 2) The KNN mechanism81

introduces a hyperparameter neighbor ratio, which is fixed82

for each sample and commonly predetermined empirically.83

Apart from this unreasonable fixed neighbor ratio, it incurs84

dataset-related parameter-tuning in a wide range to obtain85

satisfying clustering results. From experimental results, we can86

observe that the KNN mechanism still preserves apparent noise87

compared with the original average kernel.88

To alleviate these problems, we start our work with a89

natural thought that adaptively assigns a reasonable weight to90

each neighbor according to its ranking importance. However,91

there is no sufficient prior knowledge in kernel space to92

identify the ranking relationship among neighbors. Owing93

to the remarkable performance in exploring the complex94

nonlinear structures of various data, developing graph-based95

methods is greatly popular with scholars [27], [41]–[56].96

Considering kernel matrix can be regarded as affinity graph97

with additional positive semidefinite (PSD) constraint, it is98

practicable and more flexible to learn a discriminative affin-99

ity graph with naturally sparsity and clear block diagonal100

structures [41], [43], [47], [57].101

Based on the above-mentioned motivation and our inspi-102

ration from graph learning [41], [47], [48], [51], [57], [58],103

we develop a novel local sample-weighted MKC with consen-104

sus discriminative graph method (LSWMKC). Instead of using105

the KNN mechanism to localize the kernel matrix without106

considering the ranking importance of neighbors, we first learn107

a consensus discriminative affinity graph across multiple views108

in kernel space to reveal the latent manifold structures, and109

further heuristically learn an optimal neighborhood kernel.110

As Fig. 1(c) shows, the learned neighborhood kernel is natu-111

rally sparse with clear block diagonal structures. We develop112

an efficient iterative algorithm to simultaneously learn weights113

of base kernels, discriminative affinity graph, and localized114

consensus neighborhood kernel. Instead of empirically tun-115

ing or selecting a predefined neighbor ratio, our model can116

implicitly optimize adaptive weights on different neighbors117

with corresponding samples. Extensive experiments demon-118

strate that the learned neighborhood kernel can achieve clear119

local manifold structures, and it outperforms localized MKC120

methods in the KNN mechanism and other existing models.121

We briefly summarize the main contributions as follows:122

1) A novel local sample-weighted MKC algorithm is pro- 123

posed based on kernelized graph learning, which can 124

implicitly optimize adaptive weights on different neigh- 125

bors with corresponding samples according to their 126

ranking importance. 127

2) We learn an optimal neighborhood kernel with more 128

discriminative capacity by further denoising the graph, 129

revealing the latent local manifold representation in 130

kernel space. 131

3) We conduct extensive experimental evaluations 132

on 12 MKC benchmark datasets compared with the 133

existing 13 methods. Our proposed LSWMKC shows 134

apparent effectiveness over localized MKC methods in 135

the KNN mechanism and other existing methods. 136

II. BACKGROUND 137

This section introduces MKC and traditional KNN-based 138

localized MKC methods. 139

A. Multiple Kernel k-Means 140

For a data matrix X ∈ R
d×n , including n samples with 141

d-dimensional features from k clusters, nonlinear feature map- 142

ping ψ(·) : R
d �→ H achieves the transformation from sample 143

space R
d to a reproducing kernel Hilbert space (RKHS) 144

H [59]. Kernel matrix K is computed by 145

Ki j = κ
(
xi , x j

) = ψ(xi)
�ψ

(
x j

)
(1) 146

where κ(·, ·) : R
d × R

d �→ R denotes a PSD kernel function. 147

k-means is to minimize the clustering loss, that is, 148

min
S

n∑
i=1

k∑
q=1

Siq‖xi − cq‖2
2, s.t.

k∑
q=1

Siq = 1 (2) 149

where S ∈ {0, 1}n×k denotes the indicator matrix, cq denotes 150

the centroid of q-th cluster and nq = ∑n
i=1 Siq denotes the 151

corresponding amount of samples. To deal with nonlinear 152

features, the samples are mapped into RKHS H. KKM is 153

formulated as 154

min
H

Tr
(
K

(
In − HH�))

, s.t. H�H = Ik (3) 155

where partition matrix H ∈ R
n×k is computed by taking rank- 156

k eigenvectors of K and then exported to k-means to compute 157

the final results [10], [11]. 158

For multiple kernel learning scenarios, x can be represented 159

as ψω(x) = [ω1ψ1(x)�, ω2ψ2(x)�, . . . , ωmψm(x)�]�, where 160

ω = [ω1, . . . , ωm ]� denotes the coefficients of m base kernel 161

functions {κp(·, ·)}m
p=1. κω(·, ·) is expressed as 162

κω

(
xi , x j

) = ψω(xi)
�ψω

(
x j

) =
m∑

p=1

ω2
pκp

(
xi , x j

)
. (4) 163

The objective of MKKM is formulated as 164

min
H,ω

Tr
(
Kω

(
In − HH�))

165

s.t. H ∈ R
n×k, H�H = Ik, ωp ≥ 0 ∀p (5) 166

where the consensus kernel Kω = ∑m
p=1 ω

2
pKp is commonly 167

assumed as a combination of base kernels Kp. To control the 168
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contribution of different kernels, there are some strategies on169

