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Incomplete Multiple Kernel Alignment
Maximization for Clustering

Xinwang Liu, Senior Member, IEEE

Abstract—Multiple kernel alignment (MKA) maximization criterion has been widely applied into multiple kernel clustering (MKC) and
many variants have been recently developed. Though demonstrating superior clustering performance in various applications, it is
observed that none of them can effectively handle incomplete MKC, where parts or all of the pre-specified base kernel matrices are
incomplete. To address this issue, we propose to integrate the imputation of incomplete kernel matrices and MKA maximization for
clustering into a unified learning framework. The clustering of MKA maximization guides the imputation of incomplete kernel elements,
and the completed kernel matrices are in turn combined to conduct the subsequent MKC. These two procedures are alternately
performed until convergence. By this way, the imputation and MKC processes are seamlessly connected, with the aim to achieve better
clustering performance. Besides theoretically analyzing the clustering generalization error bound, we empirically evaluate the
clustering performance on several multiple kernel learning (MKL) benchmark datasets, and the results indicate the superiority of our
algorithm over existing state-of-the-art counterparts. Our codes and data are publicly available at https://xinwangliu.github.io/.

Index Terms—multiple kernel clustering, multi-view clustering, kernel alignment maximization
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1 INTRODUCTION

K ERNEL alignment criterion [1] measures the agreement
between a kernel and a given learning task. It is simple,

effective and easy-to-implement, and therefore has been
widely adopted in kernel methods such as kernel parameter
tuning [2], multiple kernel learning (MKL) [3], to name just
a few. The recent work in [4] extends the kernel alignment
criterion from supervised learning scenarios to multiple ker-
nel clustering (MKC) by jointly maximizing the clustering
partition matrix and kernel coefficients. More importantly,
it builds up the theoretical connection between multiple
kernel alignment (MKA) for clustering and existing multiple
kernel k-means, by which the objectives of existing MKC
algorithms can be unified from the perspective of kernel
alignment. MKA based clustering algorithms have been
intensively studied and demonstrated promising clustering
in various applications such as image fusion [5], image
retrieval [6], document/video analysis [7], to name just a
few. It well indicates the importance and effectiveness of
this criterion [8].

As a representative of MKA based clustering algorithms,
the more recent work in [9] revisits the MKA criterion and
proposes a novel MKC algorithm termed SimpleMKKM.
Different from existing minimization-minimization opti-
mization framework [10], SimpleMKKM firstly reformu-
lates the MKA criterion for clustering as a minimization-
maximization optimization problem, and then develops a
reduced-gradient descend algorithm to solve it. Despite
its simplicity, SimpleMKKM is considered as one of the
state-of-the-art MKC algorithms by showing competitive
clustering performance in empirical study.
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Though demonstrating promising clustering perfor-
mance, SimpleMKKM assumes that all the pre-calculated
kernel matrices are complete. In some real-world appli-
cations [11], [12], [13], [14], [15], [16], [17], however, it
is not unusual to see that some kinds of features of a
sample are unavailable, which causes the corresponding
rows and columns of related kernel matrices unfilled. As a
result, the violation to this assumption makes SimpleMKKM
inapplicable for conducting clustering in this challenging
setting, which is called incomplete MKC in this paper.
There are two categories of methods to address incomplete
MKC in the literature. The first category is termed “two-
stage” methods, which firstly impute incomplete kernels
with filling algorithms [18], [19], [20], [21] and then apply
MKC with the imputed kernels. It is recognized that these
“two-stage” algorithms share a drawback that they discon-
nect the processes of imputation and clustering, and this
prevents the two learning processes from negotiating with
each other to achieve the optimal clustering. Differently, the
second category, termed “one-stage” methods [13], [22], [23],
[24], addresses this issue by designing a clustering-oriented
imputation algorithm to impute the missing parts of a kernel
during the optimization for clustering. Conceptually, our
work in this paper belongs to the second category, but it
enjoys clear advantages over the existing ones in terms of
optimization efficiency and clustering performance.

In this paper, we develop a simple while effective algo-
rithm to enable SimpleMKKM to well handle MKC with
incomplete kernels. Specifically, the proposed algorithm
unifies the imputation of incomplete kernels and the clus-
tering task into a single objective function. The clustering
guides the imputation of incomplete kernels, and the com-
pleted kernels are in turn optimally combined to conduct
the subsequent MKC. These two procedures are alternately
performed until convergence. By this way, the imputation
and MKC processes are seamlessly connected, with the
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aim to achieve better clustering performance. Further, we
theoretically analyze the performance of our algorithm on
unseen data via deriving its clustering generalization error
bound. Extensive experimental study on several multiple
kernel learning (MKL) benchmark datasets indicates the
superiority of our algorithm over existing state-of-the-art
counterparts.

The rest of this paper is organized as follows: Section
2 briefly introduces several related work. Section 3 is de-
voted to our proposed incomplete multiple kernel align-
ment maximization for clustering. Section 4 analyzes the
generalization bound of the proposed algorithm. Extensive
experiments are conducted in Section 5 to support our
claims. Our work is concluded in Section 6.

2 RELATED WORK

In this section, we briefly review the most related, including
multiple kernel k-means (MKKM), multiple kernel k-means
with incomplete kernels (MKKM-IK) [13] and the recently
proposed SimpleMKKM [9].

2.1 MKKM

Given a group of pre-calculated kernel matrices {Kp}mp=1,
MKKM assumes that the optimal kernel matrix Kγ can
be parameterized as Kγ =

∑m
p=1 γ

2
pKp, where γ ∈ ∆ =

{γ ∈ Rm|
∑m
p=1 γp = 1, γp ≥ 0, ∀p} represents the kernel

weights of these base kernel matrices. It jointly learns the
kernel weights γ and the clustering partition matrix H by
optimizing Eq. (1).

minγ∈∆ minH Tr
(
Kγ(I−HH>)

)
s.t. H ∈ Rn×k, H>H = Ik.

