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Abstract—Multiple kernel clustering (MKC) optimally utilizes
a group of pre-specified base kernels to improve clustering perfor-
mance. Among existing MKC algorithms, the recently proposed
late fusion MKC methods demonstrate promising clustering
performance in various applications and enjoy considerable com-
putational acceleration. However, we observe that the kernel par-
tition learning and late fusion processes are separated from each
other in the existing mechanism, which may lead to suboptimal
solutions and adversely affect the clustering performance. In this
paper, we propose a novel Late Fusion Multiple Kernel Clustering
with Proxy Graph Refinement (LFMKC-GPR) framework to ad-
dress these issues. Firstly, we theoretically revisit the connection
between late fusion kernel base partition and traditional spectral
embedding. Based on this observation, we construct a proxy
self-expressive graph from kernel base partitions. The proxy
graph in return refines the individual kernel partitions and also
captures partition relations in graph structure rather than simple
linear transformation. We also provide theoretical connections
and considerations between the proposed framework and the
multiple kernel subspace clustering. An alternate algorithm with
proved convergence is then developed to solve the resultant
optimization problem. After that, extensive experiments are
conducted on twelve multi-kernel benchmark datasets, and the
results demonstrate the effectiveness of our proposed algorithm.
The code of the proposed algorithm is publicly available at
https://github.com/wangsiwei2010/graphlatefusion MKC.

Index Terms—Multiple kernel clustering, Multi-view learning,
Data fusion.

I. INTRODUCTION

CLUSTERING is one of the fundamental unsupervised
learning tasks in data science and machine learning

community. In the era of big data, data are often collected
from multiple sources or domains as single-view information
could not contain comprehensive information, which gives
rise to multi-view clustering in literature. For example, for
image clustering, images are often described by edge fea-
tures, HOG features and Local Binary Pattern (LBP) features.
Existing multi-view clustering can be roughly categorized
into aspects:multiple-view subspace, co-training, multi-view
ensemble clustering and multiple kernel clustering. Multi-view
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Fig. 1: An example of multi-view data. Images are often described
by edge features, Fourier features and texture features. Text with
the same information can be translated into multiple languages.
Moreover, videos have vision, text and voice features.

subspace clustering (MVSC) aims to seek unified subspaces
from fused multi-view data representation and then separates
data in the corresponding subspace. By capturing nonlinear
structure and preserving pairwise similarity in graphs, MVSC
has been widely applied in various applications, e.g. image
classification, face clustering, community detection [1]–[7].
Multi-view ensemble clustering optimizes the optimal cluster-
ing partition matrix by aggregating a set of given pre-defined
multiple partitions [8]–[10]. As an important extension to k-
means to handle multi-view data, multiple kernel clustering
(MKC) cooperates a group of weighted kernels from a given
library to enhance clustering performances on non-linearly
spreadable data. The existing approaches in literature can be
roughly categorized into two strategies from the perspective of
different fusion stages, i.e., kernel fusion and late fusion. The
kernel fusion methods combine complementary information
from multiple kernels and perform kernel k-means on the
optimal kernel [11]–[20]. For example, a multiple kernel
k-means algorithm is proposed to jointly optimize kernel
weights, dimension reduction and clustering task [1]. The work
in [2] suggests multiple data-dependent kernels to preserve
local structures among different views. Then Liu et al. propose
multiple kernel k-means with a matrix-induced regularization
term to encourage the diversity of selected kernels [3]. More-
over, a multiple kernel k-means method with cluster-aware
weighting is introduced in multi-view clustering [21].

Recently, late fusion based MKC is proposed to utilize

https://github.com/wangsiwei2010/graphlatefusion_MKC
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Fig. 2: The illustration of our proposed LFMKC-PGR. The late fusion kernel base partitions are initialized with kernel k-means performed
on each kernel matrix. After that, a global self-expressive proxy graph is constructed to capture their complex partition structure. Then the
kernel base partitions and proxy graph are alternately boosted until best serving for clustering.

underlying shared kernel partition by fusing partition level
information, which significantly reduces the computation bur-
den and avoids low-quality solutions [22]–[28]. Wang et al.
efficiently obtain a unified kernel partition by maximizing its
alignments with individual partitions [24]. Comparing to for-
mer kernel fusion methods, late fusion variants take advantages
of partition information and enjoy considerable algorithm
acceleration. Although the proposed late fusion methods enjoy
low complexity and considerable promising performance in
applications, they can still be improved from the following
considerations: i)The kernel base partition learning stage and
the subsequent late fusion are separated from each other in
the existing mechanism. Therefore, their performance is highly
dependent on the quality of pre-calculated kernel partitions in
each view, which may contain noises or outliers to degrade per-
formance and lead to sub-optimal solutions. ii)These methods
consider the relationships between kernel base partitions and
consensus partition are linear transformation. However, this
assumption might fail to handle real multi-kernel applications
due to obstructions existing in data. As consequence, these
two major factors inhibit late fusion multiple kernel clustering
from obtaining better performance.