ω, such as “kernel affine weight strategy” [51], “autoweighted170

strategy” [43], [48], and “sum-to-one strategy” [40]. Accord-171

ing to [19], (5) can be solved by alternatively optimizing ω172

and H.173

B. Construction of Localized Kernel in KNN Mechanism174

Most kernel-based methods assume that all the samples175

are reliable and calculate fully connected pairwise similarity.176

However, as pointed out in [26]–[29] and [60], the similarity177

estimation of distant–distance samples in high-dimensional178

space is unreliable. Many localized kernel-based works have179

been developed to alleviate this problem [36], [40], [61].180

Commonly, the localized kernel is constructed in the KNN181

mechanism.182

The construction of a localized kernel mainly includes183

two steps, i.e., neighbor searching and localized kernel con-184

struction. First, in average kernel space, the neighbors of185

each sample are identified by labeling its τ -nearest samples.186

Denoting the neighbor mask matrix as N ∈ {0, 1}n×n. The187

neighbor searching is defined as follows:188

Ni j =
{

1, x j ∈ KNN(xi),

0, otherwise
(6)189

where j denotes the neighbor index of i -th sample. For each190

row, there are round(τn) elements are labeled as neigh-191

bors, where neighbor ratio τ is commonly predetermined192

empirically and carefully tuned by grid search, such as τ193

varies within [0.1, 0.2, . . . , 0.9], and finally, obtain the optimal194

clustering results. If we set neighbor ratio τ = 1, the195

KNN structure will be full-connected. For the precomputed196

base kernels Kp, the corresponding localized kernel Kp(l) is197

formulated as198

Kp(l) = N 	 Kp (7)199

where 	 is the Hadamard product.200

Although the traditional KNN mechanism to localize ker-201

nel is simple and has improved performance than globally202

designed methods, this manner neglects a critical issue the203

variation of neighbors. Therefore, it is important and practical204

to assign reasonable weights to different neighbors accord-205

ing to their ranking relationship. Another issue is that the206

initial neighbor ratio τ of each sample is usually fixed and207

predetermined empirically and needs to be tuned to report208

the best clustering result. As Fig. 1(a) and (b) shows, the209

obtained localized kernels preserve much noise, which will210

incur degeneration of clustering performance.211

III. METHODOLOGY212

This section presents our proposed LSWMKC in detail213

and provides an efficient three-step optimization solution.214

Moreover, we analyze convergence, computational complexity,215

limitation, and extensions.216

A. Motivation217

From our aforementioned analysis of the traditional local-218

ized kernel method in the KNN mechanism, we find that:219

1) This seemingly simple method neglects the ranking impor- 220

tance of the neighbors, which may degrade the clustering per- 221

formance due to the impact of the unreliable distant–distance 222

relationship. 2) The neighbor ratio is commonly predetermined 223

empirically and needs to be tuned to report the best results. 224

The above-mentioned issues inspire us to rethink the 225

manner of constructing localized MKC, and a natural 226

motivation is to exploit their ranking relationship and assign 227

a reasonable weight to each neighbor. However, there is no 228

sufficient prior knowledge in kernel space to identify the 229

ranking importance of neighbors. In recent years, graph- 230

based algorithms have been greatly popular with scholars 231

to explore the nonlinear structures of data. An ideal affinity 232

graph exhibits two good properties: 1) clear block diagonal 233

structures with k connected blocks, each corresponding to one 234

cluster. 2) The affinity represents the similarity of pairwise 235

samples, and the intracluster affinities are nonzero, while the 236

extra-cluster affinities are zeros. Considering the kernel matrix 237

can be regarded as the affinity graph with additional PSD 238

constraint, a discriminative graph can reveal the latent local 239

manifold representation in kernel space. These issues inspire 240

us to exploit the capacity of graph learning in capturing 241

nonlinear structures of kernel space. 242

B. Proposed Formula 243

Here, we briefly introduce the affinity graph learning 244

method, which will be the base of our proposed model. 245

For sample set {x1, . . . , xn}, it is desirable to learn an 246

affinity graph Z ∈ R
n×n with distinct distance ‖xi − x j‖2

2 247

corresponding to small similarity zi j , which is formulated as 248

min
Z

n∑
i, j=1

∥∥xi − x j

∥∥2
2zi j + γ z2

i j 249

s.t. Zi,:1n = 1, zi j ≥ 0, zii = 0 (8) 250

where γ is a hyperparameter, Zi,:1n = 1 is for normalization, 251

zi j ≥ 0 is to ensure the nonnegative property, and zii = 0 can 252

avoid trivial solutions. Commonly, the second term �2 norm 253

regularization is to avoid undesired trivial solutions [42], [62]. 254

However, the existing graph-based methods are developed 255

in sample space R
d , rather than RKHS H kernel space, 256

significantly limiting their applications. To fill this gap and 257

exploit their potent capacity to capture nonlinear structures in 258

kernel space, by using kernel tricks, the first term of (8) can 259

be extended as 260

min
Z

n∑
i, j=1

‖ψ(xi )− ψ(x j )‖2
2zi j 261

= min
Z

n∑
i, j=1

(ψ(xi )
�ψ(xi )−2ψ(xi)

�ψ(x j )+ψ(x j)
�ψ(x j ))zi j 262

= min
Z

n∑
i, j=1

(κ(xi , xi)− 2κ(xi, x j)+ κ(x j, x j ))zi j 263

= min
Z

2n −
n∑

i, j=1

2κ(xi, x j )zi j ⇔ min
Z

n∑
i, j=1

−κ(xi, x j)zi j 264

s.t. Zi,:1n = 1, zi j ≥ 0, zii = 0. (9) 265
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Note that the condition for (9) is that we assume266

κ(xi, xi ) = 1. However, it is not always valid for all the kernel267

functions. A common choice is the Gaussian kernel which268

satisfies κ(xi , xi) = 1. The present work utilizes this manner or269

directly downloads the public kernel datasets. Moreover, all the270

base kernels are first centered and then normalized following271

[63] and [64], which further guarantees κ(xi , xi) = 1.272

We have the following insights from the kernelized affinity273

graph learning model: 1) compared with using ‖xi − x j‖2
2 to274

estimate the pairwise distance in sample space, we should275

adopt −κ(xi, x j) in kernel space. 2) Such compact form276

achieves affinity graph learning in kernel space to explore the277

complex nonlinear structures.278

In multiple kernel learning scenarios, it is commonly279

assumed that the ideal kernel is optimally combined by given280

base kernels, and (9) can be extended as281

min
Z,ω

m∑
p=1

n∑
i, j=1

−ωpκp(xi , x j)zi j + γ z2
i j282

s.t.