(1)

In literature, the optimization problem in Eq. (1) is
usually be solved by alternatively updating H and γ: (i)
Optimizing H given γ. With the kernel coefficients γ fixed,
H can be obtained by solving a kernel k-means clustering
optimization problem; (ii) Optimizing γ given H. With
H fixed, γ can be optimized via solving the following
quadratic programming with linear constraints,

minγ∈∆

∑m

p=1
γ2
pTr

(
Kp(In −HH>)

)
, (2)

which has a closed-form solution.
Algorithm 1 presents the whole algorithm to solve the

optimization problem in Eq. (1). This algorithm adopts an
alternate way to optimize H and γ. Specifically, one variable
is optimized with the other fixed. By this way, the objective
in Eq. (1) can be monotonically minimized. Meanwhile, this
objective is lower-bounded. As a result, the Algorithm in 1
is theoretically guaranteed to converge to a (local) optimum.

As seen from Eq. (2), using a linear combination of
kernels

∑m
p=1 γpKp to replace

∑m
p=1 γ

2
pKp is not a viable

option, because this could make only one single kernel
activate and all the others assigned with zero weight. Other
recent work using `2-norm combinations can be found in
[13], [25], [26].

Algorithm 1 MKKM

1: Input: {Kp}mp=1, k.
2: Output: H and γ.
3: Initialize γ(1) = 1/m, flag = 1 and t = 1.
4: while flag do
5: compute H by solving a kernel k-means with

Kγ(t) =
∑m
p=1

(
γ

(t)
p

)2
Kp.

6: update γ(t+1) with Eq. (2).
7: if max |γ(t) − γ(t−1)| ≤ 1e− 4 then
8: flag=0.
9: end if

10: t← t+ 1.
11: end while

2.2 MKKM-IK
The recently proposed MKKM-IK [10] has extended the
existing MKKM in Eq. (1) to enable it to handle multiple
kernel clustering with incomplete kernels. It unifies the
imputation and clustering procedure into a single optimiza-
tion objective and alternately optimizes each of them. That
is, i) imputing the absent kernels under the guidance of
clustering; and ii) updating the clustering with the imputed
kernels. The above idea is mathematically fulfilled as,

minH, γ, {Kp}mp=1
Tr(Kγ(In −HH>))

s.t. H ∈ Rn×k,H>H = Ik,

γ>1m = 1, γp ≥ 0,

Kp(sp, sp) = K(oo)
p , Kp � 0, ∀p,

(3)

where sp (1 ≤ p ≤ m) denote the sample indices for which
the p-th view is observed and K

(oo)
p be used to denote

the kernel sub-matrix computed with these samples. The
constraint Kp(sp, sp) = K

(oo)
p is imposed to ensure that Kp

maintains the known entries during the course. Different
from the optimization in MKKM, [10] incorporates an extra
step to impute the missing entries of base kernels, leading
to a three-step alternate optimization algorithm. Specifically,
MKKM-IK optimizes one variable by keeping other vari-
ables fixed at each iteration, as outlined in Algorithm 2.
Interested readers are referred to [10].

Algorithm 2 MKKM-IK

1: Input: {K(oo)
p }mp=1, k, and {sp}mp=1.

2: Output: H, γ and {Kp}mp=1.
3: Initialize γ(0) = 1m/m, {K(0)

p }mp=1, and t = 1.
4: repeat

5: Kγ(t) =
∑m

p=1

(
γ
(t−1)
p

)2
K

(t−1)
p .

6: Update H(t) by solving kernel k-means with given
Kγ(t) .

7: Update each K
(t)
p with H(t) and {K(t−1)

q }mq=1,q 6=p.
8: Update γ(t) with given H(t) and {K(t)

p }mp=1.
9: t = t+ 1.

10: until max |γ(t) − γ(t−1)| ≤ 1e− 4

2.3 SimpleMKKM
We briefly introduce simple multiple kernel k-means (Sim-
pleMKKM), which is recently developed for MKC in [9]
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and will serve the base for the proposed algorithm to deal
with incomplete MKC. SimpleMKKM revisits the criterion
of MKA, and develops a simple yet effective multiple kernel
clustering algorithm. Different from existing minγ minH

optimization framework in Eq. (1), SimpleMKKM proposes
a minimization-maximization problem with respect to the
kernel coefficient and clustering partition matrix as follows.

minγ∈∆ maxH 〈Kγ ,HH>〉
s.t. H ∈ Rn×k, H>H = Ik,

(4)

where {Kp}mp=1 are m pre-calculated base kernel matrices,
Kγ =

∑m
p=1 γ

2
pKp, ∆ = {γ ∈ Rm|γ>1 = 1, γp ≥ 0,∀p}

and H denotes the clustering partition matrix satisfying the
orthogonal constraint H>H = Ik. Noting that 〈Kγ ,HH>〉
is just the MKA criterion previously mentioned.

Instead of solving the formulation in Eq. (4) by the
widely adopted alternate optimization, the work in [9]
designs an efficient and effective reduced gradient descent
algorithm. Firstly, the optimization in Eq. (4) is equivalently
rewritten as,

minγ∈∆ J (γ), (5)

with

J (γ) =
{

maxH Tr
(
KγHH>

)
s.t. H>H = Ik

}
. (6)

By this way, the min-max optimization is transformed to a
minimization one, where its objective is a kernel k-means
optimal value function. After proving the differentiability
of J (γ) w.r.t γ, SimpleMKKM applies the reduced gradient
descent algorithm to decrease Eq. (5), where the equality
and positive constraints on γ are guaranteed at each itera-
tion. The whole algorithm procedure solving the optimiza-
tion problem in Eq. (4) is outlined in Algorithm 3. Interested
readers are referred to [9] for the detailed optimization.

Algorithm 3 SimpleMKKM

1: Input: {Kp}mp=1 and k.
2: Output: H and γ.
3: Initialize γ(1) = 1/m, flag = 1 and t = 1.
4: while flag do
5: compute H by solving a kernel k-means with

Kγ(t) =
∑m
p=1

(
γ

(t)
p

)2
Kp.

6: compute ∂J (γ)
∂γp

(p = 1, · · · ,m) and the descent di-
rection d(t).

7: update γ(t+1) ← γ(t) + αd(t). . α is the optimal
step size

8: if max |γ(t) − γ(t−1)| ≤ 1e− 4 then
9: flag=0.

