
SUBMITTED TO IEEE TPAMI, 2022 1

SimpleMKKM: Simple Multiple Kernel K-means
Xinwang Liu, Senior Member, IEEE

Abstract—We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means
(SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an
intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix. To optimize it, we equivalently
rewrite the minimization-maximization formulation as a minimization of an optimal value function, prove its differenentiablity, and design
a reduced gradient descent algorithm to decrease it. Furthermore, we prove that the resultant solution of SimpleMKKM is the global
optimum. We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error. After that, we
develop extensive experiments to investigate the proposed SimpleMKKM from the perspectives of clustering accuracy, advantage on
the formulation and optimization, variation of the learned consensus clustering matrix with iterations, clustering performance with
varied number of samples and base kernels, analysis of the learned kernel weight, the running time and the global convergence. The
experimental study demonstrates the effectiveness of the proposed SimpleMKKM by considerably and consistently outperforming state
of the art multiple kernel clustering alternatives. In addition, the ablation study shows that the improved clustering performance is
contributed by both the novel formulation and new optimization. Our work provides a more effective approach to integrate multi-view
data for clustering, and this could trigger novel research on multiple kernel clustering. The source code and data for SimpleMKKM are
available at https://github.com/xinwangliu/SimpleMKKMcodes/.

Index Terms—multi-view clustering, multiple kernel clustering, kernel alignment maximization

F

1 INTRODUCTION

IN multiple kernel clustering (MKC) [1], one aims to
optimally fuse a set of pre-calculated base kernel matrices

to achieve better clustering performance. These kernel ma-
trices could encode heterogeneous sources or views of the
data [2], [3], [4]. One popular method, multiple kernel k-
means (MKKM) [5], has been studied intensively and used
in various applications [2], [6], [7], [8], [9], [10], [11]. The ap-
proach is attractive also from a theoretical perspective, as it
unifies the search of the optimal base kernel coefficient and
clustering partition matrix into a single objective function,
which is usually solved by a two-step alternate optimization
on the coefficient and clustering partition matrix.

Several variants of MKKM have been developed to
further improve the clustering performance [2], [6], [12],
[13], [14]. Notably, [6] substantially increases the expressive-
ness of MKKM by allowing for a locally adaptive kernel
mixtures, which can better capture sample-specific charac-
teristics of data. [12] proposes an extension that optimizes
a localized kernel alignment criterion. It aligns the local
density of the samples given by the k-nearest neighbours
with an ideal similarity matrix. This alignment helps to keep
neighbouring sample pairs together, which avoids unreli-
able similarity evaluation. Observing that existing MKKM
algorithms do not sufficiently take the correlation among
these kernels into consideration, [13] employs a matrix
regularization to reduce the redundancy and enhance the
diversity of the selected kernels. Most of existing MKKM
algorithms assume that the optimal kernel is a linear com-
bination of a group of base kernels. This assumption is

• X. Liu is with College of Computer, National University of Defense Tech-
nology, Changsha, 410073, China (E-mail: xinwangliu@nudt.edu.cn).

Manuscript received February 19, 2022.

challenged in [14], where an optimal neighborhood kernel
clustering (ONKC) algorithm is introduced to boost the
representability of the optimal kernel and strengthen the
negotiation between clustering and the learning of kernel
weights. More recently, MKKM algorithms have been ex-
tended to handle missing views [15]. By assuming that an
optimal kernel is a linear combination of base kernel matri-
ces, the work in [16] develops a minimization-maximization
criterion that aims to be robust to adversarial perturbation.
More recently, many works have been devoted to extending
existing MKKM to handle multiple kernel clustering with
incomplete kernels [15], [17], [18], [19], [20]. All these vari-
ants potentially improve standard MKKM from different
aspects and achieve promising clustering performance in
various applications.

The objective functions of the mentioned methods differ,
but they all share one commonality: they jointly learn the
kernel coefficient and clustering partition matrix. By this
way, the learned kernel coefficient can best serve the clus-
tering, with aim to achieve superior clustering performance.
However, simultaneously solving for the kernel coefficient
and clustering partition is usually intractable. One com-
monly adopted remedy is to decouple the optimization of
the kernel coefficient and clustering partition through a
block coordinate descent algorithm, which optimizes the
two alternately. This means, one block of variables is min-
imized while the other is kept fixed. However, such alter-
nate optimization algorithms can get trapped into a local
optimum of the objective function. As a remedy, [12], [13]
propose regularization strategies to avoid getting trapped
into a local minimum. The incorporation of these regular-
ization terms comes at a price: the approach has additional
hyper-parameters, which are difficult to select, given the
unsupervised nature of clustering tasks.

In this paper, we propose a novel formulation for

https://github.com/xinwangliu/SimpleMKKMcodes/

SUBMITTED TO IEEE TPAMI, 2022 2

multiple kernel clustering, termed Simple MKKM (Sim-
pleMKKM), to address the aforementioned shortcomings.
Unlike previous approaches, SimpleMKKM optimizes the
unsupervised kernel alignment criterion directly. Specifi-
cally, it minimizes the kernel alignment with respect to
the kernel coefficient and maximizes it with respect to the
clustering matrix. By this way, SimpleMKKM is expected to
learn a good clustering matrix for clustering even under a
bad kernel coefficient, leading to stable and superior cluster-
ing performance. However, this minimization-maximization
optimization problem cannot be readily solved using ex-
isting alternate optimization frameworks since its objec-
tive value cannot be guaranteed to monotonically decrease
anymore. To address this issue, we firstly reformulate the
min-max formulation as a minimization problem, whose
objective relies on the known optimal solution to kernel
k-means. We then prove the differentiability of the op-
timal value function and calculate its reduced gradient.
This leads to a solution using a reduced gradient descent
algorithm, without alternate optimization. Moreover, we
theoretically prove that the resultant solution of SimpleMKKM
is the global optimum. We further show a generalization error
bound for our approach, thus theoretically guaranteeing
its clustering performance. After that, we conduct compre-
hensive experiments on eleven benchmark datasets, where
we compare SimpleMKKM with ten baseline methods in
terms of four common evaluation criteria. It is observed
that SimpleMKKM consistently outperforms its competi-
tors. Moreover, we conduct extra experimental study from
the following aspects: advantage on the formulation and
optimization, variation of the learned consensus clustering
matrix with iterations, clustering performance with varied
number of samples and base kernels, analysis of the learned
kernel weight, running time and global convergence.

The main contributions of this work are summarized as
follows:

• We, for the first time, propose a novel minimization-
maximization formulation to optimize the exten-
sively used criterion for kernel alignment. We then
reformulate our formulation as a minimization of
an optimal value function w.r.t. the kernel weights.
Further, we prove the differentiability of the resultant
minimization, and develop a reduced gradient de-
scent to decease it. Moreover, we theoretically show
that the obtained solution is the global optimum. As
far as we know, our SimpleMKKM is the first algorithm
with global optimum in multiple kernel clustering litera-
ture.

• We theoretically analyze the performance of Sim-
pleMKKM in terms of its clustering generalization
error on test data.

• Extensive experimental results on various bench-
marks have demonstrated the superiority and effec-
tiveness of the proposed SimpleMKKM. As shown
by the ablation study, both our novel formulation
and new optimization attribute to enhanced cluster-
ing performance.

Additionally, the proposed SimpleMKKM is parameter-free,
making it readily applicable in practice. More importantly,

SimpleMKKM can be taken as a strong baseline to trigger
new research on multiple kernel clustering.

This section is ended up by clarifying the relationship
between SimpleMKKM and one piece of our newly pub-
lished work [20]. In [20], a local kernel alignment criterion
which could better capture the variation among samples is
proposed. It is also shown that SimpleMKKM is a special
case of [20]. Though the newly proposed variant demon-
strates improved clustering clustering performance in some
applications, it is clearly that both of its formulation and opti-
mization are inherited from SimpleMKKM. Moreover, different
from SimpleMKKM which is free of hyper-parameters, the
local variant has an extra hyper-parameter which controls
the size of neighborhood for each sample to be pre-specified.
However, selecting suitable hyper-parameters for a given
clustering task itself is a puzzle due to the absence of ground
truth during the learning course. In addition, SimpleMKKM
is also extended to handle multiple kernel clustering with
incomplete kernels [21].

2 RELATED WORK

In this section, we briefly review the most related, includ-
ing multiple kernel k-means (MKKM) and robust MKKM
clustering using min-max optimization [16].

2.1 MKKM
In MKKM, an optimal kernel matrix Kγ is parameterized
by Kγ =

∑m
p=1 γ

2
pKp, where {Kp}mp=1 is a group of pre-

calculated kernel matrices, and γp donoted the weights of
the p-th base kernel. MKKM simultaneously learns γ and
a clustering partition matrix H by optimizing the following
formulation,

minγ∈∆ minH∈Γ Tr
(
Kγ(I−HH>)

)
, (1)

where ∆ = {γ ∈ Rm|
∑m
p=1 γp = 1, γp ≥ 0, ∀p} and Γ =

{H ∈ Rn×k|H>H = Ik}.
Existing algorithms usually solve Eq. (1) by alternatively

optimizing H and γ: (i) Optimizing H given γ. For a
specific kernel coefficient γ, the optimization in Eq. (1) w.r.t
H is equivalent to the following Eq. (2),

maxH∈Γ Tr
(
H>KγH

)
. (2)

Eq. (2) is a classical kernel k-means that can be readily opti-
mized by off-the-shelf packages. (ii) Optimizing γ given H.
For a specific H, the optimization in Eq. (1) w.r.t γ reduces
to the following Eq. (3),

minγ∈∆

∑m

p=1
γ2
pTr

(
Kp(In −HH>)

)
, (3)

which can be analytically obtained.
Algorithm 1 presents the detailed MKKM optimization

procedure, where H and γ are alternately optimized until
convergence.