{
Zi,:1n = 1, zi j ≥ 0, zii = 0∑m

p=1 ω
2
p = 1, ωp ≥ 0

(10)283

where ωp is the weight of p-th base kernel. Since using284 ∑m
p=1 ω = 1 will only activate the best kernel, and it incurs285

the multi-kernel scenario degraded into the undesirable single-286

kernel scenario. We employ the squared �2 norm constraint of287

ωp to smooth the weights and avoid the sparse trivial solution.288

Other weight strategies can refer to [43], [48], and [51].289

The above-mentioned formula achieves multiple kernel-based290

graph learning by jointly optimizing kernel weights and291

consensus affinity graph. Specifically, the learned consensus292

discriminative graph reveals kernel space’s intrinsic local293

manifold structures by graph learning mechanism and fuses294

latent clustering information across multiple kernels by weight295

learning mechanism.296

Recall we aim to estimate the ranking relationship of297

neighbors with corresponding samples in kernel space. The298

above-mentioned discriminative consensus graph inspires us to299

further learn an optimal neighborhood kernel, which obtains a300

consensus kernel with naturally sparse properties and precise301

block diagonal structures. This idea can be naturally modeled302

by minimizing squared F-norm loss ‖K∗−Z‖2
F with constraints303

K∗ � 0 and K∗ = K∗�. We define the optimization goal as304

follows:305

min
Z,K∗,ω

−Tr

⎛
⎝ m∑

p=1

ωpKpZ�
⎞
⎠ + ‖G 	 Z‖2

F + α‖K∗ − Z‖2
2306

s.t.

⎧⎪⎨
⎪⎩

Z1n = 1n, Z ≥ 0, Zii = 0

K∗ � 0, K∗ = K∗�,
m∑

p=1

ω2
p = 1, ωp ≥ 0

(11)307

where G = 1�
n ⊗ γ , γ = (

√
γ1,

√
γ2, . . . ,

√
γn)

� denotes308

hyperparameter γi with corresponding i -row of Z, ⊗ is outer309

product, 	 is the Hadamard product, and α is the balanced310

hyperparameter for neighborhood kernel construction.311

Note that n hyperparameters γ corresponding to n rows of Z312

respectively, which is due to the following considerations: 1) as313

our analysis in (10), reasonable hyperparameters γ can avoid 314

trivial solutions, i.e., γ → 0 or γ → ∞ will incur undesired 315

extremely sparse or dense affinity matrix, respectively. 2) 316

Section III-C2 also illustrates the subproblem of optimizing Z 317

involves n-row formed independent optimization. It is reason- 318

able to assign different γi to each problem, considering their 319

variations. Such issues inspire us to learn reasonable γ instead 320

of empirical and time-consuming parameter tuning. We derive 321

a theoretical solution in Section III-D and experimentally 322

validate the ablation study on tuning γ by grid search in 323

Section IV-J. 324

From the above-mentioned formula, our proposed 325

LSWMKC model jointly optimizes the kernel weights, the 326

consensus affinity graph, and the consensus neighborhood 327

kernel into a unified framework. Although the formula is 328

straightforward, LSWMKC has the following merits: 1) it 329

addresses localized kernel problems via a heuristic manner, 330

rather than the traditional KNN mechanism, which achieves 331

implicitly optimizing adaptive weights on different neighbors 332

with corresponding samples according to their ranking 333

relationship. 2) Instead of tuning hyperparameter γ by grid 334

search, we propose an elegant solution to predetermine it. 3) 335

More advanced graph learning methods in kernel space can 336

be easily introduced to this framework. 337

C. Optimization 338

Simultaneously optimizing all the variables in (11) is dif- 339

ficult since the optimization objective is not convex. This 340

section provides an effective alternate optimization strategy by 341

optimizing each variable with others been fixed. The original 342

problem is separated into three subproblems such that each 343

one is convex. 344

1) Optimization ωp With Fixed Z and K∗: With fixed Z and 345

K∗, the objective in (11) is formulated as 346

max
ω

m∑
p=1

ωpδp, s.t.
m∑

p=1

ω2
p = 1, ωp ≥ 0 (12) 347

where δp = Tr(KpZ�). This problem could be easily solved 348

with closed-form solution as follows: 349

ωp = δp√∑m
p=1 δ

2
p

. (13) 350

The computational complexity is O(mn2). 351

2) Optimization Z With Fixed K∗ and ωp: With fixed K∗
352

and ωp, (11) is transformed to n subproblems, and each one 353

can be independently solved by 354

min
Zi,:

(γi + α)Zi,:Z�
i,: −

⎛
⎝2αK∗

i,: +
m∑

p=1

ωpKp[i,:]

⎞
⎠Z�

i,: 355

s.t. Zi,:1n = 1, Zi,: ≥ 0, Zii = 0 (14) 356

where Kp[i,:] denotes the i -th row of the p-th base kernel. 357

Furthermore, (14) can be rewritten as quadratic program- 358

ming (QP) problem 359

min
Zi,:

