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Late Fusion Multiple Kernel Clustering with Local
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Abstract—Multi-view clustering, which appropriately in-
tegrates information from multiple sources to reveal data’s
inherent structure, is gaining traction in clustering. Though
existing procedures have yielded satisfactory results, we observe
that they have neglected the inherent local structure in the
base kernels. This may cause adverse effects on clustering.
To solve the problem, we introduce LF-MKC-LKA, a simple
yet effective late fusion multiple kernel clustering with local
kernel alignment maximisation approach. In particular, we first
determine the nearest k neighbours in the average kernel space
for each sample and record the information in the nearest
neighbor indicator matrix. Then, the nearest neighbor indicator
matrix can be used to generate local structure matrix of
each sample. The local kernels of each view may then be
generated using the local structure matrix, retaining just the
highly confident local similarities for learning the intrinsic
global manifold of data. They can also be utilised to keep
the block diagonal structure and improve the robustness of
the underlying kernels against noise.We input the local kernels
of each view into the kernel k-means (KKM) algorithm and
get the local base partitions. Finally, we use a three-step
iterative optimization approach to maximize the alignment
of the consensus partition using base partitions and a reg-
ularisation term. As demonstrated, a significant number of
trials on 11 multi-kernel benchmark datasets have shown
that the proposed LF-MKC-LKA is effective and efficient. A
number of experiments are also designed to demonstrate the
fast convergence, excellent performance, robustness and low
parameter sensitivity of the algorithm. Our code can be find
at https://github.com/TiejianZhang/TMM21-LF-MKC-LKA.

Index Terms—Multiple kernel clustering, neighbor, local
kernel, local base partition, block diagonal structure

I. Introduction

MUlti-view Clustering (MVC), a technology inte-
grating complementary and consensus multi-view

information to enhance clustering efficiency, has gotten
increasing attention recently [1]–[7]. And the existing
algorithms about it may be split into three groups: i)
Multi-view subspace clustering; ii) Co-training style algo-
rithm; iii) Multiple kernel clustering. Further, the multi-
view subspace clustering looks for a consistent feature
representation across all views [8]–[10]. Moreover, the co-
training style algorithm intends to explore the mutual
agreement in diverse views by using co-training strategy
to get the maximize consensus [11]–[13]. Apparently,
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multiple kernel clustering uses different predefined kernels
corresponding to multiple views and optimizes them for
better clustering performance [3]–[7], [14]–[16]. As a simple
but effective classical method, k-means has been extended
in this way intuitively. And kernel k-means conducts k-
means clustering in high-dimensional space to address the
linearly non-sparable issue in original space. In [6], in
order to diminish the redundancy of the pre-defined kernel,
researchers introduce a matrix-induced regularization into
multiple kernel k-means clustering. Specially, local kernel
alignment has also be found the advantage of improving
the clustering performance in multiple kernel clustering
situation [3]. In [17], late fusion alignment maximization
based on multi-view clustering (MVC-LFA) is proposed.
By orthogonal transformation, it maximizes the alignment
between the weighted base partition matrices of each
view and the consensus partition matrix. But it does not
take into account the inherent local structure in the base
kernels. Our work falls within the third group.

Although the above methods have worked in enhancing
multi-view clustering performance in various way, they fail
in the following situations. i) Due to the intensive com-
putational complexity, they are unable to perform large-
scale clustering tasks, i.e., usually O(mn3) per iteration
where m is the number of views and n is the number
of samples. ii) In terms of work in [18], the resultant
optimization processes of these methods are usually too
complex to achieve which raising the risk of over-fitting
as well as reducing clustering performance. iii) They may
ignore the local structure of the base kernels, which can
have anadverse effect on clustering performance.

In this study, we show that a informative local structure
of kernels can play an important role in multi-view
clustering. We also suggest a new approach named Late
Fusion Multiple Kernel Clustering with Local Kernel
Alignment Maximization (LF-MKC-LKA). It keeps the
competence of the alignment between consensus partition
and weighted base partitions and pays attention to the
robustness of the base kernels simultaneously, which has
a close relation with clustering performance. We generate
local kernels for each view with associated sample using
the neighbour indicator matrix for each sample in the
average kernel space, preserving only the highly confident
local similarities for learning the intrinsic global manifold
of data. And they can be used to retain the block
diagonal structure and enhance the robustness against
noise between the base kernels. As the late fusion input for
MVC-LFA, the local base partitions can be got with the
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local kernels of each view. As demonstrated, the proposed
LF-MKC-LKA is proved to be effective and efficient by
a vast number of trials on 11 multi-kernel benchmark
datasets. Our technique outperforms numerous state-of-
the-art multi-view kernel-based clustering algorithms in
terms of clustering performance.

The following are the five contributions to this study,
• We find and address the issue that the available

late fusion based multi-view clustering algorithms are
insufficient in data mining with local structure. The
structure of the local kernel we designed includes
abundant local information and strengthens the ro-
bustness to noise between base kernels. Moreover,
being the input of our algorithm, this structure
greatly enhances the clustering performance.

• We separate and save the local structure matrix which
contains relationship between local kernel structure
and original base kernels in the form of operators,
and it real reduces the time complexity of generating
local kernels greatly.

• For the prior knowledge item, we explore a regulariza-
tion to integrate the information of local structure, so
that the effect of the algorithm is further improved.

• Our algorithm has strong generalization ability be-
cause of its robustness, fast convergence, low compu-
tational complexity and low parameter sensitivity in
text, image, video, biomolecular structure, etc. It is
proved to be effective and efficient by a vast number
of trials on 11 multi-kernel benchmark datasets.

• Our algorithm and the idea of mining local structure
information can be easily applied to other multi-view
methods, such as multi-kernel clustering and subspace
partitioning.