As mentioned in [2], [6], performing a convex combi-
nation of kernels

∑m
p=1 γpKp to replace

∑m
p=1 γ

2
pKp is not

a viable option, because this could make only one single
kernel activated and all the others assigned with zero,
as seen from Eq. (3). Other recent works using `2-norm
combinations can be found in [15], [22], [23].

SUBMITTED TO IEEE TPAMI, 2022 3

Algorithm 1 MKKM

1: Input: {Kp}mp=1, k, t = 1.
2: Initialize γ(1) = 1/m and flag = 1.
3: while flag do
4: compute H(t) in Eq. (2) with Kγ(t) =∑m

p=1

(
γ

(t)
p

)2
Kp.

5: update γ(t+1) in Eq. (3) with H(t).
6: if max |γ(t+1) − γ(t)| ≤ e−4 then
7: flag = 0.
8: end if
9: t← t+ 1.

10: end while

2.2 Robust MKKM Using Min-Max Optimization

Recently, [16] proposed a MKKM clustering method with
the aim to be robust against adversarial perturbation. To
achieve this goal, the authors use a minH-maxγ formulation
that combines views so as to achieve high within-cluster
variance in the combined space Wγ and then updates clus-
ters by minimizing such variance. Its optimization problem
is,

minH∈Γ maxγ∈Θ Tr
(
Wγ(I−HH>)

)
(4)

where Θ = {γ ∈ Rm|
∑m
p=1 γ

2
p ≤ 1, γp ≥ 0, ∀p} and Wγ =∑m

p=1 γpKp.
Similar to MKKM, the problem in Eq. (4) is solved

by following the same alternate optimization framework:
optimizing one variable with the other fixed. Specifically,
with γ fixed, Eq. (4) w.r.t. H reduces to a classical kernel
k-means with Wγ(t) =

∑m
p=1 γ

(t)
p Kp. With the fixed H, Eq.

(4) w.r.t. γ is equivalent to Eq. (5),

maxγ∈Θ

∑m

p=1
γpTr

(
Kp(In −HH>)

)
, (5)

which has an analytical solution.
We present the whole optimization procedure in solving

Eq. (4) in Algorithm 2. As done in MKKM, H and γ are
also alternately optimized until stopping condition being
satisfied.

Algorithm 2 MKKM-MM

1: Input: {Kp}mp=1, k, t = 1.
2: Initialize γ(1) = 1/m and flag = 1.
3: while flag do
4: compute H(t) in Eq. (2) with Wγ(t) =

∑m
p=1 γ

(t)
p Kp.

5: update γ(t+1) in Eq. (5) with H(t).
6: if max |γ(t+1) − γ(t)| ≤ e−4 then
7: flag = 0.
8: end if
9: t← t+ 1.

10: end while

Note that in contrast to Eq. (1), the above approach
adopts an `2-norm constraint on the kernel weights to
avoid sparse solutions. It is observed that using an `2-norm
constraint can obtain a non-sparse kernel coefficient, which
is helpful to better utilize the complementary information in
the data [16].

Although the objective functions of MKKM and its vari-
ants may vary, they share a common alternate optimiza-
tion routine. The aforementioned alternate framework could
cause the optimization w.r.t. γ to produce high redundant
or overly sparse solutions [13]. This in turn would make the
multiple kernel matrices less utilized, and adversely affects
the clustering performance. A direct remedy is to incor-
porate some regularization on γ to help its optimization
[12], [13]. However, the incorporation of regularization may
introduce extra hyper-parameters. How to determine those
in unsupervised learning tasks such as clustering is difficult.
In the following, we introduce our SimpleMKKM objective,
and design a novel optimization procedure for it that avoids
these issues.

3 SIMPLEMKKM: SIMPLE MKKM
In this section, we first give the proposed SimpleMKKM
kernel alignment-based objective. We then reformulate it as
the minimization of an optimal value function, and prove
its differentiability. After that, we develop a reduced gradi-
ent descent algorithm to solve it efficiently and effectively.
Further, we discuss its computational complexity, and prove
the global optimum of our SimpleMKKM.

3.1 SimpleMKKM Formulation

Kernel alignment criterion has been widely used for kernel
tuning in supervised learning due to its simplicity and effec-
tiveness [24], [25]. Our new formulation is based on unsu-
pervised multiple kernel alignment criterion, inspired by ex-
isting supervised kernel learning. One can optimize this cri-
terion by maximizing over both γ and H. Though theoreti-
cally elegant, we empirically observe that such maxγ maxH

formulation does not achieve promising clustering perfor-
mance, which is different from supervised kernel learning.
We conjecture that is caused by the over-fitted optimization
between γ and H. On the other hand, from the optimiza-
tion perspective of MKKM in Eq. (1), Tr

(
Kγ(I−HH>)

)
should be minimized. This objective can be decomposed
into two terms, Tr (Kγ) and −Tr

(
KγHH>

)
. The first term

can be regarded as regularization on γ, which should be
minimized w.r.t. γ. The other one is the opposite of kernel
alignment, which should be maximized w.r.t. H. By taking
both regularization and partitioning into account, our Sim-
pleMKKM proposes to minimize the kernel alignment w.r.t.
γ and maximize this criterion w.r.t. H as:

minγ∈∆ maxH∈Γ Tr
(
KγHH>

)
, (6)

where ∆ = {γ ∈ Rm|
∑m
p=1 γp = 1, γp ≥ 0, ∀p}, Γ = {H ∈

Rn×k|H>H = Ik} and Kγ =
∑m
p=1 γ

2
pKp.

Though simple, the SimpleMKKM formulation in Eq.
(6) has the following merits: (1) It is the first MKKM
objective that, strictly coincides with the kernel alignment
criterion via Tr

(
KγHH>

)
to tune kernel weights. In con-

trast, MKKM and its all variants adopt Tr
(
Kγ(I−HH>)

)
as the criterion by extending the objective of classic kernel
k-means to multiple kernels. It is worth noting that the
kernel alignment criterion is more general and can be used
for any kernel tuning tasks. As a result, it can be used for

SUBMITTED TO IEEE TPAMI, 2022 4

multiple kernel clustering. (2) According to [16], regularisa-
tion by min-max optimization of γ and H generates more
robust clusters by avoiding overfitting to noisy views or
datapoints. (3) As we shall see next, while our formulation
looks intractible, it actually leads to a more efficient and
effective optimization algorithm than the standard alternate
strategies used for MKKM. Furthermore, unlike alternatives
[12], [13] relying on regularization by penalizing γ, Sim-
pleMKKM introduces no additional parameter beyond the
number of clusters to form.

Our new formulation in Eq. (6) cannot be readily solved
by the widely adopted alternate optimization strategy, as
done in MKKM and its variants since its objective value
cannot be guaranteed to monotonically decrease. In the
following, we design an efficient and effective reduced
gradient descent algorithm. Firstly, we equivalently rewrite
the optimization in Eq. (6) as,

minγ∈∆ J (γ), (7)

with
J (γ) =

{
maxH∈Γ Tr

(
KγHH>

)}
. (8)

By this means, we transform the min-max optimization
procedure to a minimization one, where the corresponding
objective is an optimal value function dependent on kernel
k-means. In the following, we first prove the differentiability
of J (γ) w.r.t. γ, and apply the reduced gradient descent
algorithm to decrease Eq. (7).

3.2 The Differentiability and Calculation of Gradient

In literature, several works discuss the existence and com-
putation of derivatives of optimal value functions J (γ) [26],
[27], [28]. The most appropriate reference for our case is
Theorem 4.1 in [26], which has already been utilized to tune
the hyper-parameters of SVM [27] and optimize the kernel
weights in multiple kernel learning [28]. The following
Theorem 1 shows that J (γ) in Eq. (7) is differentiable.

Theorem 1. J (γ) in Eq. (7) is differentiable. Fur-
ther, ∂J (γ)

∂γp
= 2γpTr

(
KpH

∗H∗>
)

, where H∗ ={
arg maxH∈Γ Tr

(
KγHH>

)}
.

Proof. For any given γ ∈ ∆, the global maximum H̃∗ of
the optimization problem maxH∈Γ Tr

(
KγHH>

)
satisfies

H̃∗ ∈ {H̃∗|H̃∗ = H∗U, UU> = U>U = Ik}. Though the
global maximum is not unique, H̃∗H̃∗> is unique. Accord-
ing to Theorem 4.1 in [26], J (γ) in Eq. (7) is differentiable,
and ∂J (γ)

∂γp
= 2γpTr(KpH̃

∗H̃∗>) = 2γpTr(KpH
∗H∗>).

3.3 The Calculation of Reduced Gradient and Optimiza-
tion Algorithm

We propose to solve the optimization in Eq. (7) with reduced
gradient descent algorithms. To do so, we firstly calculate
the gradient of J (γ) according to Theorem 1, and then
update γ with a descent direction by which the equality
and non-negativity constraints on γ can be guaranteed.

To fulfill this goal, we firstly handle the equality con-
straint by computing the reduced gradient by following [28].
Let γu be a non-zero component of γ and5J (γ) denote the

Algorithm 3 SimpleMKKM

1: Input: {Kp}mp=1, k, t = 1.
2: Initialize γ(1) = 1/m and set flag = 1.
3: while flag do
4: calculate H by solving a kernel k-means with

Kγ(t) =
∑m
p=1

(
γ

(t)
p

)2
Kp.

5: compute ∂J (γ)
∂γp

(p = 1, · · · ,m) and the descent di-
rection d(t) in Eq. (11).