1

2
Zi,:AZ�

i,: + ei Z�
i,: 360

s.t. Zi,:1n = 1, Zi,: ≥ 0, Zii = 0 (15) 361
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where A = 2(γi +α)In, ei = −(2αK∗
i,:+

∑m
p=1 ωpKp[i,:]). The362

global optimal solution of QP problem can be easily solved363

by the toolbox of MATLAB. Since Zi,: is a n-dimensional row364

vector, the computational complexity of (15) is O(n3 + mn)365

and the total complexity is O(n4 + mn2).366

Furthermore, (15) can be simplified as367

min
Zi,:

1

2

∥∥Zi,: − Ẑi,:
∥∥2

2368

s.t. Zi,:1n = 1, Zi,: ≥ 0, Zii = 0 (16)369

where Ẑi,: = −(ei/(2(α + γi))).370

Mathematically, the following Theorem 1 illustrates that the371

solution of (16) can be analytically solved.372

Theorem 1: The analytical solution of (16) is as follows:373

Zi,: = max
(
Ẑi,: + βi 1�

n , 0
)
, Zii = 0 (17)374

where βi can be solved by Newton’s method efficiently.375

Proof: For i -th row of Z, the Lagrangian function of (16)376

is as follows:377

L(
Zi,:, βi , ηi

) = 1

2

∥∥Zi,: − Ẑi,:
∥∥2

2 − βi
(
Zi,:1n − 1

) − ηi Z
�
i,:378

(18)379

where scalar βi and row vector ηi are Lagrangian multipliers.380

According to the KKT condition381 {
Zi,: − Ẑi,: − βi 1�

n − ηi = 0�

ηi 	 Zi,: = 0�.
(19)382

We have383

Zi,: = max
(
Ẑi,: + βi 1�

n , 0
)
, Zii = 0. (20)384

Note that Zi,:1n increases monotonically with respect to385

βi according to (20), βi can be solved by Newton’s method386

efficiently with the constraint Zi,:1n = 1. This completes the387

proof.388

By computing the closed-formed solution, the computational389

complexity of (15) is reduced to O(mn), which is mainly from390

computing ei . The total complexity is O(mn2).391

3) Optimization K∗ With Fixed Z and ωp: With fixed Z and392

ωp, the original objective (11) can be converted to393

min
K∗

∥∥K∗ − Z
∥∥2

F394

s.t. K∗ � 0, K∗ = K∗�. (21)395

However, this seemingly simple subproblem is hard to be396

directly solved. Theorem 2 provides an equivalent solution.397

Theorem 2: The optimization in (21) has the same solution398

as (22)399

min
K∗

∥∥∥∥K∗ − 1

2
(Z + Z�)

∥∥∥∥
2

F
400

s.t. K∗ � 0, K∗ = K∗�. (22)401

Proof: According to the PSD property of K∗, we can402

derive that the original optimization objective ‖K∗ − Z‖2
F403

in (21) is equivalent to ‖K∗ − Z�‖2
F. Therefore, the solution404

of (21) is the same as (22). This completes the proof.405

According to Theorem 2, supposing the eigenvalue decom-406

position result of (Z + Z�)/2 is UZ�ZU�
Z . The optimal K∗

407

can be easily obtained by imposing K∗ = UZ�U�
Z , where 408

� = max(�Z, 0). Note that the learned K∗ can further denoise 409

the Z from the above-mentioned optimization. Once we obtain 410

K∗, it is exported to KKM to calculate the final results. 411

D. Initialize the Affinity Graph Z and Hyperparameter γi 412

For graph-based clustering methods, the performance is sen- 413

sitive to the initial affinity graph. A bad graph construction will 414

degrade the overall performance. For the proposed algorithm, 415

we aim to learn a neighborhood kernel K∗ of the consensus 416

affinity graph Z. This section proposes a strategy to initialize 417

the affinity matrix Z and the hyperparameter γi . 418

Recalling our objective in (11), a sparse discriminative 419

affinity graph is preferred. Theoretically, by constraining γi 420

within reasonable bounds, Z will be naturally sparse. The c 421

nonzero values of Zi,: denotes the affinity of each instance 422

corresponding to its initialized neighbors. Therefore, with all 423

the other parameters fixed, we learn an initialized Z with the 424

maximal γi . Based on our objective in (11), by constraining 425

the �0-norm of Zi,: to be c, we solve the following problem: 426

max
γi

γi , s.t. ‖Zi,:‖0 = c. (23) 427

Recall the subproblem of optimizing Z in (16), its equivalent 428

form can be written as follows: 429

min
Zi,:1n=1, Zi,:≥0, Zii =0

1

2

∥∥∥∥Zi,: + ei

2(α + γi)

∥∥∥∥
2

2

(24) 430

where ei = −(2αK∗
i,: + ∑m

p=1 ωpKp[i,:]). The Lagrangian 431

function of (24) is 432

L(
Zi,:, ζ,λi

) = 1

2

∥∥∥∥Zi,: + ei

2(α + γi)