II. Related Work
A. K-means Clustering

The classic algorithm, k-means, provides an efficient
and intuitionistic clustering method. Specifically, [19]
proposes the clustering loss function of the typical k-means
algorithms,

min
F

Tr
(
XX⊤)− Tr

(
F⊤XX⊤F

)
s.t. F ∈ Rn×k, F⊤F = Ik,

(1)

where X ∈ Rn×d is the data matrix and each row
corresponds to a data point with d features. F ∈ Rn×d

is a cluster indicator matrix, each row i(1 ≤ i ≤ n)
indicates the cluster memberships between the point xi

and others. When the point xi belongs to the cluster Cj ,
then Fij = 1√

|Cj |
. The optimal F for Eq. (1) can be

produced by taking the k eigenvectors that correspond to
the k largest eigenvalues of XX⊤.

Because of the single-view data matrix X in Eq. (1), it
can not be used in multi-view tasks directly. Hence, many
novel algorithms that can overcome the limitation appear.
Researchers expand the k-means into multiple kernel k-
means to deal with multi-view problem [3], [5]–[7], [14],
[15], [20], [21]. We will introduce it in the next subsection.

B. Multiple Kernel k-means Clustering (MKKM)
Defining {xi}ni=1 ⊆ X as a collection of n data points

in k clusters with m views. And ϕp(·) : x ∈ X 7→ Hp

is the feature mapping for the p-th view which can
map x into a reproducing kernel Hilbert space Hp(1 ≤
p ≤ m). Therefore, x can be transferred to ϕγ(x)

⊤ =
[γ1ϕ1(x), · · · , γmϕm(x)], where γ⊤ = [γ1, · · · , γm] are the
weights of the m kernel functions {κp(·, ·)}mp=1 respectively.
Based on the above, the kernel function can be defined as

κγ(xi,xj) = ϕ⊤
γ (xi)ϕγ(xj) =

∑m

p=1
γ2
pκp(xi,xj), (2)

Hence, the optimization objective of MKKM can be as eq.
(3)

min
F,γ

Tr
(
Kγ(In − FF⊤)

)
s.t. F ∈ Rn×k, F⊤F = Ik, γ

⊤1m = 1, γp ≥ 0,
(3)

where Ik ∈ Rn×k is an identity matrix. The optimal F for
Eq. (3) can be acquired by updating F and γ alternately.
The details are revealed as follow,

i) Updating F by fixed γ.

max
F

Tr
(
F⊤KγF

)
s.t. F ∈ Rn×k,F⊤F = Ik,

(4)

The optimal F in Eq. (4) can be obtained by taking the k
eigenvectors that correspond to the k largest eigenvalues
of Kγ [22].

ii) Updating γ by fixed F.

min
γ

∑m

p=1
γ2
pTr

(
Kp(In − FF⊤)

)
s.t. γ⊤1m = 1, γp ≥ 0,

(5)

The optimal γ for Eq. (5) is obtained by the application
of linear constraints to quadratic programming.

Recently, many novel algorithms based on the MKKM
have been proposed. Specially, [3] extends local kernel
alignment into the MKKM and demonstrates its ability
in improving clustering performance.

C. Multi-view Clustering via Late Fusion Alignment Max-
imization (MVC-LFA)

In [17], a multi-kernel clustering approach based on
late fusion alignment maximisation is developed, which
optimises the alignment between the consensus partition
matrix and the basic partition matrices of linear combi-
nation. MVC-LFA can be written at length in the form
of the following formula,

max
F∗,{Bp}m

p=1,γ
Tr

(
F∗⊤X

)
+ µTr

(
F∗⊤Q

)
s.t. F∗⊤F∗ = Ik, B⊤

p Bp = Ik,
∑m

p=1
γ2
p = 1,

γp ≥ 0, X =
∑m

p=1
γpHpBp,

(6)

where {Hp}mp=1 are the base partitions of each view.
{Bp}mp=1 are rotation matrices which solve the problem
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of feature misalignment between different views. Q is the
average partition and µ is a trade-off hyper-parameter.
The new data partition is presented as X =

∑m
p=1 γpHpBp

which maximizes the alignment with optimal clustering
partition. And the regularization of the consensus parti-
tion, Tr

(
F∗⊤Q

)
, avoids excessive deviation of F∗ from

prior knowledge.

III. Method
A. Construction of local kernels

The effective methods of constructing local structure of
data based on kernels in the aforementioned literatures
[23]–[26] can be summarized as calculating similarity of
paired samples and using them as basis to construct
reliable local data structure. There are three reasons why
this structure can well mine the local information inside
the data.

First, the use of data containing local similarity in-
formation between data can improve the ability of the
corresponding algorithm to reveal the global data struc-
ture, because local geometric patches can extract the
global nonlinear high-dimensional structure [27], [28].
Second, as mentioned in [29], the estimation of similarity
across relatively long-distance samples may be erroneous
due to the ambient geometry in high-dimensional input
space being severely folded, twisted, or bent. Third, the
interference in the data induced by noise and outliers
progressively destroys the underlying manifold, making
long-range similarity less reliable. Therefore, it is a realistic
and practical learning method in the unsupervised kernel
learning scenario to maintain just the high credible local
similarity of global manifold data without label distin-
guishing instruction.

To better illustrate our approach, the symbols we will
use are recorded in Table I.The method of constructing
local kernel structures in high quality is introduced in
detail as follows. Firstly, we search the first τ neighbors
of each sample and record their labels. Here, the similarity
measure between samples is based on the similarity in the
average kernel space. K is the average kernel matrix and
Ki,j is the quantitative value of the similarity between
sample i and sample j. Each column of K represents
the similarity between the corresponding sample and all
n samples. It is worth mentioning that this similarity
measure method based on the similarity between samples
of average kernel is very simple and feasible, because it
only requires most of the base kernel matrix rather than all
of them to be complementary and contain information. We
can get the nearest neighbor indicator matrix N ∈ Rτ×n

by saving the first τ labels of each column of the average
kernel.

Subsequently, we construct local structure matrix R(i) ∈
{0, 1}n×n (1 ≤ i ≤ n) for each sample based on cor-
responding column of nearest neighbor indicator matrix
N(:,i). Specifically speaking, all the elements in matrix
R(i) should be 0 initially, and then the elements in
R(i)

(
N(:,i),N(:,i)

)
including elements should be set as 1.

R(i) can be thought of as a mask matrix for recording
local structural information, which is apparently positive-
definite.