To address these issues, in this paper, we propose to jointly
optimize kernel base partitions and late fusion stage in a
unified manner, which is termed as Late Fusion Multiple Ker-
nel Clustering with Proxy Graph Refinement (LFMKC-PGR).
Firstly, we theoretically illustrate the connection between
kernel base partition and traditional spectral embedding under
certain kernel conditions. Therefore, followed by traditional
graph-based methods, we construct a proxy self-expressive
graph for individual kernel base partitions and combine them
into joint optimization. Moreover, by optimizing a shared
self-expression matrix for base partitions to capture non-
linear relationships, they can be jointly negotiated with each
other and reach a consensus on partition space best serving

for clustering. In addition, extensive experiments on twelve
multiple-view benchmark datasets are conducted to evaluate
the effectiveness and efficiency of our proposed method. As
demonstrated, the proposed algorithm enjoys superior cluster-
ing performance in comparison with several state-of-the-art
multi-view kernel-based clustering methods.

The main contributions of this paper can be summarized as
follows,

• We theoretically reveal that late fusion kernel partition
can be regarded as spectral embedding under certain
conditions. Based on that, traditional graph-based meth-
ods can be continually applied into late fusion multiple
kernel clustering which gives a novel insight into MKC
community.

• We unify the kernel base partition learning and late fusion
refinement into one framework. Therefore they can be
jointly promoted and reach a consensus on partition space
best serving for clustering. Moreover, we theoretically
uncover the proposed method with the existing multiple
kernel subspace clustering framework and discuss their
pros and cons.

• Extensive experiments are conducted on twelve multi-
kernel benchmark datasets. By virtue of the proposed
algorithm, LFMKC-PGR shows clear superiority over
other multiple kernel state-of-the-art methods.

The rest of this paper is organized as follows. Section II
outlines the related work of multiple kernel clustering. Section
III presents the proposed optimization objective and the two-
step alternate algorithm. Further, we also provide an analysis
of the convergence and the computational complexity of our
proposed algorithm. Section IV shows the experiment results
with evaluation. Section V concludes the paper.
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II. RELATED WORK

In this section, we introduce existing work most related
to our study in this paper including kernel clustering and
advanced multiple-kernel clustering methods.

A. Multi-kernel k-means (MKKM)
In recent years, enormous multiple kernel clustering meth-

ods have been proposed to enhance task performance in
literature,i.e., the co-training style methods, kernel fusion and
late fusion strategies.

The co-training approaches for MKC iteratively obtain clus-
tering results that can provide predicted clustering indices for
the unlabeled data for other views. In this way, besides extract-
ing the specific cluster information from the corresponding
view, the clustering results are forced to be consistent across
views. These methods may suffer performance degradation
when the pseudo-labels obtained from other views are not
reliable.

TABLE I: Common kernel functions

Name Expression Parameter

Linear kernel κ (xi, xj) = xTi xj

Polynomial kernel κ (xi, xj) =
(
xTi xj

)d
d ≥ 1 is the degree of the polynomial

Gaussian kernel κ (xi, xj) = exp
(
−‖xi−xj‖

2

2σ2

)
σ > 0 is the bandwidth of the Gaussian kernel

Laplace kernel κ (xi, xj) = exp
(
−‖xi−xj‖

σ

)
σ > 0

Sigmoid kernel κ (xi, xj) = tanh
(
βxTi xj + θ

)
tanh is the hyperbolic tangent function,β > 0,θ < 0

Kernel fusion based algorithms mainly optimize kernel
coefficients for a group of kernel candidates [6], [29]–[32].
Let {xi}ni=1 ⊆ X be a collection of n samples, and φp(·) :
x ∈ X 7→ Hp be the p-th feature mapping that maps x onto
a reproducing kernel Hilbert space Hp (1 ≤ p ≤ m). In the
multiple kernel setting, each sample is represented as φβ(x) =
[β1φ1(x)

>, · · · , βmφm(x)>]>, where β = [β1, · · · , βm]>

consists of the coefficients of the m base kernels {κp(·, ·)}mp=1.
These coefficients will be optimized during learning. The
relative commonly-used kernel functions are shown in Table
I.

Based on the definition of φβ(x), a kernel function can be
expressed as

κβ(xi,xj) = φβ(xi)
>φβ(xj) =

∑m

p=1
β2
pκp(xi,xj). (1)

A kernel matrix Kβ is then calculated by applying the kernel
function κβ(·, ·) into {xi}ni=1. Based on the kernel matrix Kβ,
the objective of MKKM can be written as

min
H,β

Tr(Kβ(In −HH>))

s.t. H ∈ Rn×k, H>H = Ik,

β>1m = 1, βp ≥ 0, ∀p.

(2)

where Ik is an identity matrix with size k × k.
The optimization problem in Eq.(2) can be solved by

alternately updating H and β:
i) Optimizing H given β. With the kernel coefficients

β fixed, H can be obtained by solving a kernel k-means
clustering optimization problem shown in Eq.(3);

max
H

Tr(H>KβH)

s.t. H ∈ Rn×k,H>H = Ik,
(3)

The optimal H for Eq.(3) can be obtained by taking the k
eigenvectors respecting to the largest eigenvalues of Kβ.

ii) Optimizing β given H. With H fixed, β can be
optimized via solving the following quadratic programming
with linear constraints,

min
β

m∑
p=1

β2
pTr(Kp(In −HH>)),

s.t. β>1m = 1, βp ≥ 0.

(4)

Along with this line, many variants of MKKM have been
proposed in the literature. The work in [1] proposes a three-
step alternate algorithm to jointly perform kernel clustering,
coefficients and dimension reduction. The work in [3] proposes
a multiple kernel k -means clustering algorithm with matrix-
induced regularization to reduce the redundancy and enhance
the diversity of the pre-defined kernels. Furthermore, the local
kernel alignment criterion has been applied to multiple kernel
learning to enhance the clustering performance in [33].