∥∥∥∥
2

2

−ζ (Zi,:1n − 1
) − λi Z�

i,: 433

(25) 434

where scalar ζ and row vector λi ≥ 0� denote the Lagrange 435

multipliers. The optimal solution Z∗
i,: satisfy that the derivative 436

of (25) equal to zero, that is, 437

Z∗
i,: +

ei

2(α + γi )
− ζ1�

n − λi = 0�. (26) 438

For the j -th element of Z∗
i,:, we have 439

z∗
i j + ei j

2(α + γi)
− ζ − λi j = 0. (27) 440

According to the KKT condition that zi jλi j = 0, we have 441

z∗
i j = max

(
− ei j

2(α + γi)
+ ζ, 0

)
. (28) 442

To construct a sparse affinity graph with c valid neigh- 443

bors, we suppose each row ei1, ei2, . . . , ein are ordered in 444

ascending order. Naturally, eii ranks first. Considering Zii = 445

0, the invalid eii should be neglected since the similarity 446

with itself is useless. That is Zi,2,Zi,3, . . . ,Zi,c+1>0 and 447

Zi,c+2,Zi,c+3, . . . ,Zi,n = 0, we further derive 448

− ei,c+1

2(α + γi)
+ ζ > 0, − ei,c+2

2(α + γi)
+ ζ ≤ 0. (29) 449
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According to (28) and constraint Zi,:1n = 1, we obtain450

c+1∑
j=2

(
− ei j

2(α + γi)
+ ζ

)
= 1. (30)451

ζ is formulated as452

ζ = 1

c
+ 1

2c(α + γi)

c+1∑
j=2

ei j . (31)453

Therefore, we have454

c

2
ei,c+1 − 1

2

c+1∑
j=2

ei j − α < γi ≤ c

2
ei,c+2 − 1

2

c+1∑
j=2

ei j − α.455

(32)456

According to the aforementioned derivation, to satisfy457

‖Z∗
i,:‖0 = c, the maximal γi is as follows:458

γi = c

2
ei,c+2 − 1

2

c+1∑
j=2

ei j − α. (33)459

In the meantime, the initial z∗
i j is as follows:460

z∗
i j =

⎧⎨
⎩

ei,c+2 − ei, j+1

cei,c+2 − ∑c+1
h=2 eih

, j ≤ c

0, j > c.
(34)461

From the above-mentioned analysis, we initialize a sparse462

discriminative affinity graph with each row having c nonzero463

values and derive the maximal γi . Note that (32) involves464

an undesired hyperparameter α, to get rid of its impact,465

we directly impose α = 0. Once the initial γi are computed,466

these coefficients will remain unchanged during the iteration.467

According to the initialization, we have the following obser-468

vations: 1) the construction is simple with basic operations,469

but can effectively initialize a sparse discriminative affinity470

graph with block-diagonal structures, contributing to the sub-471

sequent learning process. 2) The hyperparameter γi can be472

predetermined to avoid the undesired tuning by grid search.473

3) Initializing the affinity graph involves a parameter, i.e., the474

number of neighbors c. For most cases, 5 ≤ c ≤ 10 is likely475

to achieve reasonable results and c is fixed at 5 in this work.476

E. Analysis and Extensions477

1) Computational Complexity: According to the aforemen-478

tioned alternate optimization steps, the computational com-479

plexity of our LSWMKC model includes three parts. Updating480

ωp in (12) needs O(mn2) to obtain the closed-form solution.481

When updating Z, the complex QP problem in (15) is trans-482

formed into an equivalent closed-form solution in (16) whose483

computational complexity is O(mn2). Updating K∗ in (22)484

needs O(n3) cost by eigenvalue decomposition. Commonly,485

n � m, the total computational complexity of our LSWKMC486

is O(n3) in each iteration.487

For the postprocessing of K∗, we perform KKM to obtain488

the clustering partition and labels whose computational com-489

plexity is O(n3). Although the computational complexity of490

our LSWMKC algorithm is the same as the compared mod-491

els [14]–[16], [19], [24], [36], [40], [48], [51], its clustering492

Algorithm 1 LSWMKC
Input: Base kernel matrices {Kp}m

p=1, clusters k,
neighbors c, hyperparameter α.

Initialize: Z by (34); K∗ = ∑m
p=1 ωpKp; γi by (33);

ωp = √
1/m.

while not converged do
Compute ωp according to (12);
Compute Z according to (16);
Compute K∗ according to (22);

end
Output: Perform kernel k-means on K∗.

performance exhibits significant improvement, as reported in 493

Section IV-D. 494

2) Convergence: Jointly optimizing all the variables in (11) 495

is problematic since our algorithm is nonconvex. Instead, 496

as Algorithm 1 shows, we adopt an alternate optimization 497

manner, and each of the subproblems is strictly convex. For 498

each subproblem, the objective function decreases monoton- 499

ically during iteration. Consequently, as pointed out in [65], 500

the proposed model can theoretically obtain a local minimum 501

solution. 502

3) Limitation and Extension: The proposed model provides 503

a heuristic insight into the localized mechanism in kernel 504

space. Nevertheless, we should emphasize the promising per- 505

formance obtained at the expense of O(n3) computational 506

complexity, which limits wide applications in large-scale clus- 507

tering. Introducing more advanced and efficient graph learning 508

methods to this framework deserve future investigation, espe- 509

cially for prototype or anchor learning [49], [52], [66], which 510

may reduce the complexity from O(n3) to O(n2), even O(n). 511

Moreover, the present work still requires postprocessing to get 512

the final clustering results, i.e., k-means. Interestingly, several 513

concise strategies, such as rank constraint [41], [48], [52] or 514

one-pass manner [25], provide promising solutions of directly 515

obtaining the clustering labels, these deserve further research. 516

IV. EXPERIMENT 517

This section conducts extensive experiments to evaluate the 518

performance of our proposed algorithm, including clustering 519

performance, running time, comparison with the KNN mech- 520

anism, kernel weights, visualization, convergence, parameter 521

sensitivity analysis, and ablation study. 522

A. Datasets 523

Table I lists 12 widely employed multi-kernel benchmark 524

datasets, including the following: 525

1) YALE1 includes 165 face gray-scale images from 526

15 individuals with different facial expressions or con- 527

figurations, and each subject includes 11 images. 528

2) MSRA derived from MSRCV1 [67], contains 529

210 images with seven clusters, including airplane, 530

bicycle, building, car, caw, face, and tree. 531

1http://vision.ucsd.edu/content/yale-face-database
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TABLE I