6: update γ(t+1) ← γ(t) + αd(t).
7: if max |γ(t+1) − γ(t)| ≤ e−4 then
8: flag=0.
9: end if

10: t← t+ 1.
11: end while

reduced gradient of J (γ), of which the p-th (1 ≤ p ≤ m)
element is

[5J (γ)]p =
∂J (γ)

∂γp
− ∂J (γ)

∂γu
∀ p 6= u, (9)

and

[5J (γ)]u =
∑m

p=1,p6=u

(
∂J (γ)

∂γu
− ∂J (γ)

∂γp

)
. (10)

According to the literature [28], u is selected to be the index
of the largest component of vector γ that is considered to
provide better numerical stability.

Next, the positivity constraints on γ are taken into
consideration in the descent direction. Since our goal is to
minimize J (γ), it is worth noting that − 5 J (γ) refers to
a descent direction. Nevertheless, if we directly adopt this
direction for optimization, the positivity constraints may not
hold when there exists an index p satisfying γp = 0 and
[5J (γ)]p > 0. In this circumstance, the descent direction
for that component should be set to 0, which could update
γ along with the descent direction

dp =


0 if γp = 0 and [5J (γ)]p > 0

− [5J (γ)]p if γp > 0 and p 6= u

− [5J (γ)]u if p = u.

. (11)

According to Eq. (11), we can obtain a descent direction
d = [d1, · · · , dm]>, hence γ can be computed via the
parameter updating strategy γ ← γ+αd. Here we denote α
as the optimal step length, which can be chosen via a linear
search mechanism, e.g., Armijo’s rule. Algorithm 3 presents
the detailed optimization procedure of our proposed Sim-
pleMKKM.

3.4 The Global Convergence
We analyze the convergence of SimpleMKKM in Algorithm
3. Note that Eq. (8) is a traditional kernel k-means that has
the global optimal solution. Under this circumstance, the
gradient computation in Theorem 1 is accurate, and our
SimpleMKKM conducts the reduced gradient descent on a
continuously differentiable function J (γ), which is defined
on the simplex {γ ∈ Rm|

∑m
p=1 γp = 1, γp ≥ 0, ∀p}. It

does converge to the minimum of J (γ) [28]. Furthermore,
Theorem 2 illustrates that J (γ) in Eq. (7) is a convex
function of γ.

SUBMITTED TO IEEE TPAMI, 2022 5

Theorem 2. J (γ) in Eq. (7) is convex w.r.t. γ.

Proof. For any γ1, γ2 ∈ ∆ and 0 < α < 1, we have

J (αγ1 + (1− α)γ2)

= maxH∈Γ Tr
(
Kαγ1+(1−α)γ2

HH>
)

= maxH∈Γ Tr
(∑m

p=1
(αγ1p + (1− α)γ2p)

2
KpHH>

)
≤ maxH∈Γ Tr

(∑m

p=1

(
αγ2

1p + (1− α)γ2
2p

)
KpHH>

)
≤ αmaxH∈Γ Tr

(∑m

p=1
γ2

1pKpHH>
)

+ (1− α) maxH∈Γ Tr
(∑m

p=1
γ2

2pKpHH>
)

= αJ (γ1) + (1− α)J (γ2)
(12)

According to Theorem 2, the solution obtained by Sim-
pleMKKM in Algorithm 3 is the global optimum. This
implies that our SimpleMKKM is independent of any ini-
tialization, as verified by the results in Figure 6. As far as we
know, our SimpleMKKM is the first algorithm with theoretically
global optimum in multiple kernel clustering literature.

3.5 Discussion

We discuss the computational complexity of SimpleMKKM.
From Algorithm 3, at each iteration, SimpleMKKM needs to
solve a kernel k-means problem, calculate the reduced gra-
dient, and search optimal step size. Therefore, its computa-
tional complexity at each iteration isO(n3+m∗n2+m∗n0),
where n0 is the maximal number of operations required to
find the optimal step size. As observed, SimpleMKKM does
not significantly increase the computational complexity of
existing MKKM algorithms, as also validated by the experi-
mental results in Figure 7.

We conclude this section by discussing the differences
with MKKM-MM [16]. Though both works share a min-max
(max-min) framework, their differences can be summarized
from the following three aspects: (1) The objectives are
different. SimpleMKKM adopts the unsupervised kernel
alignment criterion while MKKM-MM inherits the objective
of MKKM, which can be clearly seen from Eq. (4) and Eq. (6).
Further, MKKM-MM applies the `2-norm constraints on γ
to avoid sparse solutions. However, although using the `1-
norm constraint, our SimpleMKKM still obtains non-sparse
solution, as shown by the results in Figure 5. (2) More
importantly, the optimization strategies are totally different.
MKKM-MM follows the widely used alternate optimization
paradigm to solve Eq. (4). In contrast, we, for the first time,
reformulate the SimpleMKKM as a minimization problem,
and develop a reduced gradient descent algorithm to ef-
ficiently solve it. More importantly, the resultant solution
is guaranteed to be the global optimum. (3) The cluster-
ing performance is different. We empirically compare their
clustering performance, and observe that SimpleMKKM
consistently and significantly outperforms MKKM-MM on
all 11 benchmark datasets, as shown in Table 2.

4 THE GENERALIZATION ANALYSIS

Generalization error for k-means clustering has been stud-
ied by fixing the centroids obtained in the training process
and computing their generalization to test data [29], [30].
In this section, we study how the centroids obtained by
the proposed SimpleMKKM generalize onto test data by
deriving its generalization bound.

We now define the error of SimpleMKKM. Let Ĉ =
[Ĉ1, · · · , Ĉk] be the learned matrix composed of the k
centroids and γ̂ the learned kernel weights by the proposed
SimpleMKKM, where Ĉv = 1

|Ĉv|

∑
j∈Ĉv

φγ̂(xj), 1 ≤ c ≤ k.
By defining Θ = {e1, · · · , ek}, effective SimpleMKKM clus-
tering should make the following error small

1− Ex

[
maxy∈Θ〈φγ̂(x), Ĉy〉Hk

]
, (13)

where φγ̂(x) = [γ̂1φ
>
1 (x), · · · , γ̂mφ>m(x)]> is the resultant

feature map related to the kernel function Kγ̂(·, ·) and
e1, · · · , ek are formulated as the orthogonal bases of Rk.
Commonly, it is expected that the test points can achieve
strong alignment with the closest clustering center. In the
following, we illustrate the mechanism to reach the goal of
our developed SimpleMKKM.

Firstly, we formulate a function class:

F =
{
f : x 7→ 1−maxy∈Θ〈φγ(x),Cy〉Hk

∣∣∣γ>1m = 1,

γp ≥ 0,C ∈ Hk, |Kp(x, x̃)| ≤ b, ∀p,∀x ∈ X
}
,

(14)
where Hk indicates the multiple kernel Hilbert space.

Theorem 3. For any δ > 0, Eq. (15) holds with probablity not
less than 1− δ for all f ∈ F :

E [f(x)] ≤ 1

n

∑n

i=1
f(xi) +

√
π/2bk√
n

+ (1 + b)

√
log 1/δ

2n
.

(15)

The detailed proof is provided in the appendix due to
conciseness and readability.

According to Theorem 3, for any learned γ̂ and Ĉ, to
achieve a small

Ex[f(x)] = 1− Ex

[
maxy∈Θ

〈
φγ̂(x), Ĉy

〉
Hk

]
, (16)

the corresponding 1
n

∑n
i=1 f(xi) needs to be as small as

possible. Assume that γ and C are obtained by minimizing
1
n

∑n
i f(xi) and that H is constrained to be orthogonal, we

have
1

n

∑n

i=1
f(xi) ≤ 1− 1

n
Tr(KγHH>), (17)

because the proposed algorithm poses a constraint H>H =
Ik which will make the corresponding centroids non-
optimal for minimizing 1

n

∑n
i=1 f(xi). This means that

1 − 1
nTr(KγHH>) is an upper bound of 1

n

∑n
i=1 f(xi). To

minimize the upper bound, we may have to maximize over
γ and H, leading to maxγ maxH Tr(KγHH>). However, it
is intractable to find a good solution to γ and H under this
criterion, and it is prone to over-fitted solutions [16]. Instead,
we take one of its lower bounds, minγ maxH Tr(KγHH>)
as the the objective of SimpleMKKM in Eq. (6). This analysis
verifies the good generalization ability of the proposed
SimpleMKKM.

SUBMITTED TO IEEE TPAMI, 2022 6

TABLE 1: Specification of our 11 benchmark datasets.

Dataset Number of
Samples Kernels Clusters

Flo17 1360 7 17
Flo102 8189 4 102
PFold 694 12 27
CCV 6773 3 20
Digit 2000 3 10
Cal-5 510 48 102
Cal-10 1020 48 102
Cal-15 1530 48 102
Cal-20 2040 48 102
Cal-25 2550 48 102
Cal-30 3060 48 102

5 EXPERIMENTAL RESULTS

In this section, we conduct a comprehensive experimental
study to evaluate the proposed SimpleMKKM in terms
of clustering performance, the learned kernel weights, the
running time, and convergence.

5.1 Experimental Settings

A number of standard MKKM benchmark datasets are
adopted to evaluate SimpleMKKM, including Flo171,
Flo1022, PFold3, CCV4, Digit5, Cal6. Meanwhile, six sub-
datasets, i.e. Cal-5, Cal-10, Cal-15, Cal-20, Cal-25 and Cal-30,
are constructed via selecting the first 5, 10, 15, 20, 25 and
30 samples from each class respectively from the Caltech102
data. Their details are shown in Table 1. It can be observed
that the number of samples, kernels and categories of these
datasets shows considerable variation.