B. Late Fusion Multiple Kernel Clustering
Based on the assumption that the multiple kernels are

expected to share a consensus partition matrix among partition
levels, late fusion methods seek the optimal kernel partition
by combing linearly-transformed base partitions obtained from
single views [22], [24], [25]. Given n samples in k clusters
among m views, their optimization goal can be mathematically
expressed as

max
Hc,{Wi}mi=1,β

Tr(Hc>
∑m

i=1
βiHiWi) + λΩ(Hc),

s.t. Hc>Hc = Ik,W
>
i Wi = Ik,

‖β‖2 = 1, βi ≥ 0, ∀i,

(5)

where the first term and Ω(·) denote the late fusion align-
ment and regularization term for the consensus partition Hc

respectively. Hi ∈ Rn×k and Wi are the i-th kernel partition
matrix obtained from i-th kernel and its transformation matrix
regarding the consensus partition matrix.

Although Eq. (5) accomplishes multiple kernel clustering
with kernel individual partition matrices fusion via an effective
and efficient manner, its partition presentation learning and
late fusion are conducted separately which may leads to
sub-optimal solutions. Moreover, the linear transformation
relationships do not always hold when facing with noises
or outliers in real-world complex data. As a result, these
two factors shadow the representation ability of latent kernel
partitions and adversely harm the performance of the model.
In the following, we propose a proxy graph to refine the base
partitions and optimally optimize them and fusion in a unified
manner termed Late Fusion Multiple Kernel Clustering with
Proxy Graph Refinement (LFMKC-PGR).

III. LATE FUSION MULTIPLE KERNEL CLUSTERING WITH
PROXY GRAPH REFINEMENT

In this section, we firstly describe our proposed LFMKC-
PGR in details. Then an efficient two-step optimization algo-
rithm is proposed to solve the respective optimization formula.
Finally, we summarize our algorithm and provide analysis and
extensions for LFMKC-PGR.



SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, NOVEMBER 2020 4

A. Revisit Kernel k-means and Spectral Clustering

In this section, we firstly revisit the popular kernel k-
means clustering and mathematically reveal its connection
with traditional spectral clustering. Given a similarity matrix
W, the optimization goal of spectral clustering algorithm can
be rewritten as [34],

min
F

Tr(F>LWF),

s.t. F ∈ Rn×k,F>F = Ik,
(6)

where F is regarded as the spectral embedding of data matrix
and L is the Laplacian matrix for the respective affinity matrix
W as LW = D−W, where D is the degree matrix.

The traditional kernel k-means clustering can be mathemat-
ically written as follows [35],

max
H

Tr(H>KH),

s.t. H ∈ Rn×k,H>H = Ik,
(7)

It seems that there is no significant connection between Eq.
(6) and Eq. (7) at first glance. The following Theorem gives
a theoretic analysis of kernel k-means and Eq. (6).

Theorem 1. Given a normalized kernel matrix K as the
affinity matrix under the condition DK = In, the optimal
solutions of F∗ in Eq. (6) and H∗ in Eq. (7) satisfy the
following equation F∗ = H∗.

Proof. Notice that Tr(F>LKF) = Tr(F>(DK − K)F) =
k−Tr(F>KF), where k is a constant. The optimal solution for
Eq. (6) is the k smallest eigenvectors of LK while the solution
for Eq. (7) is the k largest eigenvectors of K. Therefore it is
straightforward to see that F∗ = H∗. The equation holds if
we set the degree matrix DK as In and this could be easily
done by normalizing the kernel matrix.

Theorem 1 inspires us a new perspective on Eq. (5) that
the kernel partitions {Hi}mi=1 can be regarded as the spectral
embeddings from individual views under certain conditions.
Therefore they can be refined by the existing graph-based
methods and jointly be optimized during the learning process.
In the next subsection, we describe our proposed proxy graph
refinement in details to combine kernel partition and graph
constructing into one objective and further improve the exist-
ing late-fusion based strategy.

B. The Proposed Formula

Regarding Eq. (5), the base partition matrices are learned
individually from each kernel with fixed representations during
the learning stage and the consensus Hc is obtained by linear
transformation. Therefore, the kernel representation learning
and the fusion procedures are conducted separately which do
not satisfy an end-to-end manner. Moreover, we might capture
more complicated relationships between each base partitions
rather than simple linear transformations.

The kernel base partitions {Hi}mi=1 are independently ini-
tialized from each kernel in original model of Eq. (5). Different
from that, the base partitions are refined by a proxy graph
regularization term in our new model. Inspired by the self-
expressive subspace graph building method [32], [36]–[46],

we treat each base partition with refined similarity graph S
building as follows,

min
S

m∑
i=1

‖Hi − SHi‖2F + β ‖S‖2F ,

s.t. S ≥ 0, S1 = 1, diag(S) = 0,

(8)

where S is the shared proxy graph for base partitions and
represents the complex relationship between each single view
representation, and ‖S‖2F is the regularization term. S ≥ 0
ensures the non-negative of the similarity matrix § and S1 = 1
normalizes the obtained S. Moreover, diag(S) = 0 avoids the
trivial solution.

