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Abstract—Multiple kernel clustering (MKC) has recently
achieved remarkable progress in fusing multi-source information
to boost the clustering performance. However, the O(n2) mem-
ory consumption and O(n3) computational complexity prohibit
these methods from being applied into median or large-scale
applications, where n denotes the number of samples. To address
these issues, we carefully redesign the formulation of subspace
segmentation-based MKC, which reduces the memory and com-
putational complexity to O(n) and O(n2), respectively. The
proposed algorithm adopts a novel sampling strategy to enhance
the performance and accelerate the speed of MKC. Specifically,
we first mathematically model the sampling process and then
learn it simultaneously during the procedure of information
fusion. By this way, the generated anchor point set can better
serve data reconstruction across different views, leading to
improved discriminative capability of the reconstruction matrix
and boosted clustering performance. Although the integrated
sampling process makes the proposed algorithm less efficient
than the linear complexity algorithms, the elaborate formula-
tion makes our algorithm straightforward for parallelization.
Through the acceleration of GPU and multi-core techniques, our
algorithm achieves superior performance against the compared
state-of-the-art methods on six datasets with comparable time
cost to the linear complexity algorithms.

Index Terms—Multiple Kernel Clustering, Compressed Sub-
space Alignment, Sampling Process Modeling.

I. INTRODUCTION

MULTIPLE kernel clustering (MKC) [1], which dexter-
ously integrates heterogeneous information from mul-

tiple base kernels to improve clustering performance, has
attracted intensive attention of many researchers and witnessed
a soaring improvement in the past few years. According
to the information fusion mechanism, the existing literature
of MKC in this field can be roughly divided into three
categories, i.e., linear combination-based methods [1]–[5],
consensus information extraction-based methods [6]–[14], and
co-training-based methods [15], [16]. Among these methods,

S. Zhou is with the School of Computer, National University of Defense
Technology, Changsha 410073, P.R. China. He is also with the College
of Intelligence Science and Technology, National University of Defense
Technology, Changsha 410073, China. (E-mail: sihangjoe@gmail.com)

Q. Ou, X. Liu, S. Wang, E. Zhu are with the School of Computer, National
University of Defense Technology, Changsha 410073, P.R. China. (E-mail:
xinwangliu@nudt.edu.cn)

L. Liu is with the Jarvis Lab, Tencent, Shenzhen 518057, China
J. Yin is with the School of Cyberspace Science, Dongguan University of

Technology, Guangdong 523808, China.
X. Xin is with the College of Intelligence Science and Technology,

National University of Defense Technology, Changsha 410073, China.
(xinxu@nudt.edu.cn)
∗ Equal contribution. † Corresponding authors.

the first category of algorithms model the information fusion
process as a linear combination problem. They assume that
the optimal kernel lies in the linear space extended by the
base kernels and integrate multi-source information by finding
the optimal linear combination weights of base kernels. The
second category of methods decompose the base kernels into
the sum of a shared cluster structure indicating matrix and
distinct perturbation matrices. By doing this, the underlying
consistent geometric information is extracted and enhanced.
According to the third category of methods, each base kernel
is with sufficient information and can conduct predictions
independently. After the predictions are acquired, the co-
training algorithms amplify the prediction values which are
consistent across views while modify the inconsistent ones by
referring to the predictions which are with higher confidence.

Although remarkable improvement has been made, the large
memory consumption of base kernel matrices (i.e., O(n2))
and the high computational complexity (i.e., O(n3)) of the
corresponding optimization algorithms limit the utility of these
algorithms in practical applications [17]–[21]. To address these
issues, a large number of methods have been proposed in
the existing literature, which can be roughly divided into
four categories. The first category of methods project features
from different views into a collaborative Hamming space and
concurrently learns binary codes together with the cluster
structures within one light-weighted framework [22]–[26]. In
these methods, short binary codes and fast bit-operations are
adopted for data storage and cluster structures optimization,
making them computational and storage friendly. Instead of
processing all data simultaneously, the second category of
methods [27]–[29] solve the large scale cluster optimization
problem in an online learning fashion. Since only a part of the
data [27] (or views [28]) are processed at a learning step, these
algorithms are usually with low computational and storage
complexities. The third category of methods find that the
main computational consumption of the existing algorithms
lies in information fusion and the consensus partition matrix
computation procedure. In order to reduce the consumption,
deep learning-based algorithms directly train a deep neural
network to regress the MKC cluster indicating matrix on a
small subset, and then estimate the matrix of the whole data
set using the trained network. Finally, a k-means algorithm
is conducted on the estimated matrix for clustering. In this
way, the cluster indicating matrix is also learned efficiently.
Recently, the fourth category of methods that adopt a sampling
strategy for efficient clustering have attracted the attention
of a multitude of researchers. In these methods, the authors
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assume that the manifold of a dataset can be sufficiently
represented by sampling only a small subset. Specifically, in
[30]–[33], a novel bipartite and a sparse affinity matrix that
only record the similarity between the selected salient point
set and the data points are learned for clustering, respectively.
In efficient multi-view subspace clustering [34], a compact
reconstruction matrix which reconstructs the data points with
only the pre-learned anchor points can be generated with linear
time complexity. In these methods, the sampling technique has
largely improved the learning speed without a significant loss
of the clustering accuracy.