For all data sets, the number of clusters k is assumed
known and is set as the true number of classes. We adopt
four widely used clustering metrics to evaluate all compared
algorithms, including Accuracy (ACC), Normalized Mutual
Information (NMI), Purity, and Rand Index. To reduce the
negative affect of randomness caused by k-means, we repeat
all methods 50 times and show the average performance
with standard deviation.

We next thoroughly study SimpleMKKM in terms of:
clustering performance, ablation study on the formulation
and optimization, evolution of the learned H, clustering
with number of samples, clustering with number of base
kernels, the learned kernel weights, running time and algo-
rithm convergence. Along with SimpleMKKM, we ran an-
other ten comparative algorithms in recent MKC literature,
including

• Average kernel k-means (Avg-KKM). The consen-
sus kernel is the uniformly combined base kernels,
which is taken as the input of kernel k-means.

• Multiple kernel k-means (MKKM) [5]. The base ker-
nels are linearly combined into the consensus kernel.
In addition, the combination weights are optimized
along with clustering.

1. www.robots.ox.ac.uk/∼vgg/data/flowers/17/
2. www.robots.ox.ac.uk/∼vgg/data/flowers/102/
3. mkl.ucsd.edu/dataset/protein-fold-prediction
4. www.ee.columbia.edu/ln/dvmm/CCV/
5. http://ss.sysu.edu.cn/py/
6. www.vision.caltech.edu/Image Datasets/Caltech101/

• Localized multiple kernel k-means (LMKKM) [6].
The base kernels are combined with sample-adaptive
weights.

• Optimal neighborhood kernel clustering (ONKC)
[31]. The consensus kernel is chosen from the neigh-
bor of linearly combined base kernels.

• Multiple kernel k-means with matrix-induced reg-
ularization (MKKM-MiR) [13]. The optimal combi-
nation weights are learned by introducing a matrix-
induced regularization term to reduce the redun-
dancy among the base kernels.

• Mulitple kernel clustering with local alignment
maximization (LKAM) [12]. The similarity of a sam-
ple to its k-nearest neighbors, instead of all samples,
is aligned with the ideal similarity matrix.

• Multi-view clustering via late fusion alignment
maximization (LF-MVC) [32]. Base partitions are
firstly calculated using each single view and then
optimally integrated into a consensus partition.

• Multiple kernel clustering based on centered ker-
nel alignment (CKAMKC) [33]. Two tasks of clus-
tering and multiple kernel learning are unified into a
single optimization framework.

• Kernel-based Weighted Multi-view Clustering
(MVKKM) [34]. The weighted combination of differ-
ent kernels, indicating the quality of the correspond-
ing views, is learned during partitioning.

• MKKM-MM [16]. It proposes a minH-maxγ for-
mulation that combines views in a way to reveal
high within-cluster variance in the combined kernel
space and then updates clusters by minimizing such
variance.

The implementations of the above algorithms are publicly
available in corresponding papers, and we directly adopt
them without revision in our experiments. Among all the
compared algorithms, ONKC [31], MKKM-MiR [13], LKAM
[12] and LF-MVC [32] have hyper-parameters to be tuned.
Note that hyper-parameter tuning is very difficult and still
remains an open problem in clustering tasks. We reproduce
their public released codes and report the best correspond-
ing results by following the settings of original literature.
These algorithms have several hyper-parameters to turn
and by this means the resultant clustering performance may
be over-estimated. Consequently, tuning hyper-parameters
would hinder the compared algorithms from real-world ap-
plications. It is therefore desired to develop a parameter-free
algorithm for multiple kernel clustering, as the proposed
SimpleMKKM does.

5.2 Experimental Results
5.2.1 Clustering Performance
Table 2 presents the ACC, NMI, purity and rand index
comparison of the above algorithms. From this table, we
have the following observations:

• The proposed SimpleMKKM consistently
and significantly outperforms MKKM.
For example, it exceeds MKKM by
12.7%, 16%, 6.1%, 3.1%, 34.6%, 4.4%, 7.2%, 8.9%,
10.1%, 10.6% and 11.7% in terms of ACC on all

www.robots.ox.ac.uk/~vgg/data/flowers/17/
www.robots.ox.ac.uk/~vgg/data/flowers/102/
mkl.ucsd.edu/dataset/protein-fold-prediction
www.ee.columbia.edu/ln/dvmm/CCV/
http://ss.sysu.edu.cn/py/
www.vision.caltech.edu/Image_Datasets/Caltech101/

SUBMITTED TO IEEE TPAMI, 2022 7

TABLE 2: Clustering performance of SimpleMKKM and ten baselines on five benchmarks in terms of ACC, NMI, Purity,
and Rand Index. The boldface values indicate the best results.

DATASETS AVG-KKM MKKM LMKKM ONKC MKKM-MIR LKAM LF-MVC CKAMKC MVKKM MKKM-MM SIMPLEMKKM
[5] [6] [31] [13] [12] [32] [33] [34] [16] PROPOSED

ACC

FLO17 51.0± 1.3 43.6± 1.7 42.7± 1.5 43.4± 2.1 58.0± 1.2 48.9± 0.9 57.2± 1.3 34.2± 0.0 21.8± 0.0 51.0±1.3 59.1± 1.2
FLO102 27.1± 0.8 22.4± 0.5 - 39.2± 0.9 39.1± 1.3 40.4± 1.0 29.0± 1.0 21.0± 0.0 − 27.1±0.8 42.5± 0.8
PFOLD 29.0± 1.6 27.0± 1.1 22.4± 0.7 35.3± 1.3 34.3± 1.7 33.8± 1.7 31.6± 1.7 31.7± 0.0 24.1± 0.0 29.0±1.6 34.7± 1.9
CCV 19.6± 0.6 18.0± 0.5 18.6± 0.1 22.1± 0.6 20.9± 0.9 18.9± 0.3 23.1± 0.9 20.7± 0.0 16.6± 0.0 19.6±0.6 22.2± 0.7
DIGIT 88.8± 0.1 47.3± 0.7 47.3± 0.7 89.5± 0.1 87.4± 0.1 95.0 ± 0.1 89.1± 0.1 90.6± 0.0 39.6± 0.0 88.8±0.7 90.3± 0.1
AVG. 43.1 31.7 - 45.9 47.9 47.4 46.0 39.6 - 43.1 49.8

NMI

FLO17 49.6± 0.8 44.3± 1.3 43.8± 1.0 43.1± 1.3 56.2± 0.6 48.2± 0.6 54.6± 0.9 39.1± 0.0 23.7± 0.0 49.7±0.8 57.5± 0.8
FLO102 46.0± 0.5 42.7± 0.2 - 55.7± 0.4 55.9± 0.6 55.8± 0.3 47.5± 0.3 41.9± 0.0 − 46.0±0.5 58.6± 0.5
PFOLD 40.3± 1.2 38.0± 0.6 34.7± 0.6 44.0± 0.8 43.1± 1.0 43.6± 1.0 41.8± 0.9 38.9± 0.0 12.0± 0.0 40.3±1.3 44.4± 1.1
CCV 16.8± 0.4 15.1± 0.5 14.4± 0.1 18.4± 0.3 17.9± 0.4 16.8± 0.2 19.3± 0.3 18.4± 0.0 46.8± 0.0 16.8±0.4 18.2± 0.3
DIGIT 80.8± 0.2 48.8± 0.7 48.7± 0.7 81.7± 0.1 79.6± 0.1 89.4± 0.1 81.1± 0.2 83.6± 0.0 15.0± 0.0 80.8±0.2 83.3± 0.1
AVG. 46.7 37.8 - 48.6 50.5 50.8 48.9 44.2 - 46.7 52.4

PURITY

FLO17 52.0± 1.0 45.1± 1.4 44.5± 1.4 45.2± 1.9 59.4± 0.9 50.1± 0.6 58.1± 1.4 36.3± 0.0 22.9± 0.0 52.0±1.0 60.5± 1.4
FLO102 32.3± 0.6 27.8± 0.4 - 45.1± 0.9 45.2± 1.0 46.7± 0.6 34.5± 0.5 26.8± 0.0 − 32.3±0.6 48.6± 0.7
PFOLD 37.4± 1.7 33.7± 1.1 31.2± 1.0 41.9± 1.0 41.2± 1.4 41.6± 1.3 38.9± 1.5 36.7± 0.0 27.2± 0.0 37.4±1.7 41.8± 1.5
CCV 23.8± 0.5 22.2± 0.5 22.0± 0.1 24.3± 0.5 23.4± 0.7 22.2± 0.3 26.1± 0.5 23.3± 0.0 20.0± 0.0 23.8±0.5 25.3± 0.5
DIGIT 88.8± 0.1 50.1± 0.7 50.1± 0.7 89.5± 0.1 87.4± 0.1 95.0± 0.1 89.1± 0.1 90.6± 0.0 43.9± 0.0 88.8± 0.1 90.3± 0.1
AVG. 46.9 35.8 - 49.2 51.3 51.1 49.3 42.7 - 46.9 53.3

RAND INDEX

FLO17 32.3± 1.0 26.4± 1.3 26.0± 1.1 24.3± 1.6 39.6± 0.8 30.2± 0.8 38.6± 1.0 20.5± 0.0 12.9± 0.0 32.3±1.3 41.3± 1.1
FLO102 15.5± 0.5 12.1± 0.4 - 24.5± 0.6 24.9± 1.0 26.3± 0.6 17.2± 0.8 10.7± 0.0 − 15.5±0.5 28.5± 0.8
PFOLD 14.4± 1.8 12.1± 0.7 7.8± 0.4 17.6± 1.3 17.4± 1.6 17.3± 1.7 16.2± 1.7 14.4± 0.0 5.6± 0.0 14.4±1.8 17.6± 1.9
CCV 6.6± 0.2 5.8± 0.2 5.6± 0.1 7.5 ± 0.3 7.0± 0.4 6.2± 0.1 8.4± 0.5 7.1± 0.0 5.0± 0.0 6.6 ±0.2 7.5± 0.2
DIGIT 77.5± 0.2 31.4± 0.6 31.3± 0.6 78.7± 0.1 75.4± 0.1 89.2± 0.1 78.2± 0.2 90.7± 0.0 31.4± 0.0 77.5±0.2 80.3± 0.1
AVG. 29.3 17.6 - 30.5 32.9 33.8 31.7 28.7 - 29.3 35.0