Finally, according to the local structure matrix R(i)

which is got in the last step, we can construct local kernel
for i-th sample of each view {K(i)

1 ,K
(i)
2 ,K

(i)
3 , . . . ,K

(i)
m }.

The local structure of i-th sample on j-th kernel can be
represented as:

K
(i)
j = R(i) ◦Kj , (7)

where ◦ is the Hadamard product, which multiply the
elements in the same position of two matrixes and obtain
new matrix in the same shape. K

(i)
j means the local

structure of the i-th composed by the selected τ × τ
elements including local nearest neighbor information.
Then the local kernel of j-th view can be obtained by
K̃j =

∑n
i=1 K

(i)
j =

∑n
i=1 R

(i) ◦Kj . Note that
∑n

i=1 R
(i)

is shared between local kernels, so it can be stored inde-
pendently. Next the local kernels {K̃1, K̃2, K̃3, . . . , K̃m}
can be acquired through Hadamard product and can be as
the input of the KKM. The results {H̃1, H̃2, H̃3, . . . , H̃m}
including rich local structure information are the input of
LF-MKC-LKA.

Notations Meaning

X ∈ Rn×d Data matrix
Ki ∈ Rn×n Kernel of i-th view
K̄ ∈ Rn×n Average kernel of all Ki

K∗ ∈ Rn×n Local kernel structure of the average kernel
N ∈ Rτ×n Nearest neighbor indicator matrix
R(i) ∈ {0, 1}n×n Local structure matrix of sample i

K
(i)
j ∈ Rn×n Local structure of i-th sample on j-th kernel

K̃i ∈ Rn×n Local kernel of i-th view
H̃i ∈ Rn×k Base partitions with local information of i-th view
Bp ∈ Rk×k Rotation matrix of i-th view
Q ∈ Rn×k Regularization term with prior knowledge
L ∈ Rn×k Regularization term including local information
H ∈ Rn×k Consensus partition
I ∈ Rn×k Identity matrix
γi Weight of i-th kernel

Table I: Basic notations for the proposed LF-MKC-LKA

B. Construction prior knowledge with local information
In order to avoid the neglect influence by over-fitting,

an effective way is involving prior knowledge in the
optimization objective as regularization term [30]–[33]. For
mining the information of local structure more pertinently,
the local kernel of the average kernel which is a kind
of effective prior knowledge is designed in this paper.
And the plentiful experiments reflect that the suggested
algorithm’s robustness and generalization capability are
greatly improved compared with the aforementioned al-
gorithms.

The average kernel itself has been proved to be an
effective prior knowledge, and the effect has been sig-
nificantly improved by adding the average kernel as
the regularization term in [17], [34]–[36]. The K̄ based
regularization term K∗ which is the local kernel structure
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of the average kernel is formulated as eq. (8). Taking K∗

as the input of KKM, the base partitions including the
local information of average kernel L can be obtained,

K∗ =
∑n

i=1
K̄(i) =

∑n

i=1
R(i) ◦ K̄, (8)

where K̄ = 1
m

∑m
j=1 Kj .

C. Late Fusion Multiple Kernel Clustering with Local
Kernel Alignment Maximization (LF-MKC-LKA)

In the last subsection, we introduce several base
partition matrices with local structure information
{H̃1, H̃2, H̃3, . . . , H̃m} as well as prior knowledge L. We
use maximized alignment to learn the optimal consensus
partition. The formulation of LF-MKC-LKA is as follows,

max
H,{Bp}m

p=1,γ
Tr

(
H⊤X

)
+ µTr

(
H⊤L

)
s.t. H⊤H = Ik, B⊤

p Bp = Ik,
∑m

p=1
γ2
p = 1,

γp ≥ 0, X =
∑m

p=1
γpH̃pBp,

(9)

in which m represents the number of base kernels, k is the
number of clusters, and γp represents the weight of the p-
th base partition. {H̃p}mp=1 ∈ Rn×k are the base partitions
with local information of each view. {Bp}mp=1 ∈ Rk×k

are rotation matrices, which can unify the permutations
with the same clustering results. L ∈ Rn×k is the
regularization term including local structure information.
X =

∑m
p=1 γpH̃pBp shows that X is a linear combination

of multiple view base partitions with local structure
information.

The first part of the formulation, which is reported
as Tr

(
H⊤X

)
, aims to maximize alignment between the

consensus partition H and the underlying partition X
that incorporates information from multiple views. The
second part Tr(H⊤L) is a regularization on the consensus
partition that prevents H from deviating too much from
knowledge with local structure information. A trade-
off coefficient µ is used to combine the two items to
obtain an optimal consensus partition H that incorporates
information from multiple views. This framework has been
proved to be convergent, and an alternate optimization
technique can readily solve it.

D. Optimization Algorithm
A three-step iterative optimization algorithm is used to

solve the problem and it can be represented as follow.
i) Optimizing H by fixed {Bp}mp=1 and γ. Singular value

decomposition (SVD) of matrix Y can be used to find
H when {Bp}mp=1 and γ are fixed. The optimization is
reduced to the following form,

max
H

Tr
(
H⊤Y

)
s.t. H⊤H = Ik, (10)

where Y = X + µL. And the following theorem can give
a closed-form solution for Eq. (10).