10: end if
11: t← t+ 1.
12: end while

Though SimpleMKKM in Eq. (4) demonstrates superior
clustering performance in various applications, we observe
that it cannot efficiently deal with MKC with incomplete
kernels. For example, in some practical applications such as
Alzheimer’s disease prediction [11] and cardiac disease dis-
crimination [27], it is not uncommon to see that some kinds
of features of a sample are missing, and this causes the corre-
sponding rows and columns of related base kernels unfilled.

The presence of incomplete base kernels makes it difficult
to utilize the information of all kernels for clustering. In
the following, we further develop a simple while effective
algorithm, termed incomplete multiple kernel alignment
maximization for clustering, to address this issue.

3 INCOMPLETE MULTIPLE KERNEL ALIGNMENT
MAXIMIZATION FOR CLUSTERING

3.1 The Proposed Formulation
Let sp (1 ≤ p ≤ m) denote the sample indices for which the
p-th base kernel is observed and K

(oo)
p be used to denote

the kernel sub-matrix computed with these samples. Our
learning task is to integrate m incomplete kernel matrices,
i.e., {K(oo)

p }mp=1 for clustering. This incomplete setting is
not uncommon in various real-world applications such as
cancer biology [28], analysis of multiple heterogeneous neu-
roimaging data [11], and Alzheimer’s disease diagnosis [29].

Existing two-stage approaches first impute these base
kernels which are then taken as the input of a conven-
tional MKC algorithm. It is observed that the imputation
by such manners may not be able to serve or even hurt the
subsequent clustering tasks [22]. To maintain the advantage
brought by the recently proposed one-stage methods such as
learning clustering-oriented imputation [13], [22], we shall
aim to directly improve the clustering by treating the absent
kernel entries as auxiliary unknowns during this course.
That is to jointly perform imputation and clustering: i) im-
pute the missing parts of kernels under the guidance of clus-
tering; and ii) update the clustering by optimally combined
the imputed kernels. By this way, the above two learning
processes can be seamlessly coupled and they are allowed
to negotiate with each other to achieve better clustering. On
top of this, we seek a more natural and reasonable manner to
deal with the incompleteness in multiple kernel clustering.
In specific, we propose to jointly impute the incomplete
kernels and combine them for clustering by maximizing
the aforementioned multiple kernel alignment in Eq. (4),
leading to the following new optimization problem,

max{Kp}mp=1
minγ∈∆ maxH 〈Kγ ,HH>〉

s.t. H ∈ Rn×k, H>H = Ik,

Kp � 0, Kp(sp, sp) = K(oo)
p .

(7)
Noting that compared with SimpleMKKM, we now have to
optimize extra variables {Kp}mp=1 due to the presence of in-
complete kernels. The equality constraint, i.e., Kp(sp, sp) =

K
(oo)
p , ensures that the observed part of the p-th base kernel

matrix will be faithfully maintained during optimization. In
addition, the imputed Kp shall retain its PSD property.

The formulation in Eq. (7) has the following advantages
when compared with MKKM-IK [22]. Firstly, it consider-
ably extends the widely adopted MKA criterion, making it
capable of effectively dealing with incomplete MKC. When
{Kp}mp=1 become available, the proposed Eq. (7) is degen-
erated to Eq. (4). Secondly, it inherits the effective objec-
tive and novel optimization technique from SimpleMKKM,
which is considered to be the most effective MKC algorithm
based on the MKA criterion so far. In addition, our algo-
rithm in Eq. (7) is free of hyper-parameters, which largely
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reduces the parameter-tuning burden of practitioners, mak-
ing them more convenient for practical applications.

3.2 The Proposed Optimization
Although Eq. (7) enables existing MKA to effectively tackle
incomplete MKC, the optimization with respect to incom-
plete kernels, especially the positive semidefinite (PSD) and
equality constraints on each Kp, makes the optimization
more challenging. In the following, we reformulate Eq. (7)
and develop an efficient algorithm to solve it.

Let Φ(o)
p and Φ(u)

p be the observed and unobserved
implicit feature maps corresponding to the p-th kernel, with

K
(oo)
p = Φ(o)

p Φ(o)
p

>
. Since all samples, no matter observed

or unobserved, are subject to the same distribution, we
can assume that the unobserved part Φ(u)

p could be ex-
pressed by a linear transformation of the observed Φ(o)

p ,
i.e., Φ(u)

p = WpΦ
(o)
p . Similar assumption has been widely

adopted in Nyström method for large-scale kernel matrix
approximation [30]. Based on this assumption, each Kp can
be parameterized as

Kp =

(
K

(oo)
p K

(oo)
p Wp

W>
p K

(oo)
p W>

p K
(oo)
p Wp

)
. (8)

In addition, an extra orthogonal constraint W>
p Wp =

I
n
(u)
p

is imposed to ensure that the whole optimization is

bounded, where n(u)
p is the number of unobserved samples

for the p-th kernel.
It is not difficult to verify that the parameterization in

Eq. (8) makes both the PSD and equality constraints auto-
matically satisfied. As a result, the imputation of incomplete
kernels boils down to the learning of {Wp}mp=1. With this
parameterization, Eq. (7) can be equivalently written as

max{Wp}mp=1
minγ∈∆ maxH 〈Kγ,{Wp}mp=1

,HH>〉
s.t. H ∈ Rn×k, H>H = Ik,

W>
p Wp = I

n
(u)
p
,∀p,

(9)

where Kγ,{Wp}mp=1
=
∑m
p=1 γ

2
pKp and Kp is parameterized

in Eq. (8).
Jointly optimizing {Wp}mp=1, γ and H in Eq. (9) is

difficult. Instead, we can solve it in an alternate manner.
That is, solving γ and H with given {Wp}mp=1, and solving
{Wp}mp=1 with given γ and H.

3.2.1 Solving γ and H with given {Wp}mp=1

With {Wp}mp=1 fixed, the missing elements of Kp can be
imputed via Eq. (8). As a result, the formulation in Eq. (9)
w.r.t. γ and H reduces to the one in Eq. (4), which can be
readily solved via SimpleMKKM in Algorithm 3.