By minimizing Eq. (8), Sij can be regarded as the similarity
score between i-th and j-th sample. The larger value Sij is,
the more likely two samples belong to the same cluster. After
getting the global graph S, we refine the kernel base partition
with the guidance of kernel matrices and the learned global
graph. Our idea can be mathematically expressed as follows,

min
{Hi}mi=1,S

m∑
i=1

Tr(Ki(I−HiH
>
i ))︸ ︷︷ ︸

Kernel clustering

+ λ ‖Hi − SHi‖2F︸ ︷︷ ︸
Graph Refinement

+ β ‖S‖2F ,
s.t. S ≥ 0, S1 = 1, diag(S) = 0,H>i Hi = Ik.

(9)

From the above formula, we summarize the differences
between our MKL methods and multi-view subspace cluster-
ing as follows: (i) Methods of multi-view subspace clustering
are facing raw data or extracted features while MKL method
optimizes the multiple kernel matrices (similarity matrices).
Further, it is quite straightforward to combine MKL and
feature selection into a unified framework. With an adequate
feature selection strategy, the base kernels can be dynamically
constructed from the selected features rather than raw data.
(ii)The advantages of MKL is to handle with nonlinear-
separable data. MKL adopts several kernel functions to trans-
fer original data to their new representations in Hilbert Space.
While they are not easy to be clustered in original space.
(iii)MKL can naturally handle with heterogeneous source
information regardless of the data items. Whatever the data
types are, the kernels can be defined once the similarity mea-
sure is defined. Therefore MKL is widely applied in Biology
and Chemistry. Other methods will conduct graph alignment
to handle with in-heterogeneous multi-view information.

Our proposed LFMKC-PGR model jointly optimizes the in-
dividual kernel representations and the consensus proxy graph
into a unified formula, which avoids the former separate two-
step late fusion strategy. Although the formula is quite simple
and straightforward, LFMKC-PGR has the following merits.
(1) It addresses multiple kernel clustering via a refined late
fusion manner which simultaneously combines kernel partition
learning and graph refinement in a joint framework.(2)View-
specific correlations are captured in graph structure making
it more robust to noises or corrupted multi-view data.(3)
More considerations of graph constructions in kernel partition
space can be easily adjusted into this framework with prior
knowledge.



SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, NOVEMBER 2020 5

C. Connections with the Existing Multiple Kernel Subspace
Clustering

Comparing with conventional MKC algorithms, ours is the
first attempt to combine kernel k-means and the latter graph
regularization which has not been studied in the existing
literature. The equation seems much like with the combination
of kernel self-expressive subspace clustering [14], [47]–[49].

The kernel self-expressive subspace clustering extends tra-
ditional subspace clustering with kernel tricks to handle non-
linearly separable subspaces [47]. The original formula is that

min
S

Tr(K(I− 2S + SS>)), (10)

where S is the learned kernel graph.
We summarize the differences of our new MKC frame-

work comparing to the kernel subspace algorithms. As we
mentioned in our paper, the original space may be infinite
dimensional (e.g. Gaussian Kernel) and contain noise or
outliers, which could better capture information in partition
level. However, in our paper, we directly start from the kernel
k-means and therefore the subsequent graph is constructed
in the partition space rather than the former in the original
Reproducing kernel Hilbert Space (RKHS). As can be seen,
the graph S in [47] is only reflected by the original kernel
K while ours is both influenced by kernel and the partition
matrix H respectively. These lead to two different formulations
in [47] and ours. To the best of our knowledge, it is also
the first practice within MKC domain. By following this new
framework, more interesting approaches could be introduced
into MKC and can greatly contribute to MKC community.

D. Optimization

The optimization problem in Eq. (9) is a non-convex prob-
lem when regrading the two variables. In this section, we
develop an alternate optimization algorithm which separates
the resultant problem into two subproblems such that each is
convex when the other variable is fixed,

1) Update {Hi}mi=1: By fixing S, {Hi}mi=1 can be solved
individually with each of the m sub-problems. The optimiza-
tion problem regrading of Hi can be simplified as,

min
Hi

Tr(Ki(I−HiH
>
i )) + λ ‖Hi − SHi‖2F ,

s.t. H>i Hi = Ik,
(11)

which can be further converted into

max
Hi

Tr((Ki − λ(I− 2S + SS>))HiH
>
i )),

s.t. H>i Hi = Ik.
(12)

By denoting G = Ki−λ(I−2S+SS>), the optimal Hi in
Eq. (11) can be obtained by taking the k largest eigenvectors
corresponding to the largest k eigenvalues of G.

2) Update S: When Hi being fixed, Eq. (9) can be rewrit-
ten as,

min
S

m∑
i=1

λ ‖Hi − SHi‖2F + β ‖S‖2F ,

s.t. S ≥ 0, S1 = 1, diag(S) = 0,

(13)

Specially, we design a two-step algorithm to quickly solve Eq.
(13). In the first step, we solve Eq. (13) without constraints,
which can be written as,

Ŝ = argmin
S

m∑
i=1

λ ‖Hi − SHi‖2F + β ‖S‖2F , (14)

The Eq. (14) is a constraint-free problem. By taking the
derivation of Eq. (14) with respect to S to zero, we can get
the closed-form solution to Eq. (14),

Ŝ =

(
C +

β

λ
I

)−1
C, (15)

where C =
∑m
i HiH

>
i .