Although various improvements have been achieved by the
literature, we observe that the algorithms from the fourth
category suffer from the following drawbacks. First, the anchor
points in these methods are generated by a k-means clustering
or a random sampling operation, which is isolated from the
process of multi-view information fusion. Although this setting
makes the clustering process extremely fast (with linear com-
plexity), this also makes the learned anchor points less suitable
for downstream tasks such as spectral clustering or subspace
clustering. Secondly, in these methods, an independent anchor
point set is generated without information exchange among
different views, which could under-fit the overall structure
of the multi-view data. Both factors could adversely affect
the discriminative capability of the learned affinity matrix or
the reconstruction matrix, leading to unsatisfactory clustering
performance.

In this paper, we propose a compressed subspace alignment-
based multiple kernel clustering (CSA-MKC) algorithm to
solve the above problems. Specifically, in our method, three
configurations are proposed to find an appropriate balance be-
tween clustering speed and accuracy. First, we mathematically
formulate the sampling process and subtly integrate it into
the process of multi-view subspace clustering. This setting
allows the two processes to negotiate, in order to best serve
each other in a united system. Specially, in our formulation, a
consensus sampling matrix that fuses the information from
all base kernels is learned to make the generated affinity
matrix to be more discriminative for MKC. Second, a late
fusion technique [35], [36] is adopted to reduce both storage
and computational cost of the proposed algorithm. Third, we
reformulate the target of the subspace clustering as subspace
alignment to further reduce the complexity of optimization.
The contributions of this paper are summarized as follows:

i) Our MKC method, for the first time, integrates sampling
into multi-view clustering and learns the two processes itera-
tively in a unified framework, which makes the learned anchor
point set better serve the need of clustering.

ii) We propose a late-fusion based multiple kernel clus-
tering algorithm with O(n) storage consumption and O(n2)
computational complexity. Although the proposed algorithm
is computationally more costly than the linear complexity
algorithms, it achieves a better balance between speed and
clustering accuracy.

iii) Since the computational bottleneck of the proposed
algorithm lies in matrix multiplication, which is suitable for
parallelization, through the acceleration of GPU, our proposed
algorithm outperforms the compared state-of-the-art methods

with comparable efficiency against the linear complexity al-
gorithms.

II. RELATED WORK

A. Notion

For the clarity of the paper, we first clarify the definition of
some of the variables in Table I. We denote scalars, vectors and
matrices using lower-case, bold lower-case and bold upper-
case letters, e.g., n, x, and X.

TABLE I: Summary of notations

k The number of data clusters.
p The number of base kernels.
l The number of anchor points.

µ ∈ Rp The vector of kernel combination weights.
Ki ∈ Rn×n The i-th base kernel.
Kµ ∈ Rn×n The combined kernel according to µ.
In ∈ Rn×n The n-th order identity matrix.
H∗ ∈ Rk×n The partition matrix of kernel clustering.
P ∈ Rn×l The sampling matrix.
Si ∈ Rn×l The reconstruction matrix of the i-th partition matrix.
S ∈ Rn×l The consensus reconstruction matrix.