3.2.2 Solving {Wp}mp=1 with given γ and H

With γ and H fixed, Eq. (9) w.r.t. {Wp}mp=1 can be equiv-
alently decomposed into m independent sub-problems as
follows,

maxWp
Tr
(
W>

p K(oo)
p WpTuu

)
+ 2Tr

(
W>

p K(oo)
p Tou

)
s.t. W>

p Wp = I
n
(u)
p

,

(10)

where T = HH> =

(
Too Tou

T>ou Tuu

)
, o and u denote the

indices of observed and unobserved samples for the p-th
kernel, respectively. Eq. (10) can be efficiently solved via
reweighed methods [31] in Algorithm 4.

Algorithm 4 Solving Wp with the reweighted method

1: Input: K
(oo)
p ,T and sp.

2: Output: Wp.
3: Initialize W

(1)
p and t = 1.

4: repeat
5: Σ = 2K

(oo)
p (W

(t)
p Tuu + Tou).

6: Update W
(t+1)
p by the optimal solution to

maxW>
p Wp=I

n
(u)
p

Tr(W>
p Σ).

7: t = t+ 1.
8: until ‖W(t−1)

p −W
(t)
p ‖/‖W(t)

p ‖ ≤ 1e−3

In sum, the whole algorithm solving Eq. (9) is outlined
in Algorithm 5. As seen, Algorithm 5 alternately performs
imputation of incomplete kernels and MKA for clustering.
With the given imputation, the proposed algorithm can
benefit from effective objective and advanced optimization
technique, leading to better H and γ. The effective H
in turns produces an imputation better serve for multiple
kernel clustering. These two procedures boost each other
until satisfying the stopping criterion. It usually converges
in less then ten iterations in our experiments, as will be
shown in Figure 6.

Algorithm 5 The Proposed Incomplete Multiple Kernel
Alignment Maximization for Clustering

1: Input: {K(oo)
p }mp=1, {sp}mp=1 and ε0.

2: Output: H, {Kp}mp=1 and γ.
3: Initialize {W(1)

p }mp=1 and t = 1.
4: repeat
5: Update H(t) and γ(t) with fixed {W(t)

p }mp=1 via
Algorithm 3.

6:
7: Update {W(t+1)

p }mp=1 with fixed H(t) and γ(t) via
Algorithm 4.

8: t = t+ 1.
9: until

(
obj(t−1) − obj(t)

)
/obj(t) ≤ ε0

3.3 Discussion and Extension

In this section, we discuss the proposed algorithm from
computational complexity, convergence, initialization on in-
complete base kernel matrix Kp and other parametrization
on Kp.

Computational complexity: As seen from Algorithm 5, the
proposed algorithm at each iteration needs to solve a Sim-
pleMKKM problem, and update {Wp}mp=1. The computa-
tional complexity of SimpleMKKM and updating {Wp}mp=1

are O(Tt ∗ (n3 +m ∗ n3)) and n(o)
p ∗ n(u)

p ∗min{n(o)
p , n

(u)
p },

where Tt is the number of iterations to achieve convergence
with given {Wp}mp=1, n(o)

p and n
(u)
p are the number of

observed and unobserved samples of the p-th base kernel.
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As a result, the whole computational complexity of the
proposed algorithm at the t-th iteration is O(Tt ∗ (n3 +m ∗
n3) + n

(o)
p ∗ n(u)

p ∗ min{n(o)
p , n

(u)
p }). As observed, though

the proposed algorithm does not significantly increase the
computational complexity of existing MKKM algorithms,
improving its efficiency to handle large-scale applications
is worth further exploring.

Convergence: Algorithm 5 adopts a coordinate descent
algorithm to solve the optimization problem in Eq. (7). With
imputed {Kp}mp=1, a clustering partition matrix H is gen-
erated by SimpleMKKM. It is then used for completing the
missing parts of each incomplete base kernel via Algorithm
4. The convergence of this optimization procedure cannot be
theoretically guaranteed. However, we empirically observe
that Algorithm 5 quickly converges after several iterations
in all benchmark datasets, as shown by the experimental
results in Figure 6.

Initialization on Kp and other variants: In our current
implementation, we initialize the missing parts of each base
kernels as zeros. This initialization has well demonstrated
the superiority of the proposed algorithm, as seen from
the following experimental study. It is worth pointing out
that other imputation methods such as mean-value fill-
ing, k-nearest neighborhood filling, EM filling, can also be
taken as the initialization. More importantly, by parame-
terizing Kp as in Eq. (8), the imputation of missing parts
is equivalently reduced to optimize {Wp}mp=1. As seen, a
better parametrization on Kp would produce better im-
putation, leading to improved clustering performance. The
parametrization in our work has sufficiently demonstrated
its superiority, how to incorporate prior knowledge to de-
sign more effective parametrization on Kp is still worth
exploring.

Differences with MKKM-IK [13]: Both work handle incom-
plete MKC by unifying the imputation of incomplete kernels
and clustering task into a single optimization framework.
Nevertheless, they have the following important differences:
1) Optimization criterion. With imputed kernels, MKKM-IK
optimizes the kernel coefficient and clustering matrix via
a joint minimization procedure. Differently, our algorithm
adopts a minimization-maximization procedure to optimize
the kernel coefficient and clustering matrix, respectively. 2)
Optimization methods. MKKM-IK solves the resultant opti-
mization with coordinate descent, while our work applies
the reduced gradient descent optimization. 3) The clustering
performance is different. We empirically compare their cluster-
ing performance, and observe that the proposed algorithm
consistently and significantly outperforms MKKM-IK on all
benchmark datasets, as shown in Figure 1, 2 and Table 2.