DATASETS SUMMARY

3) Caltech101-7 and Caltech101-mit2 originated from532

Caltech101, including 101 object categories (e.g., “face,”533

“dollar bill,” and “helicopter”) and a background cate-534

gory.535

4) PsortPos and PsortNeg3 are bioinformatics MKL536

datasets used for protein subcellular localization537

research.538

5) BBC and BBCSport4 are two news corpora datasets539

derived from BBC News, consisting of various docu-540

ments corresponding to stories or sports news in five541

areas.542

6) ProteinFold5 is a bioinformatics dataset containing543

694 protein patterns and 27 protein folds.544

7) Handwritten6 and Mfeat7 are image datasets originated545

from the UC Irvine Machine Learning (UCI ML) repos-546

itory, including 2000 digits of handwritten numerals547

(“0”–“9”).548

8) Scene-158 contains 4485 gray-scale images, 15 envi-549

ronmental categories, and three features [Generalized550

Search Trees (GIST), Pyramid Histogram of Gradients551

(PHOG), and Local Binary Patterns (LBP)].552

All the precomputed base kernels within the datasets are553

publicly available on websites and are centered and then554

normalized following [63] and [64].555

B. Compared Algorithms556

Thirteen existing multiple kernel or graph-based algo-557

rithms are compared with our proposed model, including the558

following:559

1) Avg-KKM combines base kernels with uniform weights.560

2) MKKM [19] optimally combines multiple kernels by561

alternatively performing KKM and updating the kernel562

weights.563

3) Localized Multiple Kernel k-means (LMKKM) [14]564

can optimally fuse base kernels via an adaptive sample-565

weighted strategy.566

4) Multiple Kernel k-Means Clustering with Matrix-567

Induced Regularization (MKKM-MR) [15] improve568

2http://www.vision.caltech.edu/Image_Datasets/Caltech101/
3https://bmi.inf.ethz.ch/supplements/protsubloc
4http://mlg.ucd.ie/datasets/bbc.html
5mkl.ucsd.edu/dataset/protein-fold-prediction
6http://archive.ics.uci.edu/ml/datasets/
7https://datahub.io/machine-learning/mfeat-pixel
8https://www.kaggle.com/yiklunchow/scene15

the diversity of kernels by introducing a matrix-induced 569

regularization term. 570

5) Multiple Kernel Clustering with Local Alignment 571

Maximization (LKAM) [36] introduces localized ker- 572

nel maximizing alignment by constraining τ -nearest 573

neighbors of each sample. 574

6) Optimal Neighborhood Kernel Clustering 575

(ONKC) [16] regards the optimal kernel as the 576

neighborhood kernel of the combined kernel. 577

7) Self-weighted Multiview Clustering with Multiple 578

Graphs (SwMC) [57] eliminates the undesired hyper- 579

parameter via a self-weighted strategy. 580

8) Multi-view Clustering via Late Fusion Alignment 581

Maximization (LF-MVC) [17] aims to achieve max- 582

imal alignment of consensus partition and base ones via 583

a late fusion manner. 584

9) Simultaneous Global and Local Graph Struc- 585

ture Preserving for Multiple Kernel Clustering 586

(SPMKC) [51] simultaneously performs consensus ker- 587

nel learning and graph learning. 588

10) Simple Multiple Kernel k-means (SMKKM) [24] 589

proposes a novel min–max optimization based on kernel 590

alignment criterion. 591

11) Consensus Affinity Graph Learning for Multiple 592

Kernel Clustering (CAGL) [48] proposes a multi- 593

kernel graph-based clustering model to directly learn a 594

consensus affinity graph with rank constraint. 595

12) One Pass Late Fusion Multi-view Clustering 596

(OPLFMVC) [25] can directly learn the cluster labels 597

on the base partition level. 598

13) Localized Simple Multiple Kernel k-means 599

(LSMKKM) [40] is localized SMKKM in the 600

KNN method. 601

C. Experimental Settings 602

Regarding the benchmark datasets, it is commonly assumed 603

that the true number of clusters k is known. For the methods 604

involving k-means, the centroid of clusters is repeatedly and 605

randomly initialized 50 times to reduce its randomness and 606

report the best results. Regarding all the compared algorithms, 607

we directly download the public MATLAB code and carefully 608

tune the hyperparameters following the original suggestion. 609

For our proposed LSWMKC, the balanced hyperparameter 610

α varies in [20, 21, . . . , 210] by grid search. The clustering 611

performance is evaluated by four widely employed criteria, 612

including clustering accuracy (ACC), normalized mutual infor- 613

mation (NMI), purity, and adjusted rand index (ARI). The 614

experimental results are obtained from a desktop with Intel 615

Core i7 8700K CPU (3.7 GHz), 64-GB RAM, and MATLAB 616

2020b (64bit). 617

D. Experimental Results 618

Table II reports ACC, NMI, Purity, and ARI comparisons 619

of 14 algorithms on 12 datasets. Red bold denotes the optimal 620

results. Blue bold denotes the suboptimal results while “-” 621

denotes unavailable results due to overmuch execution time. 622

According to the experimental results, it can be seen that the 623

following holds. 624

1) Our proposed LSWMKC algorithm achieves optimal or 625

suboptimal performance on most datasets. Particularly, 626
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TABLE II