B. Multiple Kernel K-means

Given a collection of p base kernels {Ki}pi=1 ∈ Rn×n
which are generated through calculating the similarity over n
samples {xi}ni=1 ∈ Rd with p mapping functions {φi(·)}pi=1 :
x ∈ X → H. Here, φi(·) is a mapping function that maps
x onto a reproducing kernel Hilbert space Hi and d is the
dimension of sample x. The objective of multiple kernel k-
means clustering is to minimize the clustering distortion in
the kernel space extended by the base kernel functions. In this
framework, the optimal base kernel combination coefficients
and the sample partition matrix are learned simultaneously.
Through simple deduction, the formulation of this problem
can be concisely written as:

min
H∈Rk×n,µ∈Rp

+

Tr(Kµ(In −H∗>H∗))

s.t. H∗H∗> = Ik, µ
>1p = 1. (1)

Here, µ = [µ1, µ2, · · · , µp] denotes the kernel combination
weights of each base kernel and Kµ =

∑p
i=1 µ

2
iKi is

the combined kernel which has integrated information from
different views. H∗ ∈ Rk×n is the cluster partition matrix,
where k is the cluster number. The target of the Eq.(1) can
be easily optimized by conducting an iterative optimization
procedure, in which a quadratic programming problem and a
singular value decomposition (SVD) are done in turn to have
µ and H∗ optimized gradually. Although the optimization
process is clear, simple and is guaranteed to converge to
a local optimal solution, the O(n2) storage consumption of
base kernels and the O(n3) computational complexity of SVD
limit the algorithm from scaling to large datasets [9]. To
accelerate the clustering speed and reduce the memory cost,
many researchers in the field turn to a late-fusion for multiple
kernel clustering.
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C. Late Fusion-based Multiple Kernel Clustering

Instead of using base kernels to represent sample distribu-
tion in each view ({Ki}pi=1 ∈ Rn×n), late fusion-based mul-
tiple kernel clustering [35], [37] uses a more compact fashion
(data partition matrices {H∗i}pi=1 ∈ Rk×n) for structure rep-
resentation. Moreover, since it is discovered in a recent study
that the target of k-means clustering is conceptually equivalent
to maximizing the alignment between base partitions and the
consensus partition [36], researchers are able to design the
following late fusion-based MKC formulation:

max
H∗,{Wi}pi=1,β

Tr(H∗>Hβ + λH∗>N),

s.t. H∗H∗> = Ik, W
>
i Wi = Ik, ‖β‖2 = 1, βi ≥ 0, (2)

where {Wi}pi=1 ∈ Rk×k are a set of rotation matrices,
Hβ =

∑p
i=1 βiWiH

∗
i is a linear combination of the rotated

partitions generated from each base kernel, N ∈ Rk×n denotes
the average cluster indicating matrix and λ is a trade-off
parameter. In this formulation, the authors intend to maximize
the alignment between the optimal data partition H∗ ∈ Rk×n
and both the linear combination of the rotated base partitions
as well as the average partition. Through careful deduction
and optimization the authors are able to achieve satisfactory
clustering performance within linear computational complex-
ity, indicating promising potential of the late fusion-based
learning mechanism on speeding up the MKC algorithms
while maintaining their performance.

D. Subspace Clustering

Subspace clustering [38] is a series of methods which cluster
high-dimensional data points by revealing the low-dimensional
subspaces extended by samples from different clusters. The
underlying assumption of these methods is that samples from
the same cluster can be self-reconstructed by each other.
Given a set of data vectors X = [x1,x2, · · · ,xn], by further
considering the noise, outliers or missing information within
data, a common formulation of many popular methods in this
branch is:

min
S,E
‖S‖† + λ‖E‖‡, s.t. X = XS+E, (3)

where S ∈ Rn×n and E ∈ Rn×n are the reconstruction
matrix and error indicating matrix, respectively. In the equality
constraint, sample matrix X is required to reconstruct it self
with an error matrix E. In the target formulation, different ‖·‖†
and ‖ · ‖‡ are introduced to add various prior knowledge to Z
and E. Different kinds of norms like, `1-norm, nuclear norm,
Frobenius norm are corresponding to different properties like
sparse, low-rank and block diagonal of the respective matrices,
respectively. [39], [40]. Since subspace clustering is able to
extract intrinsic cluster structure among data against noise and
outliers, it is also suitable for the multiple kernel clustering
scenario.

E. MKC with Subspace Clustering

To extend subspace clustering algorithms to multi-view
clustering circumstances, in [12], Zhou et. al propose to learn

the optimal subspace reconstruction matrix w.r.t. the optimal
linear combined kernel Kβ:

min
Z,β
‖Kβ −KβZ‖2F + α‖Z‖2F + γβ>Mβ,

s.t.rank(Z) = r;β ≥ 0, ‖β‖1 = 1;Kβ =
∑p

i=1
βiKi.