Theorem 1: Suppose that the matrix Y in Eq. (10) has
the economic rank-k singular value decomposition form

as Y = JkΣkM
⊤
k , where Jk ∈ Rn×k,Σk ∈ Rk×k,Mk ∈

Rk×k. We can get a closed-form solution of optimization
as follows,

H = JkM
⊤
k . (11)

Proof 1: By taking the the normal singular value
decomposition Y = JΣM⊤, Eq. (10) can be rewritten
as,

Tr(H⊤JΣM⊤) = Tr(M⊤H⊤JΣ). (12)

Let P = M⊤H⊤J and we have PP⊤ =
M⊤H⊤JJ⊤HM = Ik. Moreover, we can get
Tr(M⊤H⊤JΣ) = Tr(PΣ) ≤

∑k
i=1 σi. Hence, The

optimal solution in Eq. (10) is in the form of Eq. (11).
ii) Optimizing {Bp}mp=1 by fixed H and γ. When H and

γ are fixed, for each rotation matrix Bp, the optimization
problem in Eq. (9) can be rewritten as Eq. (13),

max
Bp

Tr
(
B⊤

p A
)
s.t. B⊤

p Bp = Ik, (13)

where A = γpH
⊤
p H. Using the same SVD method for

supplied matrix A, the solution of Eq. (13) can be
easily obtained. If the matrix A has the singular value
decomposition form as A = NΣG⊤, the optimization
solution in Eq. (13) can be represented as the closed-
form B = NG⊤, much like the closed-form in Theorem1.
Consequently, we optimize one B while keeping other Bi ̸=p

constant at each iteration. With the above method, we can
get a set of optimized {Bp}mp=1.

iii) Optimizing γ by fixed {Bp}mp=1 and H. When
{Bp}mp=1 and H are fixed, the optimization problem in
Eq. (9) is equivalent to the optimization problem as Eq.
(14),

max
γ

∑m

p=1
γpηp s.t.

∑m

p=1
γ2
p = 1, γ2

p ≥ 0, (14)

where ηp = Tr(H⊤H̃pBp). The closed-form solution of
above quadratic programming problem can be described
in the form of Eq. (15),

γp = ηp/

√∑m

p=1
η2p. (15)

To illustrate the optimization algorithm methodically,
we present the technique for Eq. (9) in Algorithm 1, where
obj(t) represents the objective value at the t-th iteration.

E. Algorithm Analysis
1) Convergence Analysis: All in all, the proposed algo-

rithm is described as Algorithm 1, where obj(t) represents
the target value in t-th iterations. And its convergence is
proved in following Theorem 2.

Theorem 2: The proof procedure of proposed Algorithm
1 is the same as [17].

Proof 2: Note that ∀p, q, Tr[(γpHpBp)
⊤
(γqHqBq)] ≤

Tr[(HpBp)
⊤
(HqBq)] ≤ 1

2 (Tr[(HpBp)
⊤
(HpBp)] +

Tr[(HqBq)
⊤
(HqBq)]). Under the constraints Hp

⊤Hp = Ik
and Bp

⊤Bp = Ik in which k is the cluster number, we have
Tr[(HpBp)

⊤
(HpBp)] = Tr(Bp

⊤Hp
⊤HpBp) = Tr(Ik) =

k = Tr[(HqBq)
⊤
(HqBq)]. Therefore, we can deduce the
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Algorithm 1 The Proposed LF-MKC-LKA
1: Input: {K1,K2, . . . ,Km}, k, µ and ϵ0.
2: Output: H.
3: Initialize {Bp}mp=1 = Ik,γ = 1√

m
and t = 1.

4: Generate {K̃1, K̃2, K̃3, . . . , K̃m} and K∗ .
5: Calculate {H̃1, H̃2, H̃3, . . . , H̃m} and L.
6: repeat
7: Update H by solving Eq. (10) with fixed {Bp}mp=1

and γ.
8: Update {Bp}mp=1 with fixed H by Eq. (13).
9: Update γ by solving Eq. (14) with fixed H and

{Bp}mp=1.
10: t = t+ 1.
11: until

(
obj(t−1) − obj(t)

)
/obj(t) ≤ ϵ0

optimization objective’s upper bound in Eq. (9). We can
get Tr(H⊤X) ≤ 1

2 [Tr(H
⊤H)+Tr(X⊤X)]= 1

2 (Tr(H
⊤H)+

Tr[
∑m

p,q=1 (γpHpBp)
⊤
(γqHqBq)]) ≤ k

2 (m
2 + 1).

Meanwhile, Tr(H⊤L) ≤ 1
2 [Tr(H

⊤H) + Tr(L⊤L)] = k.
Thus, the whole optimization function is upper bounded.
All of the three subproblems are convex strictly when
optimizing one variable while keeping the others fixed,
thus at each iteration the objective of Algorithm
1 is monotonically increased under this condition.
Simultaneously, the whole optimization problem is
upper-bounded. Consequently, the convergent nature of
the suggested method may be validated. The evidence is
now fully comprehensive.

2) Computational Complexity Analysis: LF-MKC-
LKA is composed of three parts which are generating
local kernels and local average kernel, computing H̃p and
L, a three-step iterative optimization process. In the first
part, the Hadamard product with Ri and Kj which are
sample i and base kernel j has a complexity cost of
O(τ2), so the total complexity cost this part is O(mnτ2).
However, it can be reduced to O((m + n)τ2) by storing
and sharing

∑n
i=1 Ri when m ≪ n. In the second part, the

complexity cost of kernel k-means is O(mkn2). In the third
part, First two steps have the computing consumption
of O(nk2) with singular value decomposition. And the
third step is O(mk3). Thus, the total expense of part 3 is
O(t(nk2 +mk3)), where t is iteration times.

This means LF-MKC-LKA maintains a linear increase
in complexity as the number of samples increases after
storing the results of the first two parts. So it can give
consideration to both efficiency and effectiveness when
solving large-scale tasks.

3) Storage Complexity Analysis: The proposed method
also has advantages in memory consumption. Algorithm 1
describes the proposed method for solving Eq. (9). In Step
3, {Bp}mp=1 costs O(mk2) and γp costs O(m) memory. In
Step 4, local kernel K̃j costs O(mn2) memory. In Step 5,
H̃j costs O(mnk). From Step 6 to Step 10, variable H
costs O(nk), {Bp}mp=1 costs O(mk2) and γp costs O(m)

memory. Overall memory consumption is O(mn2).

F. Extension
Obviously, LF-MKC-LKA and the idea of mining local

structure information can be extended to multi-view tasks.
First, when designing local kernels, we use average kernel’s
sample similarity as the benchmark for determining the
nearest neighbor of the samples. And then, we calculate
and store the sum of the local structure matrix Ri to
generate each K̃p which can be a very efficient method.
K̃p preserve only the highly confident local similarities
for learning the intrinsic global manifold of data can be
used to retain the block diagonal structure and increase
the robustness against noise and outliers between the base
kernels. In addition, the K̃p and L generated by classical
kernel k-means can be used as an input for late fusion
algorithm and prior information with high quality local
structure information, which can be used in any late fusion
framework.