Then, we can obtain the approximate solution of S by
projecting Ŝi through the following minimization problem
with proper constraints:

min
S≥0, S1=1,diag(S)=0

∥∥∥S− Ŝ
∥∥∥2
F
, (16)

This problem yields a close-formed solution that

Sj,: = max
(
Ŝj,: + αj1, 0

)
,Sjj = 0, αj =

1 + Ŝ>j,:1

n
, (17)

Proof. The problem of Eq. (16) can be easily rewritten into n
row-formed independent optimization problems as follows,

min
Sj,:≥0, S>

j,:1=1,Sjj=0

∥∥∥Sj,: − Ŝj,:

∥∥∥2
F
, (18)

where Sj,: is the j-th row of S. We write the he Lagrangian
function of Eq. (18) as,

L (Sj,:, α, β) =
∥∥∥Sj,: − Ŝj,:

∥∥∥2
F
− αj

(
S>j,:1− 1

)
− η>j Sj,:,

(19)
where α and ηj are the respective Lagrangian multipliers. Then
the KKT conditions are written as,{

Sj,: − Ŝj,: − αj1− ηj = 0,

ηj
⊙

Sj,: = 0,
(20)

Therefore with S>j,:1 = 1,Sjj = 0, we can easily obtain that

Sj,: = max
(
Ŝj,: + αj1, 0

)
,Sjj = 0, αj =

1 + Ŝ>j,:1

n
, (21)

This completes the proof.

Algorithm 1: Late Fusion Multiple Kernel Clustering
with Proxy Graph Refinement (LFMKC-PGR)
Input: Base kernel matrices {Ki}mi=1, clustering

number k, Hyper-parameters λ, β.
Initialize: S
while not converged do

Update {Hi}mi=1 by solving Eq. (12);
Update S by obtaining Eq. (17);

end
Output: Performing spectral clustering on S.
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E. Analysis and Discussions

Computational Complexity: With the optimization process
outlined in Algorithm 1, the total time complexity consists
of two parts referring to the alternate steps. The first step
mentioned in Eq. (12), actually needs singular value de-
composition (SVD) for G and therefore needs O(mn2k).
As for the third step, we design a twp-step approximate
algorithm for solving S. Its time complexity is O(n2k). The
key issue in time complexity in the algorithm is to solve the
inverse of C + β

λI with the size n ∗ n. Notice that to obtain
C needs O(n2k).Then we formalize C = UU>(O(n2k),
with the size n ∗ k). We apply the Woodbury formulation
which is widely applied in ridge regression to accelerate the
inverse problem into O(n2k) with the following equation.(
C + β

λIn

)−1
= λ

β

(
λ
βC + In

)−1
= λ

β

(
UU> + In

)−1
=

λ
β

(
In −U

(
Ik + U>U

)−1
U>
)

. Hence for each iteration,
the whole time complexity of our proposed algorithms is
O(mn2k + n2k).

Convergence: It is easy to obtain that the whole optimization
function is lower bounded to 0. As the two subproblems are
strictly convex when optimizing one variable and keeping the
others fixed. The objective of Algorithm 1 is monotonically
increased when optimizing one variable with the others fixed
at each iteration. As a result, the proposed algorithm can be
verified to be convergent according to [50].

Extensions: LFMKC-PGR offers a novel insight on the
connection between kernel partitions and traditional spectral
embedding. More interesting graph-based methods can be
introduced to this framework. For example, local graph struc-
ture building strategy can be applied to further enhance the
clustering performances by exploiting local structures among
different views.

IV. EXPERIMENT

In this section, we evaluate the effectiveness and efficiency
of the proposed method for twelve widely used multi-view
benchmark datasets with strong competitors from the per-
spectives of clustering performance, parameter sensitivity and
convergence.

TABLE II: Datasets used in our experiments.

Dataset #Samples #Kernels #Classes

AR10P 130 6 10
YALE 165 5 15

ProteinFold 694 12 27
Flower17 1360 7 17
Nonplant 2732 69 3

Flower102 8189 4 102
Caltech102-5 510 48 102
Caltech102-10 1020 48 102
Caltech102-15 1530 48 102
Caltech102-20 2040 48 102
Caltech102-25 2550 48 102
Caltech102-30 3060 48 102

A. Datasets

The proposed algorithm is experimentally evaluated on
twelve widely used multiple kernel benchmark datasets
shown in Table II. They are AR10P,1 Oxford Flower17 and
Flower1022, ProteinFold3, YALE Face4, Nonplant and Cal-
tech1025. For these datasets, all kernel matrices are pre-
computed and can be publicly downloaded from the above
websites. Further, followed by [22], we have downloaded the
last six Caltech102 datasets where Caltech102-5 denotes the
number of samples belonging to each cluster is 5 and so on.