(4)

In the target function, r is the target rank number, the first term
is the kernel reconstruction term. It requires to minimize the
self-reconstruction error of the linear combined optimal kernel.
The second term is the regularization term that encourages Z
to better preserve block diagonal structure among data. The
third term is the diversity induction term. In this term, matrix
M is:

Ma,b =
〈Ka,Kb〉F
‖Ka‖F‖Kb‖F

, (5)

where 〈·, ·〉F is the trace operation and M denotes the centered
kernel alignment-based correlation [41] of the base neighbor-
kernels. In the constraints, the first term is the exact rank
constraint, the second term is the combination coefficient
constraint. Although good performance has been achieved
by the existing algorithms in many applications, the large
storage and computational consumption cost by the complex
operations on the n × n reconstruction matrix Z limits the
efficiency of these methods.

F. Sampling-based Efficient Clustering Algorithms

Sampling has long been a hotspot technique which is
widely used in efficient multi-view spectral clustering [30] and
multi-view subspace clustering [34], etc. In these methods, to
avoid doing complex operations on computational and storage
inefficient n×n affinity graphs, researchers select only a small
number of the instances as anchors then efficiently learn a
sub-graph S ∈ Rn×l between the anchor points and the data,
where l is the number of anchor points. As was proved by these
methods, the sampling operation can help largely reduce both
storage and computational time while providing comparable
clustering performance. However, in the existing literature, the
sampling procedure is conducted isolated from the multi-view
clustering process. Also, it is performed independently in each
view, leading to less discriminative anchor points. To solve
this problem, in the next section, we propose a compressed
subspace alignment-based MKC algorithm.

III. MULTIPLE KERNEL CLUSTERING WITH COMPRESSED
SUBSPACE ALIGNMENT

In this section, we first modify the target of multi-view
subspace clustering [12], [13], [42] to compressed multi-view
subspace clustering, then we further simplify the formulation
by introducing subspace alignment to improve the optimiza-
tion efficiency. After that, we propose an efficient three-step
iterative optimization algorithm with proved convergence to
solve the resultant optimization problem.
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A. The Proposed Formulation

1) Sampling-base subspace clustering for MKC.: In order
to improve the computational and memory efficiency, our
proposed algorithm modify the classic multi-view subspace
clustering algorithm into a late fusion fashion which takes
the cluster indicating matrices ({Hi}pi=1 ∈ Rm×n) instead
of the original kernel matrices ({Ki}pi=1 ∈ Rn×n) of each
view as input. Specifically, for ∀i ∈ [1, p], Hi is calculated by
doing SVD on the Ki and then take the top m eigenvectors.
Specially, in our paper, we set m = 2k in all our experiments.
Moreover, we further model the sampling process mathemat-
ically and integrate it with multi-view information fusion.
As a consequence, a much smaller sample set with better
discriminative capacity is generated for sample reconstruction,
leading to higher computational efficiency and potentially bet-
ter clustering performance. The formulation of our algorithm
is presented as follow:

min
P,S,{Si}pi=1

∑p

i=1
‖Hi −HiPSi

>‖2F + α
∑p

i=1
‖S− Si‖2F,

s.t. 0 ≤ Si ≤ 1, 0 ≤ S ≤ 1, P>P = Il. (6)

Here, P ∈ Rn×l is a sampling matrix that generates anchor
points by learning l linear combinations of the data points. It
is a common sampling matrix if each of its column is required
to have only one element to be 1 while other elements to be
0. In our setting, to improve the representative capability of
the generated anchor points and to improve their information
diversity, the sampling matrix is relaxed to be an orthogonal
matrix. Moreover, to make the generated anchor point set to be
suitable for reconstruction across views, a consensus matrix P
is learned for all views. {Si}pi=1 ∈ Rn×l is the reconstruction
matrix of the i-th base kernel that reconstructs the data with
the generated anchor points. S is the consensus matrix that
fuses information from each view. In the target function, the
reconstruction term HiPSi

> first maps the partition matrix
into a low dimensional space with the projection matrix P.
Then it recovers Hi with the reconstruction matrix Si. This
is similar to the process of compressed sensing (CS). The
difference is that in CS the features are the objects which
are compressed, while in our setting the sample points are
compressed.