10 20 30 40 50

Number of Iterations

28

29

30

31

32

O
b

je
c
ti
v
e

 v
a

lu
e

Flo17

2 4 6 8 10

Number of Iterations

350

360

370

380

390

O
b

je
c
ti
v
e

 v
a

lu
e

Flo102

1 2 3 4

Number of Iterations

355

356

357

358

359

360

O
b

je
c
ti
v
e

 v
a

lu
e

Digit

10 20 30 40 50

Number of Iterations

14.9

15

15.1

15.2

15.3

15.4

O
b

je
c
ti
v
e

 v
a

lu
e

PFlod

1 2 3 4

Number of Iterations

1140

1142

1144

O
b

je
c
ti
v
e

 v
a

lu
e

CCV

1 2 3 4 5

Number of Iterations

16.2

16.3

16.4

16.5

16.6

16.7

O
b

je
c
ti
v
e

 v
a

lu
e

Cal-30

Fig. 1: The objective value of SimpleMKKM-C with the variation of iterations on all benchmarks. SimpleMKKM-C adopts
an alternate optimization strategy to solve the objective of SimpleMKKM.

benchmark datasets. These results demonstrate the
efficacy of its min-max formulation and associated
optimization algorithm.

• MKKM-MM [16] is the first try in literature to im-
prove MKKM via minimization-maximization. As
observed, it does improve the MKKM. However
the improvement over MKKM is marginal on all
datasets. Meanwhile, the proposed SimpleMKKM
significantly outperforms MKKM-MM. This once
again demonstrates the advantage of our formulation
and the associated optimization strategy.

• Our SimpleMKKM achieves comparable or slightly
better performance than MKKM-MiR [13], ONKC
[31], and LF-MVC [32], all of which are considered
the state of the art in multi-kernel clustering. Note
that all of these algorithms have several hyper-
parameters to tune due to the incorporation of regu-
larization on the kernel weights γ. Though demon-
strating promising clustering performance, these al-
gorithms need to take a lot of efforts to determine
the best hyper-parameters in practical applications.
And parameter tuning may be impossible in real
applications where there is no ground truth clus-
tering to optimize. In contrast, our SimpleMKKM is
parameter-free.

In summary, SimpleMKKM demonstrates superior clus-
tering performance over the alternatives on all datasets and
has no hyper-parameter to be tuned. We expect that the
simplicity and efficacy of SimpleMKKM will make it a good
option to be considered for practical clustering applications.
Note that some results of LMKKM [6] and MVKKM [34]
are not presented because they requireO(n3) computational
complexity that causes the out-of-memory error.

5.2.2 Ablation Study on the Formulation and Optimization

In order to show the advantage of the proposed formula-
tion and optimization algorithm, we conduct an ablation
study on all benchmark datasets to compare the alterna-
tives MKKM-R and SimpleMKKM-C. MKKM-R denotes
optimizing the objective of existing MKKM in Eq. (1) with
reduced gradient descent, while SimpleMKKM-C denotes
optimizing the criterion in Eq. (6) with coordinate descent
optimization (see Section 3.1 for discussion). Note that
SimpleMKKM-C has the same objective as SimpleMKKM,
but it uses the widely adopted alternate optimization to
solve it in place of our newly derived reduced gradient
algorithm.

From the results reported in Table 3, we clearly ob-
serve that: (1) Our SimpleMKKM and SimpleMKKM-C
formulations have significant advantages over MKKM and

SUBMITTED TO IEEE TPAMI, 2022 8

0 5 10 15 20 25 30

Number of Iterations

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

A
C

C

Flower17

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.46

0.48

0.5

0.52

0.54

0.56

0.58

N
M

I

Flower17

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.45

0.5

0.55

0.6

P
ur

ity

Flower17

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

R
an

d
In

de
x

Flower17

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

A
C

C

Flower102

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

N
M

I

Flower102

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

P
ur

ity

Flower102

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

R
an

d
In

de
x

Flower102

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

A
C

C

Protein Fold

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.38

0.39

0.4

0.41

0.42

0.43

0.44

N
M

I

Protein Fold

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

P
ur

ity

Protein Fold

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.12

0.13

0.14

0.15

0.16

0.17

0.18

R
an

d
In

de
x

Protein Fold

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

A
C

C

CCV

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

N
M

I

CCV

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.225

0.23

0.235

0.24

0.245

0.25

0.255

P
ur

ity

CCV

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0.074

0.076

0.078

R
an

d
In

de
x

CCV

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
C

C

UCI_DIGIT

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

N
M

I

UCI_DIGIT

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
ur

ity

UCI_DIGIT

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

R
an

d
In

de
x

UCI_DIGIT

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.18

0.2

0.22

0.24

0.26

0.28

0.3

A
C

C

Caltech102-30

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.4

0.42

0.44

0.46

0.48

0.5

0.52

N
M

I

Caltech102-30

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

P
ur

ity

Caltech102-30

MKKM
SimpleMKKM

0 5 10 15 20 25 30

Number of Iterations

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

R
an

d
In

de
x

Caltech102-30

MKKM
SimpleMKKM

Fig. 2: Clustering comparison of the learned H by MKKM and the proposed SimpleMKKM with iterations.

MKKMR, demonstrating the value of our novel min-max
objective; (2) It is also observed that our SimpleMKKM
outperforms SimpleMKKM-C, which confirms that our new
gradient based optimization algorithm is also much better
than the widely used alternate optimization. This ablation
study well demonstrates that both our novel formulation
and new optimization attribute to the improvement of clus-
tering performance. In addition, we plot the objective value
of SimpleMKKM-C with the variation of iterations in Figure
1 on all benchmark datastes. From Figure 1, we clearly
see that SimpleMKKM-C cannot be guaranteed to mono-

tonically decrease Eq. (6) with iterations. This is consistent
with our previous claim that the proposed minimization-
maximization optimization cannot be directly solved by the
widely used coordinate descent.

5.2.3 Evolution of the Learned H

To verify the superiority of our SimpleMKKM, we compare
it with existing MKKM algorithms and report the clustering
performance in terms of ACC, NMI, purity, and rand index
with iterations. As shown in Figure 2, the start points of
both SimpleMKKM and MKKM on all sub-figures are the

SUBMITTED TO IEEE TPAMI, 2022 9

Cal-5
Cal-10

Cal-15
Cal-20

Cal-25
Cal-30

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

A
C

C

Caltech102
Avg-KKM
MKKM
LMKKM
ONKC

MKKM-MiR
LKAM
LF-MVC
MKKM-MM
SimpleMKKM

Cal-5
Cal-10

Cal-15
Cal-20

Cal-25
Cal-30

0.45

0.5

0.55

0.6

0.65

0.7

N
M

I

Caltech102
Avg-KKM
MKKM
LMKKM
ONKC

MKKM-MiR
LKAM
LF-MVC
MKKM-MM
SimpleMKKM

Cal-5
Cal-10

Cal-15
Cal-20

Cal-25
Cal-30

0.2

0.25

0.3

0.35

P
ur

ity

Caltech102

Avg-KKM
MKKM
LMKKM
ONKC

MKKM-MiR
LKAM
LF-MVC
MKKM-MM
SimpleMKKM

Cal-5
Cal-10

Cal-15
Cal-20

Cal-25
Cal-30

0.05

0.1

0.15

R
an

d
In

de
x

Caltech102

Avg-KKM
MKKM
LMKKM
ONKC

MKKM-MiR
LKAM
LF-MVC
MKKM-MM
SimpleMKKM

Fig. 3: Clustering performance of aforementioned algorithms with different number of samples on Caltech102.

TABLE 3: Empirical comparison of SimpleMKKM with
MKKM, MKKM-R and SimpleMKKM-C on all datasets.

Dataset MKKM [5] MKKM-R SimpleMKKM-C SimpleMKKM

ACC

Flo17 43.6± 1.2 43.7± 1.4 54.2± 1.8 59.1± 1.2
Flo102 22.4± 0.5 22.4± 0.5 41.8± 1.2 42.5± 0.8
PFold 27.0± 1.1 26.6± 1.1 29.0± 1.4 34.7± 1.9
CCV 18.0± 0.5 17.9± 0.6 22.1± 0.7 22.2± 0.7
Digit 47.3± 0.7 47.3± 0.7 90.4± 0.9 90.3± 0.6
Cal-30 16.6± 0.4 16.7± 0.4 30.4± 1.1 30.6± 0.9

NMI

Flo17 44.3± 1.3 44.3± 1.1 54.3± 1.4 57.5± 0.8
Flo102 42.7± 0.2 42.6± 0.2 58.0± 0.5 58.6± 0.5
PFold 38.0± 0.6 37.5± 0.8 38.4± 0.8 44.4± 1.1
CCV 15.1± 0.5 14.8± 0.4 18.2± 0.3 18.2± 0.3
Digit 48.8± 0.7 48.7± 0.7 83.5± 0.2 83.3± 0.1
Cal-30 40.1± 0.3 40.2± 0.3 51.8± 0.6 51.8± 0.5