4 THE GENERALIZATION ANALYSIS

In this section, we analyze the generalization error bound
of the proposed algorithm by studying how its learned cen-
troids generalizes onto unseen data. Let Ĉ = [Ĉ1, · · · , Ĉk]
be the k centroids, {Kp}mp=1 the imputed kernel and γ̂
the kernel coefficients learned by the proposed algorithm,
where Ĉv = 1

|Ĉv|

∑
j∈Ĉv

φγ̂(xj), 1 ≤ v ≤ k. By defining

Θ = {e1, · · · , ek}, our algorithm should make the error on
unseen samples small as follows,

1− Ex

[
maxy∈Θ〈φγ̂,t(x), Ĉy〉Hk

]
, (11)

where φγ̂,t(x) = [γ̂1t(x
(1))φ>1 (x(1)), · · · , γ̂mt(x(m))φ>m(x)]>

is the learned feature map associated with the kernel
function Kγ̂(·, ·). t = [t(x(1)), · · · , t(x(m))]> denotes
the absence of x, i.e., t(x(p)) = 1 indicates that the p-th
observation of x is observed, otherwise its value is missing.
e1, · · · , ek form the orthogonal bases of Rk.

Intuitively, Eq. (11) says the expected alignment between
test points and their closest centroid should be high. We
show how the proposed algorithm achieves this goal. We
define a function class first:

F =
{
f : x 7→ 1−max

y∈Θ
〈φγ,t(x),Cy〉Hk

∣∣∣γ ∈ ∆,C ∈ Hk,

|Kp(x, x̃)| ≤ b,∀x ∈ X
}
,

(12)
whereHk stands for the multiple kernel Hilbert space. Note
that the orthogonal constraints on Wp makes the elements
of Kp in Eq. (8) bounded. Therefore, we can assume that
each entry of Kp, p ∈ {1, · · · ,m} is no larger than b.

Theorem 1. For any δ > 0, with probability at least 1 − δ, the
following holds for all f ∈ F :

Ex [f(x)] ≤ 1

n

∑n

i=1
f(xi) +

b

n

√
2πGn(γ, t)

+ (1 + b)

√
log 1/δ

2n

, (13)

where Gn(γ, t) = Eβ
[
supγ,t

∑k
v=1

∑n
i=1

∑m
p=1 βivpγ

2
pt(x

(p)
i )
]

and βivp is i.i.d. Gaussian variable with zero mean and unit
standard deviation.

The detailed proof is provided in the supplemental
material due to the page limit. Note that if all kernels
are observed, we have Gn(γ, t) ≤ mk

√
n. In such case,

our algorithm will have generalization bounds of order
O(
√

1/n).
According to Theorem 1, for the learned γ̂ and Ĉ, to

achieve a small Ex[f(x)] in Eq. (13), 1
n

∑n
i=1 f(xi) should

be as small as possible. Assume that γ and C are obtained
by minimizing 1

n

∑n
i=1 f(xi) and that H is orthogonal,

we have 1
n

∑n
i=1 f(xi) ≤ 1 − 1

nTr(KγHH>). This is be-
cause the posed orthogonal constraint H>H = Ik may
make the corresponding centroids non-optimal for minimiz-
ing 1

n

∑n
i=1 f(xi). This implies that 1

n

∑n
i=1 f(xi) is upper

bounded by 1 − 1
nTr(KγHH>). To minimize the upper

bound, we may have to maximize over γ,H and {Kp}mp=1,
leading to max{Kp}mp=1

maxγ maxH Tr(KγHH>). How-
ever, the work in [9] observes that it is intractable to
find a good solution under this criterion, and prone to
over-fitted solutions. Instead, we take one of its lower
bounds, max{Kp}mp=1

minγ maxH Tr(KγHH>) as the crite-
rion, which is exactly the objective of the proposed algo-
rithm in Eq. (7). This considerably justifies the effectiveness
of the proposed algorithm.
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5 EXPERIMENTAL ANALYSIS

5.1 Experimental Settings

We study the clustering performance of the proposed al-
gorithm on several benchmark datasets, including Protein
Fold1, UCI Digit2, Oxford Flower173, Oxford Flower1024,
Caltech1025, SUNRGBDSUN [32], and NUSWIDEOBJ [33].
These datasets have been widely used to evaluate the clus-
tering performance of MKC algorithms and can be publicly
downloaded from the aforementioned websites. The num-
ber of samples, kernels and classes are listed in Table 1.

TABLE 1: Datasets used in our experiments.

Dataset #Samples #Kernels #Classes

Protein Fold 694 12 27
UCI Digit 2000 3 10
Flower17 1360 7 17
Flower102 8189 4 102
Caltech102 1530 25 102
SUNRGBD 10335 2 45
NUSWIDEOBJ 12001 5 30

Along with the proposed algorithm, we run another six
comparable algorithms in recent incomplete MKC literature,
including: MKKM with zero-filling (MKKM+ZF), MKKM
with means-filling (MKKM+MF), MKKM with KNN-filling
(MKKM+KNN), MKKM with alignment-maximization fill-
ing (MKKM+AF), MKKM with incomplete kernels (MKKM-
IK) [10], efficient and effective incomplete multi-view clus-
tering (EE-IMVC) [34], multiple incomplete views cluster-
ing via weighted nonnegative matrix factorization (MIC)
[17] and doubly aligned incomplete multi-view clustering
(DAIMC) [35]. Among these compared algorithms, MKKM-
IK and EE-IMVC are considered to be the state-of-the-art
one in handling incomplete MKC. The implementations of
these compared algorithms can be publicly downloaded. We
run these code and report the results without revision in our
experiment.

For the dataset preprocessing, we centralize and scale
each incomplete base kernel to make κp(xi,xi) = 1 for
all i and p by following the settings of [10], [34]. For each
data set, we assume that the intrinsic number of clusters is
known. Then, we generate incomplete kernels by following
the same settings in [10], [34] and creating missing index
vectors {sp}mp=1. Concretely, to simulate datasets with in-
complete views, round(ε∗n) samples are randomly selected
as samples with incomplete views, where round(·) is a
rounding function and ε is the missing ratio. Different εs
are corresponding to view missing of different extent. For
each selected sample, a random vector v = (v1, · · · , vm) ∈
[0, 1]m and a random scalar v0 (v0 ∈ [0, 1]) are generated
to represent the visibility of each view. The p-th view is
observable for this sample if vp ≥ v0. In the case that all
v1, · · · , vm < v0 and all views are unobservable, a new v
will be generated to ensure that at least one view is available
for a sample. As to the samples without missing views, the

1. http://mkl.ucsd.edu/dataset/protein-fold-prediction
2. http://ss.sysu.edu.cn/py/
3. http://www.robots.ox.ac.uk/˜vgg/data/flowers/17/
4. http://www.robots.ox.ac.uk/˜vgg/data/flowers/102/
5. http://files.is.tue.mpg.de/pgehler/projects/iccv09/

corresponding missing indicating vector is a vector with all
elements to be 1. After generating one v for each sample, we
obtain the index vector sp indicating the visibility of samples
in the p-th view.