2) MKC with compressed subspace alignment.: Although
in Eq. (6), the introduction of late-fusion learning mechanism
and the sampling matrix has largely reduced the storage and
computational consumption, the re-weighted method [43] for
the optimization of P in this setting is still complex and
slow. Since in multiple kernel learning algorithms, kernel
polarization that maximizes the alignment between the target
kernel with the linearly combined kernel has long been taken
as an alternative formulation of minimizing the difference
between the two kernels [44], in our paper, to further improve
the computational speed, we convert subspace clustering into
subspace alignment and propose the following formulation:

min
P,S,{Si}pi=1

−
p∑
i=1

Tr(Hi(HiPSi
>)>) + α

p∑
i=1

‖S− Si‖2F,

s.t. 0 ≤ Si ≤ 1, 0 ≤ S ≤ 1, P>P = Il. (7)

In Eq. (7), we follow the setting of many existing works
[36], [44] and use a simpler alignment maximization term
to replace the Frobenius norm of the difference, thus further
reducing the optimization difficulty.

B. Optimization Algorithm

To optimize the resultant problem in Eq. (7), we propose a
three-step iterative optimization algorithm. In each step, two
of the variables are fixed and the remaining one is optimized.
The detailed procedure is presented as follow.

1) Update P: Given S and {Si}pi=1, the optimization
problem of Eq. (7) w.r.t. P becomes:

max
P

∑p

i=1
Tr(Hi(HiPSi

>)>) s.t. P>P = Il. (8)

Letting A =
∑p
i=1 H

>
i HiSi, Eq. (8) can be simplified as:

max
P

Tr(AP>) s.t. P>P = Il. (9)

Denote the SVD of matrix A as UDV> and the optimal
solution of Eq. (9) as P∗. It is easy to know that D is a
diagonal nonnegative matrix and both U and V are orthogonal
matrices. Through deduction we can find that Eq. (9) has a
closed form solution, i.e. P∗ = UV>.

Theorem 1. The optimal solution of Eq. (9) is P∗ = UV>.

Proof. First, since P∗>P∗ = Il, we can easily find that P∗ is
a solution of Eq. (9). Then we prove P∗ is the optimal solution.
Substitute A with its SVD and P with P∗, the resulting target
value of Eq. (9) in this circumstance becomes:

Tr(AP∗>) = Tr(UDV>(UV>)>).

Denote the singular values of A as δ1, δ2, · · · , δn, we have

Tr(AP∗>) =
∑m

i=1
δi.

Moreover, for ∀P, where P>P = Im,

Tr(AP>) = Tr(UDV>P>) = Tr(V>P>UD).

Let G = V>P>U, then GG> = Im. As a consequence,

Tr(AP>) = Tr(GD) ≤
∑m

i=1
δi.

Therefore, for ∀P, if P is a solution of Eq. (9), we have
Tr(AP>) ≤ Tr(AP∗>). Overall, P∗ = UV> is the optimal
solution of Eq. (9).

2) Update Si: Given P, S, and the {Sj}pj 6=i, the optimiza-
tion problem in Eq. (7) w.r.t. Si reduces to the following
problem:

min
Si

−Tr(P>H>i HiSi) + α‖S− Si‖2F, s.t. 0 ≤ Si ≤ 1.

(10)

Denote B = (P>H>i Hi + 2αS>)/(2α), through simple
deduction, Eq. (10) can be converted to a more compact form:

min
Si

‖Si −B‖2F, s.t. 0 ≤ Si ≤ 1. (11)
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Denote the optimal solution of Eq. (11) as S∗i , it has a closed
form as follow:

S∗i = Proj[0,1](B), (12)

where, Proj[0,1](·) is a function that projects a real matrix
into the range of [0, 1].

3) Update S: Given {Si}pi=1 and P, the optimization
problem w.r.t. S becomes:

min
S

∑p

i=1
‖S− Si‖2F, s.t. 0 ≤ S ≤ 1. (13)

Let C =
∑p
i=1 Si/p, Eq. (13) is equivalent to

min
S
‖S−C‖2F, s.t. 0 ≤ S ≤ 1. (14)

The optimal solution of Eq. (14) is S∗ = Proj[0,1](C).
In sum, our algorithm for solving Eq. (7) is outlined in

Algorithm 1, where obj(t) denotes the objective value at the
t-th iteration.