IV. Experiment
This part aims to evaluate the effectiveness of the

proposed LF-MKC-LKA algorithm, especially the local
kernel and the base partition with local structure infor-
mation. We design 5 experiments. In the first experiment,
we compare our algorithm with 10 the state-of-the-art
MKC algorithms on real world datasets, and prove the
effectiveness of our algorithm from ACC, NMI and Purity.
Secondly, we compare the base kernel of the dataset with
the local kernel involving local structure information to
prove that the local kernel has block diagonal structure,
and the latter has stronger robustness. Next, we compare
kernel k-means, spectral clustering with the base partition
generated by the proposed algorithm to prove that it
is a good late fusion input including local structure
information. In addition, we compare the direct impact
of the three different inputs on the performance. And we
examine the algorithm’s sensitivity to the primary hyper-
parameters. By learning the similarity of the consensus
partition matrix, we also illustrate the usefulness of the
alternative optimization approach. Finally, we verify the
convergence of the target value of the algorithm from an
experimental point of view.

A. Datasets Overview and Experimental Settings
1) Datasets introduction: The proposed algorithms are

tested on twelve commonly used MKL benchmark
datasets, which are listed in Table II, including
BBCSports1, ProteinFold and PsortPos2, Oxford
Flower17 and Flower1023, Plant, Caltech101_mit
and Caltech-154, YALE Face5, MFeat6 and Nonlp7,
UCI_DIGIT8. The number of samples, views, categories

1 http://mlg.ucd.ie/datasets/bbc.html
2 http://www.raetschlab.org/suppl/protsubloc
3 http://www.robots.ox.ac.uk/+ ̃vgg/data/flowers/
4 http://www.vision.caltech.edu/Image_Datasets/
5 http://www.cs.yale.edu/cvc/projects/yalefaces/

yalefaces.html
6 http://http://mkl.ucsd.edu/dataset/
7 http://mkl.ucsd.edu/dataset/protein-fold-prediction/
8 http://ss.sysu.edu.cn/˜py/
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(a) Yale

(b) Mfeat

(c) Flower17

(d) Caltech101

Figure 1: Selected example images from the image datasets used in the experiments: (a) YALE, (b) Mfeat, (c) Flower17,
and (d) Caltech101.

of these datasets range from 165 to 8189, 2 to 69, and 3
to 102, respectively. All kernel matrices for these datasets
are pre-computed using a well constructed similarity
function. We present pictures of the image datasets in
Figure 1

Dataset #Samples #Kernels #Clusters #Data Type
BBCSports2 554 2 5 New article

Plant 940 69 4 protein sequence
ProteinFold 694 11 27 protein sequence

PsortPos 541 69 4 protein sequence
Nonpl 2732 69 3 protein sequence

UCI-Digit 2000 3 10 Image
Mfeat 2000 12 10 Image

Flower102 8189 4 102 Image
Caltech101mit 1530 25 102 Image

Flower17 1360 7 17 Image
Caltech101-15 1530 48 102 Image

YALE 165 5 15 Image

Table II: Datasets used in our experiments.
2) Experimental setting: All base kernels are centered

and then normalized in our tests. Therefore, for all
samples xi and p, we can make sure Kp(xi,xi) = 1
by following [43]. The real number of clusters is ex-
pected to be known for all datasets and set as the true
number of classes. Our algorithm contains two hyper-
parameters, trade-off parameter µ and nearest neighbor
number τ . We choose µ from [2−12, 2−10, . . . , 212] and τ
from [0.05n, 0.10n, . . . , 0.95n] by grid search, in which n

is the number of samples. Clustering accuracy (ACC),
normalized mutual information (NMI), and purity are
used to assess clustering performance.

B. Comparison with the State-of-the-Art Algorithms

In this part the proposed method is compared to
10 state-of the-art MKC algorithms to demonstrate its
superior performance. All of the compared algorithms’
MATLAB implementations are taken from the authors’
websites for our tests. The following is a list of the
information for the comparing algorithms.

(1) Average multiple kernel k-means (A-MKKM): A-
MKKM calculate the average kernel of all kernels and
apply a kernel k-means algorithm to it.

(2) Multiple Kernel k-means (MKKM) [37]: MKKM
generally conducts kernel k-means using a linear combina-
tion of the base kernels and updates the kernel coefficients
by turns.

(3) Multiple kernel k-means with matrix-induced reg-
ularization (MKKM-MR) [6]: MKKM-MR can improve
kernel diversity and reduce redundancy by using matrix-
induced regularization technology.

(4) Multiple kernel clustering with local kernel align-
ment maximization (MKC-LKA) [3]: With maximizing the
local kernel alignment, MKC-LKA can keep the inherent
local geometric structure of data greatly.
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Datasets A-MKKM MKKM RMKKM MKKM-MR MKC-LKA RMSC MCLES MVC-LFA SwMC SPMKC Proposed[37] [38] [6] [3] [39] [40] [17] [41] [42]
ACC(%)

YALE 52.1200 52.1212 56.3636 60.0000 46.6667 58.0303 63.3600 54.5455 46.6667 60.0000 63.0300
Mfeat 71.9500 66.7500 73.7000 92.5500 96.6500 96.6000 95.2500 95.8000 78.6500 15.6000 97.8500

Flower17 51.0300 45.3676 53.3824 58.8235 57.8676 51.1029 56.4600 60.1600 7.0588 32.8676 63.9700
Flower102 27.2900 21.9600 28.1700 39.9100 40.8400 32.9700 - 42.7300 6.7163 5.8100 45.3300

UCI_DIGIT 88.7500 47.0000 44.0000 90.4000 95.1000 80.6500 90.1000 89.1000 78.3000 29.0500 95.5000
Nonpl 49.3800 49.3000 62.7700 56.5900 55.7800 60.6500 - 50.0700 60.2855 39.7145 65.0400