B. Compared Algorithms

In the experiments, our proposed algorithm is compared
with the following state-of-the-art multiple kernel or subspace
clustering methods. (1) Best Single Kernel k-means (BSKM)
(2) Multiple Kernel k-means (MKKM) [51]: The algo-
rithm alternatively performs kernel k-means and updates the
kernel coefficients. (3) Co-regularized Spectral Clustering
(CRSC) [52]: CRSC provides a co-regularization way to
perform spectral clustering on multiple views. (4) Robust
Multiple Kernel k-means using `2,1 norm (RMKKM)
[53]: RMKKM simultaneously finds the clustering label, the
cluster membership and the optimal combination of multiple
kernels by adding `2,1 norm. (5) Robust Multi-view Spectral
Clustering (RMSC) [54]: RMSC constructs a transition prob-
ability matrix from each single view, and then use recover a
shared low-rank transition probability matrix as an input to the
standard Markov chain for clustering. (6) Multiple Kernel k-
means with Matrix-induced Regularization (MKMR) [3]:
MKMR fulfills the multiple kernel k-means clustering with a
matrix-induced regularization to reduce the redundancy and
enhance the diversity of the kernels. (7) Multiple Kernel
Clustering with Local Kernel Alignment Maximization
(MKAM) [33]: The algorithm maximizes the proposed lo-
cal kernel alignment and therefore captures local structure
among kernels. (8) Multi-view Clustering via Late Fusion
Alignment Maximization (MLFA) [24]: MLFA maximizes
the alignment of individual kernel partitions and consensus
one, and reach an agreement on partition level information (9)
Flexible Multi-View Representation Learning for Subspace
Clustering (FMR) [55]: FMR optimizes subspace clustering
via encoding complementary latent representations and their
nonlinear or high-order correlations from multiple views

C. Experimental Setting

For all the above mentioned algorithms, we have down-
loaded their public Matlab code implementations from orig-
inal websites.The hyper-parameters are set according to the
suggestions of the corresponding literature. For the proposed
algorithm LFMKC-PGR, the trade-off parameters λ and β
are chosen from

[
2−2, 2−1, · · · , 22

]
by grid search. For all

1http://featureselection.asu.edu/old /datasets.php
2http://www.robots.ox.ac.uk/˜vgg/data/flowers/
3http://mkl.ucsd.edu/dataset/protein-fold-prediction
4www.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
5http://www.vision.caltech.edu/archive.html



SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, NOVEMBER 2020 7

TABLE III: The ACC, NMI and Purity comparison of different clustering algorithms on twelve benchmark datasets. The best result is
highlighted and boldfaced with underlines.

Dataset Metric BSKM MKKM CRSC RMKKM RMSC MKMR MKAM MLFA FMR Proposed

AR10P
ACC 43.08 40.00 38.46 30.77 30.77 39.23 27.69 41.54 51.23 56.15
NMI 42.61 39.53 39.82 26.62 27.87 40.11 24.72 39.15 45.52 51.82

Purity 43.08 40.00 39.23 32.31 33.08 39.23 28.46 41.54 51.23 56.15

YALE
ACC 56.97 52.12 56.97 56.36 58.03 60.00 46.67 54.55 61.21 62.42
NMI 58.42 54.16 57.69 59.32 57.58 62.87 53.51 59.86 60.31 63.48

Purity 57.58 52.73 57.58 58.18 57.24 60.00 49.09 55.76 61.33 62.42

ProteinFold
ACC 33.86 27.23 34.87 30.98 33.00 36.46 37.90 35.88 34.96 40.06
NMI 42.03 37.16 43.32 38.78 43.91 45.32 44.46 44.00 43.68 48.72

Purity 41.21 33.86 40.78 36.60 42.36 42.65 43.95 41.93 42.22 45.97

Flower17
ACC 42.06 45.37 52.35 53.38 51.10 58.82 57.87 60.16 58.78 62.28
NMI 45.14 45.35 50.42 52.56 54.39 57.05 56.06 59.79 56.98 61.72

Purity 44.63 46.84 53.01 55.07 54.12 60.51 59.26 62.13 59.66 63.60

Nonplant
ACC 49.38 54.32 55.56 49.33 60.65 56.59 59.57 50.07 36.70 67.50
NMI 16.55 15.83 17.44 16.55 20.35 23.43 23.04 16.55 0.50 25.56

Purity 72.18 71.45 73.17 72.18 70.50 73.33 74.34 72.18 60.36 75.29

Flower102
ACC 33.13 21.96 37.26 28.17 32.97 39.91 40.84 42.73 35.24 46.78
NMI 48.99 42.30 54.18 48.17 53.36 57.27 57.60 57.59 57.42 60.30

Purity 38.78 27.61 44.08 33.86 40.24 46.39 48.21 49.73 41.62 53.07

Caltech-5
ACC 36.86 28.63 36.08 32.75 33.73 38.04 32.16 37.45 36.27 43.73
NMI 68.64 65.97 70.60 66.76 68.93 71.08 67.18 71.87 70.25 73.69

Purity 36.24 29.80 37.65 33.92 34.90 39.02 33.92 39.61 37.29 45.49

Caltech-10
ACC 30.88 22.75 33.43 26.67 29.80 33.73 28.33 32.45 28.73 40.78
NMI 59.77 55.80 62.10 57.28 59.86 62.76 58.51 61.99 59.09 66.90

Purity 31.24 24.22 35.29 28.82 31.47 35.88 30.39 34.22 29.80 43.73

Caltech-15
ACC 29.11 20.39 31.18 24.90 25.49 32.29 27.32 31.11 17.12 39.93
NMI 53.66 49.27 57.73 52.04 54.57 58.25 55.20 57.66 46.81 63.01

Purity 31.81 21.63 33.14 26.21 27.12 34.25 28.89 33.14 17.71 41.83

Caltech-20
ACC 28.20 18.73 30.98 24.51 23.87 32.55 25.88 30.44 9.71 37.25
NMI 53.19 45.61 54.84 48.66 50.34 56.06 51.42 54.33 37.74 59.58