Purity

Flo17 45.1± 1.4 44.9± 1.4 55.1± 1.8 60.5± 1.4
Flo102 27.8± 0.4 27.8± 0.4 47.9± 0.8 48.6± 0.7
PFold 33.7± 1.1 33.1± 0.9 35.7± 1.0 41.8± 1.4
CCV 22.2± 0.5 22.3± 0.4 25.2± 0.5 25.3± 0.5
Digit 50.1± 0.7 50.1± 0.7 90.4± 0.9 90.3± 0.6
Cal-30 18.0± 0.5 18.1± 0.4 32.5± 1.0 32.7± 0.8

Rand Index

Flo17 45.1± 1.4 44.9± 1.4 55.1± 1.8 60.5± 1.4
Flo102 27.8± 0.4 27.8± 0.4 47.9± 0.8 48.6± 0.7
PFold 33.7± 1.1 33.1± 0.9 35.7± 1.0 41.8± 1.4
CCV 22.2± 0.5 22.3± 0.4 25.2± 0.5 25.3± 0.5
Digit 50.1± 0.7 50.1± 0.7 90.4± 0.9 90.3± 0.6
Cal-30 18.0± 0.5 18.1± 0.4 32.5± 1.0 32.7± 0.8

same. This is because both algorithms are initialized with
the unified weights, which generates the same H, learning
to the same clustering performance. The clustering perfor-
mance of the proposed SimpleMKKM presents a trend of
first rising and then obtains relatively stable performance,
which sufficiently verifies the superiority of our algorithm.
In contrast, the clustering performance of MKKM is de-
creased with iterations on all sub-figures, implying that
existing MKKM is inferior to average kernel k-means. This
states that the widely used MKKM may not be a good choice
to fuse multiple base kernels. Comparable, our proposed
SimpleMKKM significantly outperforms average kernel k-
means on all sub-figures, considerably showing the effec-
tiveness and necessity of the learning procedure.

5.2.4 Performance Comparison with Number of Samples
In this subsection, we conduct an experiment to investigate
the effect of different number samples for clustering per-
formance of our SimpleMKKM on Caltech102. In specific,
we evaluate their clustering performance on Cal-5, Cal-10,
Cal-15, Cal-20, Cal-25 and Cal-30, which are constructed by
selecting the first 5, 10, 15, 20, 25 and 30 samples from each
class respectively from the Caltech102 data.

The ACC, NMI, purity, and rand index of these algo-
rithms with the variation of number of samples are plot-
ted in Figure 3. As observed, the proposed SimpleMKKM
considerably boosts the clustering performance of exist-
ing MKKM and its variants. For instance, as presented
in sub-figure 3a, SimpleMKKM outperforms MKKM by

SUBMITTED TO IEEE TPAMI, 2022 10

10 15 20 25 30 35 40 45

Number of Kernels

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

A
C

C
Caltech102-30

Avg-KKM
MKKM
ONKC
MKKM-MiR

LKAM
LF-MVC
MKKM-MM
SimpleMKKM

10 15 20 25 30 35 40 45

Number of Kernels

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

N
M

I

Caltech102-30

Avg-KKM
MKKM
ONKC
MKKM-MiR

LKAM
LF-MVC
MKKM-MM
SimpleMKKM

10 15 20 25 30 35 40 45

Number of Kernels

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

P
ur

ity

Caltech102-30

Avg-KKM
MKKM
ONKC
MKKM-MiR

LKAM
LF-MVC
MKKM-MM
SimpleMKKM

10 15 20 25 30 35 40 45

Number of Kernels

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

R
an

d
In

de
x

Caltech102-30

Avg-KKM
MKKM
ONKC
MKKM-MiR

LKAM
LF-MVC
MKKM-MM
SimpleMKKM

Fig. 4: Clustering performance of aforementioned algorithms with different number of base kernels on Caltech102.

MKKM
ONKC

MKKM-M
iR

LKAM

LF-M
VC

MKKM-M
M

SimpleMKKM
0

0.2

0.4

0.6

0.8

1

K
er

ne
l W

ei
gh

ts

Flower17

MKKM
ONKC

MKKM-M
iR

LKAM

LF-M
VC

MKKM-M
M

SimpleMKKM
0

0.2

0.4

0.6

0.8

1

K
er

ne
l W

ei
gh

ts

Flower102

MKKM
ONKC

MKKM-M
iR

LKAM

LF-M
VC

MKKM-M
M

SimpleMKKM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K
er

ne
l W

ei
gh

ts

CCV

MKKM
ONKC

MKKM-M
iR

LKAM

LF-M
VC

MKKM-M
M

SimpleMKKM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K
er

ne
l W

ei
gh

ts

Caltech102-30

MKKM
ONKC

MKKM-M
iR

LKAM

LF-M
VC

MKKM-M
M

SimpleMKKM
0

0.2

0.4

0.6

0.8

1

K
er

ne
l W

ei
gh

ts

UCI_DIGIT

MKKM
ONKC

MKKM-M
iR

LKAM

LF-M
VC

MKKM-M
M

SimpleMKKM
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

K
er

ne
l W

ei
gh

ts

Protein Fold

Fig. 5: The kernel weights learned by different algorithms. SimpleMKKM maintains reduced sparsity compared to several
competitors. Other datasets omitted due to space limit.