Caltech-15 29.1100 20.3922 24.9020 32.2876 27.3203 25.4902 30.0700 31.1111 16.6667 26.0784 36.1400
Caltech101_mit 35.2900 34.7700 32.0300 37.9100 31.9000 29.6700 35.6863 35.6200 22.4183 35.0980 38.5600
BBCSport2view 66.1800 66.1800 63.7900 66.1800 60.4800 86.0300 77.9412 78.6800 36.0294 36.2132 86.5800

Plant 61.4900 56.3800 55.5300 52.4500 47.3400 53.6200 53.0900 61.7000 38.9362 31.8085 61.6000
ProteinFold 28.1000 27.2300 33.2900 36.3100 33.2700 34.1600 36.4600 35.7300 14.9856 17.8674 38.7400

NMI(%)
YALE 57.7200 54.1611 59.3247 58.6328 53.5125 57.5848 63.0977 59.8553 48.8594 59.9077 62.7600
Mfeat 69.6800 60.8426 73.0490 85.8956 92.7020 92.6413 90.3600 90.9217 84.5643 2.3800 94.9400

Flower17 50.1900 45.3453 52.5575 57.0543 56.0603 54.3910 55.57 59.7900 2.3783 38.5719 58.3600
Flower102 46.3200 42.3300 48.1700 57.2700 57.6000 53.36 - 57.5900 5.5103 16.5400 59.9800

UCI_DIGIT 80.5900 48.1600 48.0200 83.2200 90.0800 79.4200 83.9524 80.9300 83.8313 17.7552 90.2100
Nonpl 16.5500 14.9400 17.3400 15.5100 11.5300 20.3500 - 16.5400 0.0840 0.0626 20.3300

Caltech-15 53.6600 49.2661 52.0409 58.2464 55.1999 54.5701 50.5300 57.6641 24.3744 53.5544 60.8500
Caltech101_mit 59.9300 59.6400 56.2100 61.4700 58.1900 57.0900 56.5601 60.5000 30.9097 59.7132 62.4200
BBCSport2view 53.9300 53.9300 39.6200 53.9300 45.5700 73.8900 66.1633 58.6300 3.7123 1.6736 71.6300

Plant 26.5700 20.0200 19.3900 21.5600 17.3000 23.1800 23.0600 26.7200 0.5076 0.8555 26.6300
ProteinFold 38.5300 37.1600 40.1700 45.8900 41.2500 43.9100 45.5700 44.5800 7.9099 27.6567 46.1900

Purity(%)
YALE 53.9400 52.7273 58.1818 60.0000 49.0909 57.2424 64.2400 55.7576 50.9091 60.0000 63.6400
Mfeat 71.9500 66.7500 73.7000 92.5500 96.6500 96.6000 95.2500 95.8000 78.8000 16.1000 97.8500

Flower17 51.9900 46.8382 55.0735 60.5147 59.2647 54.1176 53.2300 62.1320 8.2353 36.8382 64.1900
Flower102 32.2800 27.6100 33.8600 46.3900 48.2100 40.2400 - 49.7300 8.0840 7.4200 52.1900

UCI_DIGIT 88.7500 49.7000 47.2000 90.4000 95.1000 82.9000 90.0100 89.1000 78.6000 31.0500 95.5000
Nonpl 72.1800 71.2700 71.7100 63.9100 61.3800 70.5000 - 72.1800 60.3587 60.3587 73.0200

Caltech-15 31.8100 21.6340 26.2092 34.2484 28.8889 27.1242 32.0300 33.1373 20.3268 27.6471 38.0400
Caltech101_mit 37.5200 37.2500 33.7900 39.7400 34.2500 31.3100 37.9739 37.6500 26.0784 37.6471 41.2400
BBCSport2view 77.2100 77.2100 67.8300 77.2100 70.7700 86.0300 80.6985 79.2300 37.8676 36.5809 86.5800

Plant 61.4900 56.3800 55.5300 58.7200 57.4500 59.4700 58.9400 61.7000 39.3617 39.4681 61.6000
ProteinFold 36.1700 33.8600 37.6100 45.3900 37.9000 42.3600 43.2300 41.7900 18.2997 23.6311 45.5300

Table III: ACC, NMI and Purity comparison of different clustering algorithms on 11 benchmark datasets.

(a) The first original base kernel (b) The second original base kernel (c) The third original base kernel

(d) The first local kernel (e) The second local kernel (f) The third local kernel

Figure 2: Illustration of (a)–(c) original base kernels and (d)–(f) corresponding local kernels on UCI-Digit dataset.
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(5) Robust Multi-view Spectral Clustering (RMSC)
[39]: RMSC creates a transition probability matrix using
information of each view firstly, and then applies a shared
low rank transition probability matrix as the input of
standard Markov chain for the final clustering task.

(6) Multi-view Clustering in Latent Embedding Space
(MCLES) [40]: MCLES can cluster the multi-view data in
a learned latent embedding space as well as learning the
global structure and the cluster indicator matrix under a
unified optimization framework.

(7) Multi-view clustering via late fusion alignment
maximization (MVC-LFA) [17]: For more efficient clus-
tering, MVC-LFA aligns the consensus partition with the
weighted base partitions maximally.

(8) Robust Multiple Kernel k-means using l2,1
(RMKKM) [38]: With adding l2,1, RMKKM discovers the
optimal combination of multiple kernels, the best cluster-
ing label as well as the cluster membership simultaneously.

(9) Self-weighted Multiview Clustering with Multiple
Graphs (SwMC) [41]: SwMC provides a method of learn-
ing a reasonable weight to each view by exploring a
Laplacian rank constrained graph.

(10) Simultaneous Global and Local Graph Structure
Preserving for Multiple Kernel Clustering (SPMKC) [42]:
SPMKC notes the importance of graph structure of data
in kernel space and accomplishs MKC with an efficient
way.