Purity 31.91 20.39 32.50 26.13 25.59 34.66 27.84 32.60 10.22 39.85

Caltech-25
ACC 26.41 16.63 29.69 21.92 24.08 30.12 26.16 29.45 8.23 36.47
NMI 49.92 41.86 52.04 45.53 48.35 52.94 50.12 52.00 33.43 57.04

Purity 30.41 18.00 31.57 23.45 25.80 32.20 28.75 31.49 8.64 38.75

Caltech-30
ACC 25.91 16.31 28.53 21.41 22.58 31.31 24.54 28.56 7.50 36.37
NMI 49.31 39.92 50.42 43.72 46.04 51.55 47.39 50.12 30.38 55.98

Purity 28.71 18.04 30.07 23.50 24.15 33.20 26.76 29.87 7.75 38.40

datasets, we assumed that the true number of clusters is
given. The widely used clustering accuracy (ACC), normalized
mutual information (NMI) and purity are applied to evaluate
the clustering performance. For all algorithms, we repeat each
experiment for 50 times with random initialization to reduce
the effect of randomness caused by k-means, and report the
best result. All our experiments are conducted on a desktop
computer with a 2.5GHz Intel Platinum 8269CY CPU and
48GB RAM, MATLAB 2019b (64bit).

D. Experimental Results

Table III presents the ACC comparison of the above algo-
rithms on the twelve benchmark datasets. The best result is
highlighted with underlines. Based on the results, we have the
following observations:
• Our proposed algorithm shows clear advantages

over other multi-kernel clustering baselines, with
12 best out of the total 12 datasets; in particular,
the margins for the nine data sets: AR10P,
Nonplant, Flower102 and the six Caltech are very
impressive, outperforming the second-best algorithm

9.61%,11.29%,9.48%,14.95%,14.85%,15.94%,10.47%
and 6.90% on ACC respectively. These results verify
the effectiveness of the proposed method comparing to
existing state-of-the-art approaches.

• Comparing with the FMR [55]) , the proposed LFMKC-
PGR consistently further improves the clustering perfor-
mance and achieves better results among the benchmark
datasets. Both of them adopt the self-expressive sub-
spaces for graph building. The clustering results clearly
demonstrate that adapting kernel representations into
proxy graphs might capture non-linearly separable data
comparing to existing subspace methods.

• Mentioned before, our LFMKC-PGR originates from
MLFA [24] which separates kernel base partition learning
and the late fusion stage. As can be seen, the newly-
proposed algorithm significantly surpasses MLFA in real
experiments. Therefore, it is vital to jointly combine the
kernel base partition learning and late fusion refinement
in multiple kernel clustering.

We also report the NMI and purity in Table III. Again, we
observe that the proposed algorithm significantly outperforms



SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, NOVEMBER 2020 8

other multiple kernel clustering algorithms. These results are
consistent with our observations in Table III.

In summary, the above experimental results have well
demonstrated the effectiveness of our proposed method com-
paring to other state-of-the-art methods. We attribute the supe-
riority of the proposed algorithm as two aspects: i) LFMKC-
PGR incorporates kernel base partition learning and proxy
graph refinement into a unified framework. By the virtue of
it, kernel partitions are refined by global proxy graph and
subsequently contributing to construct better graphs. Therefore
the two processes are mutually promoted serving for cluster-
ing. ii) Compared with the existing late fusion multiple kernel
methods, the proposed LFMKC-GPR adopts graph structure
to capture complex relationships between multiple partitions
which is more suitable in real applications. These two factors
contribute to significant improvements in clustering perfor-
mance.

E. Comparing with Existing Multiple Kernel Subspace Clus-
tering

As mentioned in Section III-C, our proposed LFMKC-
PGR has a close relationship with the existing multiple kernel
subspace clustering methods which also construct graph from
kernels. Therefore we also conduct comparison experiments
on the existing STOA multi-kernel subspace clustering meth-
ods [14], which we refer it SPMKC in Table IV. And the
representative deep multi-view clustering method DAMC [56]
is also shown in the table.

TABLE IV: The ACC NMI and Purity comparison of multi-kernel
subspace clustering, deep multi-view clustering methods and ours.

Dataset SPMKC DAMC Proposed
ACC(%)

CCV 23.64 20.51 26.89
NonPlant 13.50 54.90 67.50
Flower17 50.07 30.29 62.28

Flower102 36.55 22.50 46.78
NMI(%)

CCV 28.11 22.50 20.72
NonPlant 1.27 16.64 25.56
Flower17 51.28 34.38 61.72

Flower102 52.73 27.80 60.30
Purity(%)

CCV 25.46 28.60 29.57
NonPlant 14.15 69.78 75.29
Flower17 47.65 35.10 63.60

Flower102 38.76 21.25 53.07

We conduct experiments on computer vision datasets CCV
6, which contains 6773 YouTube videos over 20 semantic
categories. We show our results in Table IV. The superiority
experimental results of ours outperform existing SOTA kernel
subspace clustering and even deep multi-view algorithm. It
is noticed that the comparing method FMR in our paper is
also a deep based strong baseline as [31], [57]. And [14] is
considered to be a strong baseline for multiple kernel self-
expressive subspace clustering. As can be seen, our method
significantly outperforms theirs and the results clearly demon-
strate the effectiveness of our proposed method.