ACC, NMI, PURITY, AND ARI COMPARISONS OF 14 CLUSTERING ALGORITHMS ON 12 BENCHMARK DATASETS

CAGL can be regarded as the strongest competitor in627

affinity graph multi-kernel clustering, our LSWMKC628

still exceeds CAGL with a large margins improvement629

of 13.34%, 16.26%, 20.41%, 8.09%, 25.00%, 9.20%,630

10.00%, and 26.28% on the YALE, PsortPos, BBC,631

BBCSport, PsortNeg, Handwritten, Mfeat, and Scene15632

datasets, respectively, in terms of ACC, which well633

demonstrates the superiority of our model over existing634

methods.635

2) Compared with LKAM and LSMKKM that utilize636

the KNN mechanism to localize base kernel, our637

LSWMKC still exhibits promising performance. Espe-638

cially, LSMKKM can be regarded as the most compet-639

itive method in multi-kernel clustering, the ACC of our640

LSWMKC exceeds that of them 7.42%, 0.43%, 11.99%,641

22.66%, 20.13%, 7.08%, 2.39%, 0.97%, 0.55%, and642

4.78% on ten datasets, respectively, which sufficiently643

illustrates the reasonableness of our model. Similarly,644

NMI, Purity, and ARI of our algorithm also outperform645

other methods on most datasets.646

In summary, the quantitative comparison results can ade-647

quately substantiate the promising capability of our LSWMKC648

algorithm. The superiority of our algorithm can be attributed649

to the following two aspects: 1) our MKC model first learns a 650

discriminative graph to explore the intrinsic local manifold 651

structures in kernel space, which can reveal the ranking 652

relationship of samples. The noise or outliers are sufficiently 653

removed, which directly serves for clustering. 2) An optimal 654

neighborhood kernel is obtained with naturally sparse property 655

and clear block diagonal structures, which can further denoise 656

the affinity graph. Our model achieves implicitly optimizing 657

adaptive weights on different neighbors with corresponding 658

samples in kernel space. Compared with the existing KNN 659

mechanism, the unreliable distant–distance neighbors in our 660

model can be removed or assigned small weights. The obtained 661

localized kernel is more reasonable in comparison with the 662

one from the KNN mechanism. Such two aspects conduce to 663

obvious improvement in applications. 664

E. Running Time Comparison 665

Fig. 2 plots the time-consuming comparison of 14 algo- 666

rithms. To simplify, the elapsed time of OPLFMVC is set 667

as the baseline and we take the logarithm of all results. 668

As our analysis that our LSWMKC shares the same computa- 669

tional complexity with MKKM, LMKKM, LKAM, ONKC, 670

SMKKM, SPMKC, CAGL, and LSMKKM, the empirical 671
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Fig. 2. Relative logarithm time-consuming comparison of 14 models on 12 datasets.

Fig. 3. Visualization of neighbor index and localized K(l) in KNN mechanism, the affinity graph Z, and localized K∗ of the proposed algorithm on BBCSport
and Mfeat datasets. (a) KNN (neighbor index). (b) KNN (K(l)). (c) Proposed (Z). (d) Proposed (K∗). (e) KNN (neighbor index). (f) KNN (K(l)). (g) Proposed
(Z). (h) Proposed (K∗).

TABLE III

ACC, NMI, PURITY, AND ARI COMPARISONS OF OUR PROPOSED ALGORITHM AND KNN MECHANISM ON 12 BENCHMARK DATASETS

Fig. 4. Comparison of the learned kernel weights of different algorithms on six datasets. Other datasets’ results are provided in the supplementary material.
(a) YALE. (b) BBC. (c) BBCSport. (d) Handwritten. (e) Mfeat. (f) Scene15.
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Fig. 5. Evolution of data distribution by t-SNE on Handwritten dataset. (a) Initialized. (b) First iteration. (c) Fifth iteration. (d) Tenth iteration. (e) Twentieth
iteration.

Fig. 6. Evolution of affinity graph Z and neighborhood kernel K∗ learned by our proposed algorithm on Handwritten dataset. (a) Initialized (Z). (b) First
iteration (Z). (c) Third iteration (Z). (d) Fifth iteration (Z). (e) Tenth iteration (Z). (f) Initialized (K∗). (g) First iteration (K∗). (h) Third iteration (K∗). (i) Fifth
iteration (K∗). (j) Tenth iteration (K∗).

Fig. 7. Convergence of the proposed LSWMKC on six datasets. Other datasets’ results are provided in the supplementary material. (a) YALE. (b) BBC.
(c) BBCSport. (d) Handwritten. (e) Mfeat. (f) Scene15.