H obtained by Algorithm 1 is a continuous variable, in
order to get the clustering result, we need to discretize it.
The common method is to feed it into a K-mean clustering
and receive the ultimate clustering outcome. We use k-
means algorithm on the consensus partition H to get the
final results. Actually, for all methods, each experiment is
repeated for 50 times with random initialization in order
to diminish the effect of randomness produced by k-means,
and calculate the average result. We run all experiments
on a desktop computer with a 3.70GHz Intel(R) Core(TM)
i9− 10900X CPU and 64GB RAM and MATLAB 2018a
(64bit). The ACC, NMI and Purity under the optimal
hyper-parameter of the compared algorithms on the 11
benchmark datasets are displayed on Table III, with the
best results in red and the second best results in blue. The
following conclusions may be drawn from the findings::

• Firstly, average kernel and single best kernel ap-
proaches are strong rivals against other multiple
kernel clustering methods, doing well on the majority
of the datasets studied. This supports the idea of
using the average kernel as the matrix which deter-
mines samples neighbors and calculating local kernel
structure of the average kernel.

• Compared with the three indexes, LF-MKC-LKA
has better performance than other algorithms in
almost all datasets, especially in Yale, Flower17,
Flower102, Nonpl which is more than 2% better than
the suboptimal algorithm. It shows that our method
can not only excavate high-quality local neighbor
information, but also make full use of it through late
fusion. However, some of the proposed algorithm’s

results are marginally poorer than best result on
Yale, Plant, BBCSport2view datasets in Table III. We
conjecture that there are two possible reasons for this.
The first one is that the proposed method can enhance
clustering effect by mining local structure information
of data. However, there could be insufficient local
information among these datasets. In such case, global
method such as RMSC and MVC-LFA do a better
job than our methods. The other possible reason is
that the way of mining local information may not be
effective on all datasets. This motivates us to design
more effective approaches to capture the structural
information among data, which will be left as a piece
of our future work. Please check Section 4.2 in the
left column of Page 8 in the revised version for the
detail.

C. Evaluation of the Effectiveness of Local Kernels
In this section, we will prove that the generated local

kernels have good discrimination and robustness due to
their block diagonal structure. We take τ = 0.05n in
UCI_DIGIT data to generate local kernels, where τ is
the number of nearest neighbors. As shown in Figure 2,
compared with the original base kernels, all of the three
generated local kernels have more obvious discrimination.
Moreover, we can also observe that the robustness of ker-
nels is significantly improved by involving local structure
information, especially in Figure 2c and 2f.

Generally speaking, neighbor kernel matrix has better
robustness to noise and outliers than conventional kernel
matrix, mainly because of its internal weighting mech-
anism for different samples. By retaining the similarity
with higher reliability in the kernel matrix and filtering
out the similarity with smaller value and lower reliability,
the kernel matrix can better extract the real clustering
structure from the data, so as to resist the disturbance of
noise to the data distribution.

D. Evaluation of the Effectiveness of base partition and
Average Partition with Local Structure Information

In this section, we will prove the effectiveness of base
partition and average partition with local structure in-
formation from different ways. Given that the spectral
clustering clustering is a classical algorithm in utilizing
the local structure information of data, we take it as a
contrast experiment method of proposed algorithm. In the
meantime, base partition and average partition generated
by kernel k-means algorithm are also added to the com-
parison of the former two to prove the better performance
and robustness of proposed method. In addition, we use
contrast experiments without prior knowledge term for
ablation study, and the results give eloquent proof of the
effectiveness of the prior knowledge we designed.

We visualize three kinds of average partition with the
t-SNE algorithm. From Figure 3, it can be observed
that local average partition has more compact clustering
partition than the other two, and each cluster has fewer
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(a) Average kernel to do kernel k-means (b) Average kernel to do spectral clustering (c) Local average kernel to do kernel k-means

Figure 3: Illustration of three kinds of average partition with t-SNE on UCI-Digit dataset. (a)(b)(c) represent the
results of average kernel to do kernel k-means, average kernel to do spectral clustering and local average kernel to do
kernel k-means to get average partition.

doped points belonging to other clusters. As the prior
knowledge of late fusion algorithm, L contains local
structure information, which is undoubtedly a more close
to the real clustering partition and can be used as a higher
confidence prior input. We still take the UCI_DIGIT data
kernels as an example to show the results of the three
kinds of base partitions. We get the following results, as
illustrated in Figure 4:

• H̃⊤
p H̃p has an obvious block diagonal structure, which

has a strong division effect, where H̃p is the base
partition with local structure information;

• Figure 4c 4f 4i are the three base partitions H1
3,

H2
3, and H̃3 for the third kernel generated by the

three different methods respectively. And H1
3 and H2

3

obtained by the first two methods loss the ability
of division under the interference of noise, on the
contrary, H̃3 can suppress the noise well. It shows
that kernel k-means is effective for local kernels to
get the base partition.

In order to quantify the effectiveness of L and H̃p

as the input of late fusion, we add different Gaussian
white noise in experiments. The comparison of the three
alternative local partitions by the proposed algorithm,
spectral clustering and kernel k-means as the input of
late fusion is shown in Figure 5, where SNR is the signal-
to-noise ratio, the setting range is 5db to 35db, the higher
the signal-to-noise ratio, the smaller the noise. From the
curve of change, we can know the following points:

• On all datasets, as the amount of noise increases, ,
the performance of all comparing algorithms shows a
downward trend. However, in contrast, the proposed
algorithm can always maintain superior performance,
and its robustness to noise is very significant;

• In the low noise range (25-35db), the performance of
the proposed algorithm has a significant advantage,
which is 4% higher than that of the suboptimal
algorithm. However, in the medium noise range (15-
20db), the proposed algorithm is superior only in
Meaf dataset, but only a little in Yale and BBC-
Sport2view. But in the high noise area (below 10db),

the performance of the three algorithms declines
sharply, but the proposed algorithm can still keep a
good result compared with the other two algorithms.

In general, base partition and average partition with
local structure information as the input of late fusion has
better robustness to noise and outliers. The main reason is
that it contains local structure information and suppresses
noise information.

We use ablation studies in our experiments to demon-
strate the efficiency of L. Deleting the prior knowledge,
the optimization objective is as following:

max
H,{Bp}m

p=1,γ
Tr

(
H⊤X

)
s.t. H⊤H = Ik, B

⊤
p Bp = Ik,

∑m

p=1
γ2
p = 1,

γp ≥ 0, X =
∑m

p=1
γpH̃pBp.