6https://www.ee.columbia.edu/ln/dvmm/CCV/

F. Comparing with Existing Multi-view Ensemble Clustering

We also conduct experiments comparing to existing multi-
view ensemble clustering algorithms [8]–[10]. Multi-view en-
semble clustering optimizes the optimal clustering partition
matrix by aggregating a set of given pre-defined multiple par-
titions. As can be seen, our method significantly outperforms
the competitors. We attribute the superiority with the following
reasons:(i)more flexible similarity measure. Ensemble clus-
tering jointly fuses multiple partitions to reach a consensus
partition which heavily relies the quality of base partitions.(ii)
capture nonlinear information. Kernel methods capture the
nonlinear relationship with data items which is more practical
in real applications.

TABLE V: The ACC NMI and Purity comparison of multi-view
ensemble clustering methods and ours.

Datasets MVEC M2VEC Ours
ACC(%)

Caltech-5 25.13 25.37 43.73
Caltech-10 19.55 20.08 40.78
Caltech-15 15.97 16.64 39.93
Flower17 36.51 31.84 62.28

YALE 26.55 27.52 62.42
AR10P 20.62 20.15 56.15

NMI(%)
Caltech-5 61.34 62.47 73.69

Caltech-10 49.61 50.24 66.90
Caltech-15 42.06 43.88 63.01
Flower17 40.19 36.80 61.72

YALE 36.43 34.90 63.48
AR10P 15.60 16.02 51.82

Purity(%)
Caltech-5 28.44 29.64 45.49

Caltech-10 21.71 22.05 43.73
Caltech-15 17.44 18.23 41.83
Flower17 38.58 34.56 63.60

YALE 31.15 33.46 62.42
AR10P 21.46 22.54 56.15

G. Running Time Comparison

To compare the computational efficiency of the proposed
algorithms, we record the running time of various algorithms
on these benchmark datasets and report them in Table VI.

From this table, we have two aspects of observations.
First, it can be observed that the time complexity of MKAM
and FMR are relatively expensive over the other compared
methods. Second, the proposed algorithm ranks second best in
existing methods. Although MLFA achieves better in term of
efficiency, the proposed method exceeds much better clustering
performance as shown in Table III. Therefore, it is clear to see
that the total computational cost of proposed method is less
or much less than MKAM, FMR in our experiments. This is
probably the main reason that our method is able to cost less
time than the compared methods in most cases (as shown in
Table VI).

H. Graph Refinement

To directly illustrate the effectiveness of the proxy graph
refinement on the late fusion base kernel partitions, we visu-
alize the affinity matrix in Figure 4. As can be observed, our
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Fig. 3: The convergence of the proposed LFMKC-PGR on the entire twelve datasets.

TABLE VI: The time comparison of representative MKC algorithms
on three large benchmark datasets (in seconds).

Datasets MKAM MLFA FMR Proposed
Flower102 1027.4 90.71 1805.2 365.1
Nonplant 2694.29 21.18 464.8 148.0

Caltech102-30 620.07 59.76 459.9 143.76

proposed method refines the base partitions and optimally be
fused with the proxy graph. The noises in the affinity matrix
shown in Figure 4a are eliminated and the clustering structure
becomes clearer in Figure 4b. After adding constraint into
the MKC optimization goal, the learned similarity graph is
constructed in the kernel latent space rather than the original
RKHS space.

We have also shown the t-sne visual results on the mfeat
datasets in Figure 5 of the learned data representation on the
1-st, 3-rd, 5-th and 10-th iterations. The figures clearly show
the separation of different clusters. Also, it can be observed
form Figure 6, the learned affinity matrices show clearer block
clustering structure with the variation of iterations.

I. Convergence and Parameter Sensitivity

Our algorithm is theoretically guaranteed to converge to
a local minimum according to [50]. We also conduct ex-
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Fig. 4: An illustration of the learned affinity matrix on Flower17: (a)
MLFA (b) Our Proposed LFMKC-PGR.

periments to demonstrate the convergence of the proposed
algorithm. The examples of the evolution of the objective
value on the experimental results are shown in Figure 3. In
the above experiments, we observe that the objective values of
our algorithm monotonically decrease at each iteration. These
results clearly verify our proposed algorithm’s convergence.

The Figure 7 shows an example of the sensitivity experi-
mental results on AR10P and Flower17. From these figures,
we observe that: i) LFMKC-PGR is practically stable against
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(a) 1-st iteration (b) 3-rd iteration (c) 5-th iteration (d) 10-th iteration

Fig. 5: An illustration of the learned data distribution with t-sne algorithm on mfeat datasets.

(a) 1-st iteration (b) 3-rd iteration (c) 5-th iteration (d) 10-th iteration

Fig. 6: An illustration of the learned affinity matrix on mfeat datasets.

(a) AR10P (b) Flower17

Fig. 7: The sensitivity of the proposed method with the variation of
λ and β on benchmark datasets.

these parameters that it achieves competitive performance in a
wide range of parameter settings; i) the ACC first increases to
a high value and generally maintains it up to slight variation
with values of two hypermeters. However, it still outperforms
the second-best algorithm in most of the benchmarks.

V. CONCLUSION

In this article, we propose a novel multiple kernel clustering
method termed LFMKC-PGR which simultaneously optimize
kernel base partitions and graph refinement. The kernel base
partitions can be refined by the proposed proxy graph and ne-
gotiated with each other. Extensive experiments are conducted
on twelve multi-kernel benchmark datasets, demonstrating the
effectiveness of our proposed algorithm. In the future, we

will consider how to preserve multi-view local information
in the kernel partition space and further improve clustering
performance.
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