We adopt clustering accuracy (ACC), normalized mutual
information (NMI) and purity as the criterion to evaluate the
clustering performance of the aforementioned algorithms.
We firstly give the definitions of ACC, NMI and Purity as
follows. Let Ω = [ω1, · · · ,ωk]> and C = [c1, · · · , cl]>
denote the predicted cluster labels of a clustering algorithm
and the provided ground-truth labels of {xi}ni=1, respec-
tively. The clustering accuracy (ACC) is defined as follows,

ACC(Ω,C) =

∑n
i=1 δ(yi,map(ri))

n
, (14)

where yi and ri denote the provided ground-truth label and
predicted cluster label of xi (1 ≤ i ≤ n), δ(u, v) is the delta
function that equals one if u = v and equals zero otherwise,
and map(ri) is a permutation mapping function that maps
each cluster label ri to the equivalent label from data. The
best mapping can be found by using the Kuhn-Munkres
algorithm [36].

The mutual information between Ω and C, denoted as
MI(Ω,C), is defined as follows:

MI(Ω,C) =
∑

ωj∈Ω, ct∈C
p(ωj , ct) log2

p(ωj , ct)

p(ωj)p(ct)
, (15)

where p(ωj) and p(ct) are the probabilities that a sample
arbitrarily selected from data belongs to the clusters ωj and
ct, respectively, and p(ωj , ct) is the joint probability that the
arbitrarily selected samples belongs to the clusters ωj and
ct at the same time. The normalized mutual information
(NMI) is then defined as follows:

NMI(Ω,C) =
MI(Ω,C)

max (H(Ω),H(C))
, (16)

where H(Ω) and H(C) are the entropies of Ω and C,
respectively.

The purity is calculated as follows. Each cluster is as-
signed to the class which is most frequent in the cluster,
and then the accuracy of this assignment is measured by
counting the number of correctly assigned documents and
dividing by n. Formally,

Purity(Ω,C) =
1

n

∑k

j=1
max
1≤t≤l

|ωj ∩ ct|. (17)

To consider the randomness incurred by the missing
indicating vectors {sq}mq=1, for different missing ratios, the
“incomplete” patterns are randomly generated for 20 times
via the above-mentioned procedure and their statistical
results are reported. In addition, to reduce the affect of
randomness caused by k-means, for each compared algo-
rithm, we repeat the experiment for 50 times with random
initialization and report the best result.

5.2 Robustness Comparison Against Missing Ratios
5.2.1 Results on Protein Fold
The missing ratio ε is an important parameter which could
largely affect the performance of algorithms in comparison.
Intuitively, the larger the value of ε is, the more information
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Fig. 1: The ACC, NMI and purity of different algorithms with the variation of missing ratios on Protein Fold, UCI-Digital,
Flower17 and Flower102 datasets. For each missing ratio, we randomly generate the “incomplete” patterns for 20 times
and report the statistical results.
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Fig. 2: The ACC, NMI and purity of different algorithms with the variation of missing ratios on Caltech102, SUNRGBD and
NUSWIDEOBJ dataset. For each missing ratio, we randomly generate the “incomplete” patterns for 20 times and report
the statistical results.
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Fig. 4: The ACC curve of the proposed algorithm with iterations under different missing ratios on all benchmark dasets.
The curves in terms of NMI and purity are provided in the supplemental material due to the space limit.
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TABLE 2: Aggregated ACC, NMI and purity comparison (mean±std) of different clustering algorithms on all benchmark
datasets. Boldface means no statistical difference from the best one.

Datasets MKKM MKKM-AF MKKM-IK EE-IMVC MIC DAIMC Proposed+ZF +MF +KNN [19] [10] [34] [17] [35]

ACC
Protein Fold 28.1 ± 1.4 29.0 ± 1.4 26.0 ± 1.2 26.8 ± 1.3 21.5 ± 1.0 29.8 ± 1.5 20.9 ± 0.8 29.5 ± 1.6 32.4 ± 1.5
UCI Digital 82.8 ± 0.7 82.6 ± 0.7 84.3 ± 0.4 81.2 ± 0.9 48.0 ± 0.8 79.8 ± 0.3 53.6 ± 1.9 77.5 ± 0.9 87.4 ± 0.1

Flower17 50.5 ± 2.0 50.4 ± 1.9 47.4 ± 1.6 49.0 ± 1.9 44.2 ± 1.9 53.5 ± 1.6 34.7 ± 1.2 53.6 ± 1.6 57.4 ± 1.5
Flower102 29.2 ± 0.7 29.2 ± 0.7 26.2 ± 0.6 29.4 ± 0.7 21.5 ± 0.5 36.4 ± 1.0 18.9 ± 0.5 36.0 ± 1.0 37.4 ± 0.9
Caltech102 33.1 ± 1.0 33.1 ± 1.1 33.8 ± 1.0 32.4 ± 1.0 31.5 ± 1.0 33.8 ± 1.0 31.4 ± 0.6 32.7 ± 1.0 35.3 ± 1.1
SUNRGBD 15.0 ± 0.4 15.0 ± 0.4 15.2 ± 0.4 15.8 ± 0.5 15.9 ± 0.4 15.6 ± 0.4 10.4 ± 0.4 15.2 ± 0.4 16.4 ± 0.5