(16)

We record the results of the ablation study in Table
IV. From Table IV we can obtain two points: i) The
ablation experiment without prior knowledge with L still
has excellent performance, which also proves that our local
nearest neighbor information is sufficient and effective,
ii) Compared with the other algorithms, the proposed
algorithm has obvious performance advantages in every
dataset. And the reason is that the local kernel structure
of the average kernel itself contains complementary in-
formation from all views and local neighbor information
between samples. It is used as a regularization term to
make the consensus matrix H a trade-off between X and
L, so that the final learned H will not deviate from the
target value excessively and be more robust.

To further verify the validity of the algorithm, we
supplemented the comparison experiments using different
number of kernels on multiple datasets. As the number of
kernels grows, the performance of the algorithm shows an
overall upward trend with the increase of the number of
kernels, which is not monotonic, as shown in Figure 6. As
the number of kernels involved in clustering increases, the
information from different views complements each other
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Illustration of (a)–(c) base partition generated by kernel k-means, (d)–(f) base partition generated by spectral
clustering and (g)–(i) base partition with Local Structure Information on UCI-Digit dataset.

Datasets ACC(%) NMI(%) Purity(%)

Propose Ablation Propose Ablation Propose Ablation
YALE 63.0300 61.8182 62.7600 61.6961 63.6400 62.4242

Flower17 63.9700 61.1765 58.3600 56.9113 64.1900 61.7647
Flower102 45.3300 44.1690 59.9800 59.4710 52.1900 50.9708

Nonpl 65.0400 62.0791 20.3300 17.7717 73.0200 70.8638
Caltech-15 36.1400 34.5752 60.8500 60.0088 38.0400 36.2745

Caltech101_mit 38.5600 37.1242 62.4200 61.6637 41.2400 38.9542
BBCSport2view 86.5800 84.1912 71.6300 66.7503 86.5800 84.1912

Plant 61.6000 55.6383 26.6300 18.17 61.6000 55.6383
ProteinFold 38.7400 38.0403 46.1900 45.8632 45.5300 44.2363

PsortPos 59.7000 59.3346 29.9200 29.0990 63.0300 63.0314

Table IV: ACC, NMI and Purity comparison of ablation experiment.

and does benefit to clustering. However, not all kernels
are helpful for clustering tasks. When some ’bad’ kernels
are added, they contain redundant and noisy information
which can be harmful. Therefore, it is meaningful to learn

the weights of kernels to fully utilize the complementary
information of the kernels and reduce the redundant
information.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Comparison of clustering performance of algorithms on three datasets under three different late fusion inputs
at different levels of noise. In the picture, blue, red, green dotted lines represent the performance of H̃, H generated
by kernel k-means and H generated by spectral clustering.

E. Parameter Sensitivity Analysis

Notice that LF-MKC-LKA introduces two hyper-
parameters, i.e., the trade-off coefficient µ and the neigh-
borhood number τ which denotes τ -nearest neighbors
for the sample. In order to assess algorithm’s sensitivity
under the two settings, we use the rasterization method to
extract the paired µ and τ and get the ACC. The range for
µ is [2−12, 2−10, . . . , 212] and τ is [0.05n, 0.15n, . . . , 0.75n],
n is the number of samples. Figure 5 shows the sensitivity
experimental results on ProteinFold, PsortPos, Flower102,
Mfeat, Plant and YALE.

The following can be obtained from Figure 7,

• Both the two hyper-parameters have a great influence
on the experimental results,

• The proposed algorithm can maintain excellent per-
formance within a fairly wide range of parameter
setting,

• The accuracy of the algorithm has been maintained
at a high level, although there is a slight change with
the increase of µ. In a wide range, LF-MKC-LKA has
stable performance,

• The proposed algorithm is relatively sensitive to
the τ , the number of nearest neighbors, reflecting
data’s underlying structure and hyper-parameters’
choice. Nevertheless, it outperforms the suboptimal
algorithm on most benchmark datasets.
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(a) flower17_ACC (b) flower17_NMI (c) flower17_Purity

(d) flower102_ACC (e) flower102_NMI (f) flower102_Purity

Figure 6: The clustering performance changes with the number of kernels on flower17 and flower102 datasets.

F. Effectiveness Analysis of Optimization Algorithm
In our method, H⊤H with the variation of iterations

can represent the similarity change of the learning sample
and prove the effectiveness of the algorithm. We record
the H of UCI_DIGIT after each iteration, and visualize
H⊤H under different iteration times in Figure 8. It can be
seen that when the number of iterations grows, samples’
similarity in cluster becomes higher and the similarity of
the samples between clusters becomes lower, and the block
diagonal structure of the similarity graph becomes more
obvious.

G. Convergence of the Proposed Algorithm
Our algorithms can converge to a local minimum theo-

retically according to [44]. In order to verify the algorithm
more intuitively, we make the convergence graph of the
target value of the algorithm and the number of iterations.
In Figure 9, we can see that the target values of the
algorithm on six datasets increase monotonically as the
number of iterations increases, and generally converge
within 15 times. The experimental results strongly support
our algorithm’s convergence.

V. Conclusion
In this article, a brief but effective late fusion multiple

kernel clustering with local kernel alignment maximization
algorithm (LF-MKC-LKA) has been proposed to improve
multi-kernel clustering performance. We used a quick
but effective way to build local kernels which preserves

only the highly confident local similarities. Then we use
them to generate base and average partitions which are
used as input to a late fusion algorithm. The three-
step iterative optimization algorithm we designed can
obtain the closed form optimal solution at each step
to ensure the convergence. In consequence of the strong
partition ability and robustness of late fusion inputs, our
algorithm achieves superior performance over 11 bench-
mark datasets. Low time complexity, fast convergence,
excellent performance, anti-noise, robustness, low param-
eter sensitivity and strong generalization ability on many
different types of benchmark datasets are the highlights
of the algorithm. The method of mining local structure
information and the generated late fusion input which is
better than spectral clustering and kernel k-means can
be easily extended to other late fusion multiple kernel
clustering problems. In the future, we plan to use OT
distance or KL divergence instead of maximum alignment
to get consensus partition.
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