SUBMITTED TO IEEE TPAMI, 2022 11

5 10 15 20 25 30

Number of Iterations

30

40

50

60

70

80

O
b

je
c
ti
v
e

 v
a

lu
e

Flo17 - 32.9034

5 10 15

Number of Iterations

400

600

800

1000

1200

1400

O
b

je
c
ti
v
e

 v
a

lu
e

Flo102 - 394.2577

5 10 15 20 25

Number of Iterations

15

20

25

30

O
b

je
c
ti
v
e

 v
a

lu
e

PFlod - 16.2613

5 10 15

Number of Iterations

1200

1400

1600

O
b

je
c
ti
v
e

 v
a

lu
e

CCV - 1144.6872

1 2 3 4 5 6 7

Number of Iterations

350

400

450

500

O
b

je
c
ti
v
e

 v
a

lu
e

Digit - 360.2969

10 20 30 40 50 60

Number of Iterations

20

25

30

O
b

je
c
ti
v
e

 v
a

lu
e

Cal-30 - 16.749

5 10 15 20 25 30

Number of Iterations

35

40

45

50

55

60

O
b

je
c
ti
v
e

 v
a

lu
e

Flo17 - 32.9034

5 10 15

Number of Iterations

400

450

500

O
b

je
c
ti
v
e

 v
a

lu
e

Flo102 - 394.2577

5 10 15 20

Number of Iterations

16

17

18

19

20

O
b

je
c
ti
v
e

 v
a

lu
e

PFlod - 16.2613

2 4 6 8 10

Number of Iterations

1200

1400

1600

1800

2000

O
b

je
c
ti
v
e

 v
a

lu
e

CCV - 1144.6872

2 4 6 8

Number of Iterations

400

500

600

700

O
b

je
c
ti
v
e

 v
a

lu
e

Digit - 360.2969

20 40 60

Number of Iterations

18

20

22

24

O
b

je
c
ti
v
e

 v
a

lu
e

Cal-30 - 16.749

5 10 15 20 25

Number of Iterations

33

34

35

36

37

O
b

je
c
ti
v
e

 v
a

lu
e

Flo17 - 32.9034

5 10 15

Number of Iterations

400

500

600

700

O
b

je
c
ti
v
e

 v
a

lu
e

Flo102 - 394.2577

5 10 15 20 25

Number of Iterations

15

20

25

30

35

O
b

je
c
ti
v
e

 v
a

lu
e

PFlod - 16.2613

2 4 6 8

Number of Iterations

1140

1160

1180

1200

1220

O
b

je
c
ti
v
e

 v
a

lu
e

CCV - 1144.6872

1 2 3 4 5 6 7

Number of Iterations

360

362

364

366

O
b

je
c
ti
v
e

 v
a

lu
e

Digit - 360.2969

10 20 30 40 50

Number of Iterations

20

25

30

O
b

je
c
ti
v
e

 v
a

lu
e

Cal-30 - 16.749

5 10 15 20 25 30

Number of Iterations

40

50

60

70

O
b

je
c
ti
v
e

 v
a

lu
e

Flo17 - 32.9034

2 4 6 8 10 12 14

Number of Iterations

400

420

440

460

480

500

O
b

je
c
ti
v
e

 v
a

lu
e

Flo102 - 394.2577

5 10 15 20 25

Number of Iterations

16

18

20

22

24

O
b

je
c
ti
v
e

 v
a

lu
e

PFlod - 16.2613

2 4 6 8

Number of Iterations

1150

1200

1250

1300

O
b

je
c
ti
v
e

 v
a

lu
e

CCV - 1144.6872

2 4 6 8 10

Number of Iterations

360

380

400

420

440

460

480

O
b

je
c
ti
v
e

 v
a

lu
e

Digit - 360.2969

10 20 30 40 50

Number of Iterations

16

18

20

22

24

26

28

O
b

je
c
ti
v
e

 v
a

lu
e

Cal-30 - 16.749

5 10 15 20 25 30

Number of Iterations

35

40

45

50

55

60

O
b

je
c
ti
v
e

 v
a

lu
e

Flo17 - 32.9034

2 4 6 8 10

Number of Iterations

400

500

600

700

800

O
b

je
c
ti
v
e

 v
a

lu
e

Flo102 - 394.2577

5 10 15 20 25

Number of Iterations

16

18

20

22

24

26

28

O
b

je
c
ti
v
e

 v
a

lu
e

PFlod - 16.2613

1 2 3 4 5

Number of Iterations

1200

1300

1400

1500

1600

O
b

je
c
ti
v
e

 v
a

lu
e

CCV - 1144.6872

2 4 6 8 10

Number of Iterations

350

400

450

500

O
b

je
c
ti
v
e

 v
a

lu
e

Digit - 360.2969

20 40 60

Number of Iterations

20

25

30

O
b

je
c
ti
v
e

 v
a

lu
e

Cal-30 - 16.749

5 10 15 20 25 30

Number of Iterations

40

60

80

O
b

je
c
ti
v
e

 v
a

lu
e

Flo17 - 32.9034

5 10 15

Number of Iterations

400

500

600

700

800

O
b

je
c
ti
v
e

 v
a

lu
e

Flo102 - 394.2577

5 10 15 20 25

Number of Iterations

16

18

20

22

24

26

O
b

je
c
ti
v
e

 v
a

lu
e

PFlod - 16.2613

2 4 6 8

Number of Iterations

1200

1300

1400

O
b

je
c
ti
v
e

 v
a

lu
e

CCV - 1144.6872

2 4 6 8

Number of Iterations

350

400

450

500

O
b

je
c
ti
v
e

 v
a

lu
e

Digit - 360.2969

20 40 60 80

Number of Iterations

18

20

22

24

O
b

je
c
ti
v
e

 v
a

lu
e

Cal-30 - 16.749

5 10 15 20 25 30

Number of Iterations

34

36

38

40

42

44

O
b

je
c
ti
v
e

 v
a

lu
e

Flo17 - 32.9034

2 4 6 8 10 12 14

Number of Iterations

400

500

600

700

800

O
b

je
c
ti
v
e

 v
a

lu
e

Flo102 - 394.2577

5 10 15 20

Number of Iterations

16

18

20

22

24

26

28

O
b

je
c
ti
v
e

 v
a

lu
e

PFlod - 16.2613

2 4 6 8

Number of Iterations

1200

1300

1400

1500

1600

O
b

je
c
ti
v
e

 v
a

lu
e

CCV - 1144.6872

2 4 6 8 10 12

Number of Iterations

350

400

450

500

550

600

O
b

je
c
ti
v
e

 v
a

lu
e

Digit - 360.2969

10 20 30 40 50 60

Number of Iterations

16

18

20

22

24

26

O
b

je
c
ti
v
e

 v
a

lu
e

Cal-30 - 16.749

5 10 15 20 25 30

Number of Iterations

30

40

50

60

70

O
b

je
c
ti
v
e

 v
a

lu
e

Flo17 - 32.9034

2 4 6 8 10 12 14

Number of Iterations

400

450

500

550

600

650

O
b

je
c
ti
v
e

 v
a

lu
e

Flo102 - 394.2577

5 10 15 20 25

Number of Iterations

16

18

20

22

24

26

O
b

je
c
ti
v
e

 v
a

lu
e

PFlod - 16.2613

2 4 6 8 10

Number of Iterations

1146

1148

1150

O
b

je
c
ti
v
e

 v
a

lu
e

CCV - 1144.6872

2 4 6 8 10 12

Number of Iterations

360

370

380

390

400

O
b

je
c
ti
v
e

 v
a

lu
e

Digit - 360.2969

10 20 30 40 50

Number of Iterations

20

25

30

O
b

je
c
ti
v
e

 v
a

lu
e

Cal-30 - 16.749

5 10 15 20 25 30

Number of Iterations

40

60

80

O
b

je
c
ti
v
e

 v
a

lu
e

Flo17 - 32.9034

5 10 15

Number of Iterations

400

600

800

1000

O
b

je
c
ti
v
e

 v
a

lu
e

Flo102 - 394.2577

5 10 15 20 25

Number of Iterations

15

20

25

30

O
b

je
c
ti
v
e

 v
a

lu
e

PFlod - 16.2613

2 4 6 8 10 12

Number of Iterations

1200

1400

1600

1800

O
b

je
c
ti
v
e

 v
a

lu
e

CCV - 1144.6872

2 4 6 8

Number of Iterations

400

500

600

700

O
b

je
c
ti
v
e

 v
a

lu
e

Digit - 360.2969

20 40 60 80

Number of Iterations

16

18

20

22

24

26

O
b

je
c
ti
v
e

 v
a

lu
e

Cal-30 - 16.749

5 10 15 20 25 30

Number of Iterations

30

40

50

60

70

O
b

je
c
ti
v
e

 v
a

lu
e

Flo17 - 32.9034

2 4 6 8 10 12

Number of Iterations

400

450

500

550

O
b

je
c
ti
v
e

 v
a

lu
e

Flo102 - 394.2577

5 10 15 20

Number of Iterations

16

18

20

22

O
b

je
c
ti
v
e

 v
a

lu
e

PFlod - 16.2613

2 4 6 8 10

Number of Iterations

1200

1400

1600

1800

2000

O
b

je
c
ti
v
e

 v
a

lu
e

CCV - 1144.6872

2 4 6 8

Number of Iterations

400

500

600

700

O
b

je
c
ti
v
e

 v
a

lu
e

Digit - 360.2969

10 20 30 40 50 60 70

Number of Iterations

16

18

20

22

24

26

28

O
b

je
c
ti
v
e

 v
a

lu
e

Cal-30 - 16.749

Fig. 6: The iterative objective curves of SimpleMKKM under ten different initialization on Flo17, Flo102, PFold, CCV, Digit,
and Cal-30. Though with different initialization, the objective value at stopping point is the same.

SUBMITTED TO IEEE TPAMI, 2022 12

8.3%, 11.3%, 12.1%, 13.2%, 12.9% and 14% with different
number of samples for each cluster, respectively. It exceeds
the newly developed MKKM variant, i.e., MKKM-MM [16],
by 0.1%, 1.5%, 1.3%, 2.1%, 0.5% and 2%, respectively. We
also observe that SimpleMKKM achieves comparable clus-
tering performance with LF-MVC, which is considered as
the SOTA in existing related clustering algorithm [32]. In
sum, the proposed SimpleMKKM achieves the best clus-
tering performance among MKKM based clustering al-
gorithms, and is comparable with the strongest baseline
among multi-view clustering in terms of four clustering
metrics.

5.2.5 Clustering Performance with Variation of Base Ker-
nels
To explore the ability of the proposed SimpleMKKM in
dealing with different number of base kernels, we de-
sign an experiment on Caltech102 by selecting the first
8, 16, 24, 32, 40 and 48 base kernels. The clustering per-
formance in terms of ACC, NMI, purity and rand index of
the aforementioned methods varying with different number
of base kernels are shown in Figure 4. As observed, we
conclude that: i) The proposed SimpleMKKM demonstrates
the overall best clustering performance among all compared
ones regarding ACC, NMI, purity, and rand index. ii) With
increasing the number of base kernels, the clustering perfor-
mance of MKKM is dramatically decreased. In contrast, the
clustering performance of SimpleMKKM is relatively stable
with different number of base kernels, demonstrating its
advantages in handling large number of base kernels. iii)
The results in Figure 4 show that more base kernels are not
necessarily helpful for improving clustering performance.
In some applications, larger number of base kernels may
result in worse clustering performance. This motivates us to
automatically select a subset from a group of pre-specified
base kernels and optimally combined the selected subset
for multiple kernel clustering. This strategy could further
significantly improve the clustering performance, which
will be explored in our future work.

5.2.6 Kernel Weight Analysis
We next investigate the kernel weights learned by the
compared algorithms. The results are plotted in Figure 5.
We can see that the kernel weights learned by MKKM are
extremely sparse on some datasets such as UCI-Digital,
which is caused by the alternate optimization. This spar-
sity insufficiently exploits the multiple kernel matrices and
explains the weak performance of MKKM. For example,
the clustering accuracy of MKKM on UCI-Digital is only
47.2%. However, despite the `1-norm constraint on γ, the
kernel weights learned by our SimpleMKKM are all non-
sparse on all datasets, which contributes to its superior
clustering performance. This non-sparsity of the learned
kernel weights is attributed to our new reduced gradient
descent algorithm, which in turn is derived based on our
new min-max kernel alignment objective.

5.2.7 Runtime and Global Convergence
We also report the running time of the compared algorithms
in Figure 7. As observed, in addition to significantly im-
proving performance, SimpleMKKM does not considerably

Flo17
Digit

PFold
Cal-5

Cal-10
CCV

Cal-15
Cal-20

Cal-25
Cal-30

Flo102

0

2

4

6

8

10

12

Lo
ga

rit
hm

 o
f R

un
ni

ng
 T

im
e

(in
 S

ec
on

d)

Running Time
Avg-KKM
MKKM
LMKKM
ONKC
MKKM-MiR

LKAM
LF-MVC
MKKM-MM
SimpleMKKM

Fig. 7: Running time of different algorithms on 11 bench-
mark datasets (in second). The experiments are conducted
on a PC with Intel(R) Core(TM)-i7-5820 3.3 GHz CPU
and 32G RAM in MATLAB environment. SimpleMKKM is
comparably fast to alternatives while providing superior
performance and requiring no hyper-parameter tuning.

increase the running time compared with MKKM and its
variants.

The objective of SimpleMKKM with iterations under ten
different initialization is reported in Figure 6. From these
figures, we observe that: 1) The objective monotonically
decreases and the algorithm usually converges in less than
thirty iterations on all datasets. This corroborates our earlier
theoretical analysis of the nature of our proposed objective
and efficient optimisation algorithm. 2) Though with dif-
ferent initialization, the objective value of SimpleMKKM at
stopping point is the same. These experimental results are
consistent with Theorem 2, and well validate that the solu-
tion obtained by our SimpleMKKM is the global optimum.

6 CONCLUSION

In this paper, we have extended the widely used supervised
kernel alignment criterion to clustering, and introduce a
novel clustering objective of by minimizing alignment for γ
and maximizing it for H. We show that this novel objective
can be transformed into a minimization problem which
is differentiable and amenable to a solution by reduced
gradient descent. This makes SimpleMKKM unique among
MKC alternatives, in not requiring a local-minimum prone
alternate coordinate descent strategy.