time evaluation also demonstrates that our LSWMKC costs672

comparative and even shorter running time. More importantly,673

our LSWMKC exhibits promising performance.674

F. Comparing With KNN Mechanism675

Recall our motivation to learn localized kernel by con-676

sidering the ranking importance of neighbors in contrast to677

the traditional KNN mechanism. Here, we conduct com-678

parison experiments with the KNN mechanism (labeled as679

KNN). Specifically, we tune the neighbor ratio τ varying in680

[0.1, 0.2, . . . , 0.9] by grid search in average kernel space and681

report the best results. As Table III shows, our algorithm682

consistently outperforms the KNN mechanism. Moreover,683

as Fig. 3 shows, for the KNN mechanism, we plot the684

visualization of the neighbor index and K(l), for our model,685

we visualize the learned affinity graph Z and neighborhood686

kernel K∗ on the BBCSport and Mfeat datasets. Regarding687

the KNN mechanism, the neighbor index involves noticeable 688

noise, especially on the BBCSport dataset, caused by the 689

unreasonable neighbor-building strategy. Such coarse localized 690

manner directly incurs the corrupted K(l) with much noise. 691

In contrast, the affinity graphs learned by our neighbor learning 692

mechanism achieve more precise block st 693

ructures, which directly serve for learning localized K∗. All 694

the above-mentioned results sufficiently illustrate the effective- 695

ness of our neighbor-building strategy. 696

G. Kernel Weight Analysis 697

We further evaluate the distribution of the learned kernel 698

weights on 12 datasets. As Fig. 4 shows, the kernel weight 699

distributions of MKKM-MR, ONKC, and LKAM vary greatly 700

and are highly sparse on most datasets. Such sparsity would 701

incur clustering information across multiple views that cannot 702

be fully utilized. In contrast, the weight distributions of our 703



IE
EE P

ro
of

LI et al.: LOCAL SAMPLE-WEIGHTED MKC WITH CONSENSUS DISCRIMINATIVE GRAPH 11

Fig. 8. Parameter sensitivity study of hyperparameter α on BBC, BBCSport, and Caltech101-mit datasets. (a) BBC (ACC). (b) BBC (NMI). (c) BBCSport
(ACC). (d) BBCSport (NMI). (e) Caltech101-mit (ACC). (f) Caltech101-mit (NMI).

Fig. 9. Ablation study of γ by grid search on Caltech101-7 and BBCSport datasets. Other datasets’ results are provided in the supplementary material.
(a) Caltech101-7 (ACC). (b) Caltech101-7 (NMI). (c) Caltech101-7 (Purity). (d) BBCSport (ACC). (e) BBCSport (NMI). (f) BBCSport (Purity).

proposed algorithm are nonsparse on all the datasets, and704

thus, the latent clustering information can be significantly705

exploited.706

H. Visualization707

To visually demonstrate the learning process of the proposed708

localized building strategy, Fig. 5 plots the t-SNE visual709

results on the Handwritten dataset, which clearly shows the710

separation of different clusters during the iteration. Moreover,711

Fig. 6 plots the evolution of the learned affinity graph Z712

and neighborhood kernel K∗ on the Handwritten dataset.713

Clearly, the noises are gradually removed and the clustering714

structures become clearer. Besides, K∗ can further denoise Z,715

which exhibits more evident block diagonal structures. These716

results can well illustrate the effectiveness of our localized717

strategy.718

I. Convergence and Parameter Sensitivity719

According to our previous theoretical analysis, the con-720

vergence of our LSWMKC model has been verified with721

a local optimal. Here, experimental verification is further722

conducted to illustrate this issue. Fig. 7 reports the evolvement723

of optimization goals during iteration. Obviously, the objective724

function values monotonically decrease and quickly converge725

during the iteration.726

We further evaluate the parameter sensitivity of α by grid727

search varying in [20, 21, . . . , 210] on the BBC, BBCSport, and728

Caltech101-mit datasets. From Fig. 8, we find the proposed729

method exhibits much better performance compared with the730

KNN mechanism in a wide range of α, making it practical in731

real-world applications.732

J. Ablation Study on Tuning γ by Grid Search733

To evaluate the effectiveness of our learning γ man-734

ner in Section III-D, we perform ablation study by tun-735

ing γ in [2−5, 2−4, . . . , 25]. The range of α still varies in 736

[20, 21, . . . , 210]. Fig. 9 plots the results on the Caltech101-7 737

and BBCSport datasets. The red line denotes our reported 738

results. The green dashed line denotes the tuning results, for 739

simplicity, α is fixed at the index of the optimal results. 740

As can be seen, our learning manner exceeds the tuning 741

manner with a large margin in a wide range of γ. Although 742

tuning manner may achieve better performance at several 743

values of γ , it is mainly due to tuning by grid search 744

enlarges the search region of hyperparameter γ, it dramatically 745

increases the running time as well. In contrast, our learning 746

manner can significantly reduce the search region and achieve 747

comparable or much better performance. 748

V. CONCLUSION 749

This article proposes a novel localized MKC algorithm 750

LSWMKC. In contrast to traditional localized methods in the 751

KNN mechanism, which neglects the ranking relationship of 752

neighbors, this article adopts a heuristic manner to implicitly 753

optimize adaptive weights on different neighbors according to 754

the ranking relationship. We first learn a consensus discrimina- 755

tive graph across multiple views in kernel space, revealing the 756

latent local manifold structures. We further learn a neighbor- 757

hood kernel with more discriminative capacity by denoising 758

the consensus graph, which achieves naturally sparse property 759

and clearer block diagonal property. Extensive experimental 760

results on 12 datasets sufficiently demonstrate the superiority 761

of our proposed algorithm over the existing 13 methods. Our 762

algorithm provides a heuristic insight into localized methods 763

in kernel space. 764

However, we should emphasize the promising performance 765

obtained at the expense of O(n3) computational complexity, 766

which restricts applications in large-scale clustering. Intro- 767

ducing more advanced and efficient graph learning strategies 768

deserve future investigation, especially for prototype or anchor 769
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learning, which may reduce the complexity from O(n3) to770

O(n2), even O(n). Moreover, the present work still requires771

postprocessing to get the final clustering labels, i.e., k-means.772

Interestingly, several concise strategies, such as rank constraint773

or one-pass mechanism, provide promising solutions to this774

issue, which deserves further research.775
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