NUSWIDEOBJ 12.3 ± 0.3 12.3 ± 0.3 12.4 ± 0.2 12.2 ± 0.2 11.8 ± 0.3 13.9 ± 0.3 10.5 ± 0.2 14.3 ± 0.4 13.9 ± 0.4

mean 35.9 35.9 35.1 35.3 27.8 37.5 25.8 37.0 40.0

NMI
Protein Fold 36.3 ± 0.9 37.3 ± 1.0 34.5 ± 0.8 35.2 ± 0.9 30.0 ± 0.8 38.1 ± 1.0 27.8 ± 0.6 38.1 ± 1.0 40.6 ± 0.9
UCI Digital 74.3 ± 0.5 74.1 ± 0.5 75.3 ± 0.3 72.9 ± 0.7 46.8 ± 0.3 69.5 ± 0.3 43.1 ± 1.0 68.9 ± 0.4 77.6 ± 0.2

Flower17 49.3 ± 1.0 49.3 ± 1.0 47.3 ± 1.0 48.0 ± 1.0 42.5 ± 1.1 51.8 ± 0.8 31.7 ± 0.7 52.3 ± 0.8 54.7 ± 0.8
Flower102 46.3 ± 0.4 46.3 ± 0.4 43.8 ± 0.3 46.1 ± 0.4 39.6 ± 0.3 50.7 ± 0.4 32.6 ± 0.3 50.4 ± 0.4 51.8 ± 0.4
Caltech102 58.6 ± 0.6 58.6 ± 0.6 59.1 ± 0.5 58.1 ± 0.5 57.5 ± 0.6 58.8 ± 0.6 56.8 ± 0.4 56.4 ± 0.6 60.0 ± 0.5
SUNRGBD 17.3 ± 0.2 17.3 ± 0.3 17.8 ± 0.3 17.7 ± 0.3 18.0 ± 0.2 18.2 ± 0.2 10.0 ± 0.3 18.1 ± 0.2 18.5 ± 0.3

NUSWIDEOBJ 10.9 ± 0.2 10.9 ± 0.2 11.3 ± 0.2 10.9 ± 0.2 10.7 ± 0.2 11.5 ± 0.2 7.7 ± 0.1 12.5 ± 0.2 12.5 ± 0.2

mean 41.9 42.0 41.3 41.3 35.0 42.7 30.0 42.4 45.1

Purity
Protein Fold 34.4 ± 1.2 35.3 ± 1.2 32.6 ± 1.1 33.3 ± 1.2 27.8 ± 0.9 36.2 ± 1.2 26.4 ± 0.8 36.0 ± 1.3 38.8 ± 1.2
UCI Digital 83.1 ± 0.7 82.9 ± 0.6 84.4 ± 0.4 81.7 ± 0.9 50.7 ± 0.6 79.9 ± 0.3 54.7 ± 1.6 78.1 ± 0.7 87.4 ± 0.1

Flower17 51.9 ± 1.8 51.8 ± 1.7 48.7 ± 1.5 50.5 ± 1.7 45.4 ± 1.7 55.2 ± 1.3 36.1 ± 1.0 55.1 ± 1.3 58.5 ± 1.4
Flower102 34.1 ± 0.7 34.1 ± 0.6 30.9 ± 0.6 34.1 ± 0.6 26.0 ± 0.5 41.7 ± 0.7 22.4 ± 0.5 41.1 ± 0.7 42.6 ± 0.7
Caltech102 35.1 ± 1.0 35.1 ± 1.0 35.8 ± 0.9 34.3 ± 0.9 33.5 ± 0.9 35.7 ± 1.0 32.9 ± 0.6 34.9 ± 0.9 37.3 ± 0.9
SUNRGBD 31.6 ± 0.5 31.6 ± 0.5 32.2 ± 0.5 32.2 ± 0.5 33.2 ± 0.5 33.6 ± 0.5 23.0 ± 0.5 33.0 ± 0.4 34.1 ± 0.5

NUSWIDEOBJ 22.5 ± 0.4 22.5 ± 0.4 23.1 ± 0.3 22.5 ± 0.4 23.4 ± 0.3 23.3 ± 0.3 20.2 ± 0.2 24.0 ± 0.3 24.3 ± 0.4

mean 41.8 41.9 41.1 41.2 34.3 43.6 30.8 43.2 46.1

would be lost and the poorer the clustering performance
could be resulted. To evaluate the robustness against miss-
ing ratios of different algorithms, in the first experiment,
we compare the state-of-the-art algorithms with respect to
different ε. The results variation of the compared algorithms
on Protein Fold dataset when ε varies in the range of
[0.1 : 0.1 : 0.9] are illustrated in Figure 1a.

From the sub-figures, we observe that:

• Our algorithm consistently and significantly
outperforms “two-stage” methods, including
MKKM+ZF, MKKM+MF, MKKM+KNN, and
MKKM+AF. For example, our algorithm
improves these “two-stage” methods by over
4.3%, 3.4%, 6.4%, 5.6%, 10.9%, 2.6%, 11.5%, and
2.9% on Protein Fold in terms of ACC (see Figure
1a). This is not surprising since the separated
imputation may hurt the subsequent MKC, leading
to unsatisfying performance.

• Our algorithm consistently and significantly im-
proves the clustering performance of MKKM-IK,
which is the first work to integrate imputation for
MKC. This is due to the effectiveness of our objective
and optimization technique.

• Our algorithm considerably exceeds EE-IMVC,
which is assumed to be the most effective algorithm
in handling with incomplete MKC. For example,
the ACC of our algorithm is higher than EE-IMVC
by over 1.5% with missing ratio 0.1 (see Figure
1a). Moreover, the improvement is more significant

with the increase of missing ratios. Our algorithm
also demonstrates superior clustering performance
in terms of NMI and purity, as shown in Figure 1a.

5.2.2 Results on UCI Digital
UCI Digital has been widely used as a benchmark to evalu-
ate the clustering performance of multiple kernel clustering
algorithms. We also test the aforementioned algorithms on
this dataset with different missing ratios, and report the
results in Figure 1b. From these sub-figures, we observe
that the newly proposed EE-IMVC significantly improves
the clustering performance of existing MKKM variants,
including the “one-stage” MKKM-IK [10]. However, our
algorithm further considerably improves EE-IMVC in terms
of ACC, NMI and purity under different missing ratios. For
example, the ACC achieved by our algorithm is higher than
that of EE-IMVC by over 8 percentages with missing ratio
0.1. Moreover, this superiority is consistent under different
missing ratios, indicating the effectiveness of our algorithm
in handling incomplete MKC.