We derive a generalization bound for our approach using
global Rademacher complexity analysis. Comprehensive ex-
periments demonstrate the effectiveness of SimpleMKKM.
We expect that the simplicity, lack of hyper-parameters,
and efficacy of SimpleMKKM will make it a go-to solution
for practical multi-kernel clustering applications in future.
Future work may aim to extend SimpleMKKM to handle
incomplete kernels, study further applications, and derive
convergence rates using local Rademacher complexity anal-
ysis [35], [36]. In addition, we plan to automatically select

SUBMITTED TO IEEE TPAMI, 2022 13

a subset from the majority of base kernels, and optimally
combined them for multiple kernel clustering.

ACKNOWLEDGEMENTS

We thank Prof. Timothy M. Hospedales, Prof. Meng Wang
and Prof. Junwei Han for their constructive comments
on revising the manuscript. This work was supported by
the National Key R&D Program of China (project no.
2020AAA0107100), and the National Natural Science Foun-
dation of China (project no. 61922088).

REFERENCES

[1] B. Zhao, J. T. Kwok, and C. Zhang, “Multiple kernel clustering,”
in SDM, 2009, pp. 638–649.

[2] S. Yu, L.-C. Tranchevent, X. Liu, W. Glänzel, J. A. K. Suykens, B. D.
Moor, and Y. Moreau, “Optimized data fusion for kernel k-means
clustering,” IEEE TPAMI, vol. 34, no. 5, pp. 1031–1039, 2012.

[3] C. Zhang, Y. Cui, Z. Han, J. T. Zhou, H. Fu, and Q. Hu, “Deep
partial multi-view learning,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 1–1, 2020.

[4] S. Sun, W. Dong, and Q. Liu, “Multi-view representation learning
with deep gaussian processes,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, pp. 1–1, 2020.

[5] H. Huang, Y. Chuang, and C. Chen, “Multiple kernel fuzzy
clustering,” IEEE Trans. Fuzzy Systems, vol. 20, no. 1, pp. 120–134,
2012.

[6] M. Gönen and A. A. Margolin, “Localized data fusion for kernel k-
means clustering with application to cancer biology,” in Advances
in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, 2014, pp. 1305–1313.

[7] X. Peng, Z. Huang, J. Lv, H. Zhu, and J. T. Zhou, “COMIC: multi-
view clustering without parameter selection,” in Proceedings of the
36th International Conference on Machine Learning, ICML, 2019, pp.
5092–5101.

[8] A. Kumar and H. Daumé, “A co-training approach for multi-view
spectral clustering,” in ICML, 2011, pp. 393–400.

[9] A. Kumar, P. Rai, and H. Daumé, “Co-regularized multi-view
spectral clustering,” in NIPS, 2011, pp. 1413–1421.

[10] Z. Zhang, L. Liu, F. Shen, H. T. Shen, and L. Shao, “Binary multi-
view clustering,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 41, no. 7, pp. 1774–1782, 2019.

[11] X. Li, H. Zhang, R. Wang, and F. Nie, “Multi-view clustering: A
scalable and parameter-free bipartite graph fusion method,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1,
2020.

[12] M. Li, X. Liu, L. Wang, Y. Dou, J. Yin, and E. Zhu, “Multiple kernel
clustering with local kernel alignment maximization,” in Proceed-
ings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, 2016,
pp. 1704–1710.

[13] X. Liu, Y. Dou, J. Yin, L. Wang, and E. Zhu, “Multiple kernel
k-means clustering with matrix-induced regularization,” in Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA, 2016, pp. 1888–1894.

[14] X. Liu, M. Li, L. Wang, Y. Dou, J. Yin, and E. Zhu, “Multiple kernel
k-means with incomplete kernels,” in AAAI, 2017, pp. 2259–2265.

[15] X. Liu, X. Zhu, M. Li, L. Wang, E. Zhu, T. Liu, M. Kloft, D. Shen,
J. Yin, and W. Gao, “Multiple kernel k-means with incomplete ker-
nels,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 42, no. 5, pp. 1191–1204, May 2020.

[16] S. Bang, Y. Yu, and W. Wu, “Robust multiple kernel k-means
clustering using min-max optimization,” 2018.

[17] X. Liu, L. Wang, X. Zhu, M. Li, E. Zhu, T. Liu, L. Liu, Y. Dou,
and J. Yin, “Absent multiple kernel learning algorithms,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 42,
no. 6, pp. 1303–1316, 2020.

[18] X. Liu, X. Zhu, M. Li, L. Wang, C. Tang, J. Yin, D. Shen, H. Wang,
and W. Gao, “Late fusion incomplete multi-view clustering,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 41,
no. 10, pp. 2410–2423, Oct 2019.

[19] X. Liu, M. Li, C. Tang, J. Xia, J. Xiong, L. Liu, M. Kloft, and
E. Zhu, “Efficient and effective regularized incomplete multi-
view clustering,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–13, 2020.

[20] X. Liu, S. Zhou, L. Liu, C. Tang, S. Wang, J. Liu, and Y. Zhang,
“Localized simple multiple kernel k-means,” in ICCV, 2021, pp.
9293–9301.

[21] X. Liu, “Incomplete multiple kernel alignment maximization for
clustering,” IEEE Transactions on Pattern Analysis Machine Intelli-
gence, no. 01, pp. 1–14, sep 2021.

[22] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien, “lp-norm multi-
ple kernel learning,” JMLR, vol. 12, pp. 953–997, 2011.

[23] C. Cortes, M. Mohri, and A. Rostamizadeh, “L2 regularization for
learning kernels,” in UAI, 2009, pp. 109–116.

[24] ——, “Algorithms for learning kernels based on centered align-
ment,” JMLR, vol. 13, pp. 795–828, 2012.

[25] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. S. Kandola,
“On kernel-target alignment,” in Advances in Neural Information
Processing Systems 14, 2002.

[26] J. F. Bonnans and A. Shapiro, “Optimization problems with pertur-
bations: A guided tour,” SIAM Review, vol. 40, no. 2, pp. 228–264,
1998.

[27] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, “Choos-
ing multiple parameters for support vector machines,” Machine
Learning, vol. 46, no. 1, pp. 131–159, Jan 2002.

[28] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet, “Sim-
plemkl,” JMLR, vol. 9, pp. 2491–2521, 2008.

[29] A. Maurer and M. Pontil, “k-dimensional coding schemes in
Hilbert spaces,” IEEE Transactions on Information Theory, vol. 56,
no. 11, pp. 5839–5846, 2010.

[30] T. Liu, D. Tao, and D. Xu, “Dimensionality-dependent generaliza-
tion bounds for k-dimensional coding schemes,” Neural computa-
tion, vol. 28, no. 10, pp. 2213–2249, 2016.

[31] X. Liu, S. Zhou, Y. Wang, M. Li, Y. Dou, E. Zhu, and J. Yin,
“Optimal neighborhood kernel clustering with multiple kernels,”
in Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, February 4-9, 2017, San Francisco, California, USA, 2017, pp.
2266–2272.

[32] S. Wang, X. Liu, E. Zhu, C. Tang, J. Liu, J. Hu, J. Xia, and J. Yin,
“Multi-view clustering via late fusion alignment maximization,”
in Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019,
2019, pp. 3778–3784.

[33] Y. Lu, L. Wang, J. Lu, J. Yang, and C. Shen, “Multiple kernel clus-
tering based on centered kernel alignment,” Pattern Recognition,
vol. 47, no. 11, pp. 3656–3664, 2014.

[34] G. Tzortzis and A. Likas, “Kernel-based weighted multi-view clus-
tering,” in 2012 IEEE 12th international conference on data mining.
IEEE, 2012, pp. 675–684.

[35] M. Kloft and G. Blanchard, “On the convergence rate of lp-norm
multiple kernel learning,” J. Mach. Learn. Res., vol. 13, pp. 2465–
2502, 2012.

[36] C. Cortes, M. Kloft, and M. Mohri, “Learning kernels using local
rademacher complexity,” in Advances in Neural Information Process-
ing Systems, 2013, pp. 2760–2768.

Xinwang Liu received his PhD degree from Na-
tional University of Defense Technology (NUDT),
China, in 2013. He is now Professor at School
of Computer, NUDT. His current research inter-
ests include kernel learning, multi-view cluster-
ing and unsupervised feature learning. Dr. Liu
has published 80+ peer-reviewed papers, includ-
ing those in highly regarded journals and con-
ferences such as IEEE T-PAMI, IEEE T-KDE,
IEEE T-IP, IEEE T-NNLS, IEEE T-MM, IEEE T-
IFS, ICML, NeurIPS, CVPR, ICCV, AAAI, IJCAI,

etc. He is an Associate Editor of IEEE T-NNLS and Information Fusion
Journal. More information can be found at https://xinwangliu.github.io/.

https://xinwangliu.github.io/

	Introduction
	Related Work
	MKKM
	Robust MKKM Using Min-Max Optimization

	SimpleMKKM: Simple MKKM
	SimpleMKKM Formulation
	The Differentiability and Calculation of Gradient
	The Calculation of Reduced Gradient and Optimization Algorithm
	The Global Convergence
	Discussion

	The Generalization Analysis
	Experimental Results
	Experimental Settings
	Experimental Results
	Clustering Performance
	Ablation Study on the Formulation and Optimization
	Evolution of the Learned H
	Performance Comparison with Number of Samples
	Clustering Performance with Variation of Base Kernels
	Kernel Weight Analysis
	Runtime and Global Convergence

	Conclusion
	References
	Biographies
	Xinwang Liu