5.2.3 Results on Flower17 and Flower102
In this section, we compare the clustering performance
of the above-mentioned algorithms on Flower17 and
Flower102, as plotted in sub-figures 1c and 1d. From these
figures, it is clearly observed that the proposed algorithm
significantly exceeds the second best one, i.e., EE-IMVC,
with different missing ratios. Taking the results in Fig-
ure 1c for example, our algorithm improves EE-IMVC by
2.2%, 2.5%, 3.5%, 3.5%, 4.1%, 5.4%, 3.8%, 5.0% and 4.3%
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Fig. 5: The kernel weights learned by different algorithms on benchmark datasets with missing ratio 0.1. The proposed
algorithm maintains reduced sparsity compared to several competitors. The kernel weights on other missing ratios are
omitted due to space limit.

with different missing ratios in terms of ACC. Also, this
improvement is similar in terms of NMI and purity. In
addition, we can see that the proposed algorithm demon-
strates comparable or slightly better clustering performance
when compared with EE-IMVC on Flower102 with various
missing ratios.

5.2.4 Results on Caltech102
We measure the clustering performance of the proposed
algorithm on Caltech102, which is usually taken as a bench-
mark in the literature of multiple kernel clustering. The
results are plotted in sub-figure 2a. It is observed from these

sub-figures that the proposed algorithm consistently and
significantly outperforms the compared one under different
missing ratios, indicating its effectiveness.

5.2.5 Results on SUNRGBD and NUSWIDEOBJ

Finally, we evaluate the clustering performance of the pro-
posed algorithm on two larger benchmark datasets, i.e.,
SUNRGBD [32] and NUSWIDEOBJ [33], and report the
results in sub-figure 2b and 2c. As observed, the proposed
algorithm demonstrates overall better or comparable clus-
tering performance with the variation of missing ratios.
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Fig. 6: The objective value of the proposed algorithm with iterations on all benchmark datasets.

5.2.6 Overall Effectiveness Evaluation
To illustrate the overall effectiveness of the compared al-
gorithms against different missing ratios, we use the ag-
gregated ACC, NMI and purity to evaluate the goodness
of the algorithms. For example, the aggregated ACC is
obtained by averaging the averaged ACC achieved by an
algorithm over different εs. In addition, we adopt the paired
Student’s t-test to conduct a rigorous comparison, where a p-
value smaller than 0.05 is considered statistically significant.
The aggregated ACC, NMI and purity, and the standard
deviation are reported in Table 2, where the one with the
highest performance is shown in bold. Again, we observe
that the proposed algorithm significantly outperforms the
compared ones, which is consistent with our observations
in Figure 1 and 2.

From the above experimental results, we attribute the
superiority of our algorithm to: i) its effective objective and
optimization, and ii) unifying imputation and clustering
into a single procedure. On one hand, the effective objective
and optimization contribute to learning of H, which is in
turn to guide the imputation of incomplete kernels. On the
other hand, this meaningful imputation is able to better
serve the MKC. These two learning processes negotiate with
each other, leading to improved clustering performance.
Differently, ZF+MKKM, MF+MKKM, KNN+MKKM and
MKKM-AF algorithms do not considerably explore the con-
nection between the imputation and clustering procedures.
This could produce imputation that does not well serve the
subsequent clustering as originally expected, affecting the
clustering performance.

5.3 Evolution of the Learned H

To investigate the clustering performance of the proposed
algorithm with iterations, we take H at each iteration to
calculate ACC, NMI and purity, and report them in Figure
4. We observe from each sub-figure that the starting point
is consistently lower than the ending point. Taking the
result in sub-figure 4c for example. The ACC at the first

iteration is only 0.31. However, this value increases over
0.35 after several iterations. Moreover, the improvement is
more significant with the increase of missing ratio. This
clearly indicates the effectiveness and necessarity of joint
imputation for MKC, especially in the presence of higher
missing ratios. The figures in terms of NMI and purity are
provided in the supplemental material due to space limit.

5.4 Kernel Weight Analysis
We next investigate the kernel weights learned by the
compared algorithms. The results are plotted in Figure 5.
We can see that the kernel weights learned by MKKM are
extremely sparse on some datasets such as UCI-Digital,
which is caused by the alternate optimization. This spar-
sity insufficiently exploits the multiple kernel matrices and
explains the weak performance of MKKM. For example,
the clustering accuracy of MKKM-IK on UCI-Digital is only
49.1% with missing ratio 0.1. However, despite the `1-norm
constraint on γ, the kernel weights learned by our algorithm
are all non-sparse on all datasets, which contributes to its
superior clustering performance. This non-sparsity of the
learned kernel weights is attributed to our new reduced
gradient descent algorithm, which in turn is derived based
on our new max-min-max kernel alignment objective.

5.5 Convergence
Though the convergence of the proposed algorithm cannot
be theoretically guaranteed, we empirically observe that
the objective value of our algorithm does monotonically
increase with iterations, as shown in Figure 6. It usually
converges in less than ten iterations on all datasets.

5.6 Running Time Comparison
Finally, we record the execution time of the aforementioned
algorithms on all datasets, as reported in Figure 3. As
observed, we can see that besides considerably improving
the clustering performance, the proposed algorithm does
not significantly increase the running time.
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6 CONCLUSION

This paper proposes the incomplete multiple kernel align-
ment maximization for clustering to address incomplete
MKC, where the kernel imputation and clustering are seam-
lessly integrated to achieve better clustering. The proposed
algorithm effectively solves the resultant optimization prob-
lem, and it demonstrates significantly improved clustering
performance via extensive experimental study. A general-
ization error bound is analyzed for the proposed algorithm.
Many work is worth further exploration. For example, we
plan to design a novel tri-level optimization framework to
solve Eq. (9) more efficiently. In addition, we are going to
further improve the clustering performance by considering
the nonlinear transformation in Eq. (8).
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