Algorithm 1 Multiple Kernel Clustering with Compressed
Subspace Alignment

Input:
Base cluster indicating matrices {H(1), . . . ,H(p)}, num-
ber of clusters k, parameter α, number of anchor points
l.

Output:
The consensus reconstruction matrix S.

1: Initialization Generate P(0) by normalizing and orthog-
onalizing a random n× l matrix. Set S(0) = 0 and t = 1.

2: repeat
3: Calculate S

(t)
i by optimizing Eq. (11);

4: Calculate P(t) by optimizing Eq. (9);
5: Calculate S(t) by optimizing Eq. (14);
6: t = t+ 1.
7: until ‖P(t) −P(t−1)‖F/‖P(t)‖F ≤ 10−3.

C. Algorithmic Discussion

1) Convergence Analysis: In our proposed three-step opti-
mization algorithm, each sub-step has a closed-form optimal
solution. As a consequence, the objective of Algorithm 1 is
guaranteed to be monotonically decreased when optimizing
one variable with the others fixed at each iteration. At the
same time, the objective is lower-bounded since P is an
orthogonal matrix and 0 ≤ S,Si ≤ 1. Since the target value
in the optimization procedure is monotonously decreased with
a lower bound, the convergence of our proposed algorithm is
guarenteed.

2) Computational Complexity Analysis: Our optimization
algorithm is composed of three sub-problems, each has a
closed form solution. The overall procedure is reported in
Algorithm 1. Specifically, the optimization of P requires doing
SVD on a n × l matrix. This can be efficiently conducted
with time complexity of O(nl2). Since in large datasets
l � n, i.e. the anchor points number is much smaller
than the size of dataset, the time complexity of the SVD
in this circumstance is O(n). Also, since the optimization

of {Si}pi=1 and S have closed form solution, they can be
optimized efficiently. The largest time consumption of the
proposed algorithm comes from the matrix multiplications
like calculating

∑p
i=1 H

>
i HiSi and P>H>i Hi, they make the

time complexity of the proposed algorithm becomes O(n2).
This is a larger time consumption compared to some of the
state-of-the-art linear complexity algorithms (like MVC-LFA
[36] and LMVSC [34]). As the sampling process is optimized
simultaneously with the information fusion process, the extra
computational consumption mainly comes from the unified
optimization configuration. Although more computation is
cost, the representative capacity of the learned anchor point
set is also improved. With the current setting, our algorithm
tries to find a good balance between computational efficiency
and clustering performance. Moreover, since the operation
of matrix multiplication is easy for parallelization, through
careful parallel implementation, the side effect of sampling
process integration can be appropriately relieved. Experimental
results in the next section show that the GPU version of our
algorithm can achieve comparable efficiency with the linear
complexity methods.

IV. EXPERIMENT

In this section, we first carefully design and compare four
subspace clustering-base multi-view clustering algorithms to
construct an ablation study to verify the effectiveness of the
sampling integration mechanism. In the first experiment, by
illustrating the distribution of the learned anchor points of
different compared algorithms, we also give light on the
mechanism of the effectiveness. Then, we extensively compare
the clustering performance and the computational consumption
with the state-of-the-art algorithms to validate the effectiveness
of the proposed algorithm. In the efficiency comparison part,
both the performance of the CPU version and the GPU
enhanced version were compared. Finally, we further analyze
the properties like, the sensitivity and convergence of the
proposed algorithm.

A. Datasets Overview and Experimental Settings
Datasets introduction. We evaluate the clustering perfor-
mance of the proposed algorithm on 6 popular datasets. The
detailed information of these datasets is listed in Table II. From
this table, we observe that the number of samples, views and
the number of categories of these datasets range in a large
scale from 940 to 60,000, 3 to 69, and 3 to 102, respectively.
For these datasets, the kernel matrices of the first five datasets
are pre-computed with carefully designed similarity function
and are publicly available from websites123. For the MNIST
dataset4, it is a classic handwritten digits dataset with 60,000
samples. To construct multi-view description for the samples,
we adopt 3 classic ImageNet pre-trained deep neural networks,
i.e. VGG [45], DenseNet121 [46] and ResNet101 [47] to ex-
tract features. With the extracted features, we finally construct
3 linear kernels for the dataset.

1http://mkl.ucsd.edu/dataset/protein-fold-prediction
2http://www.robots.ox.ac.uk/ vgg/data/flowers/
3http://www.vision.caltech.edu/archive.html
4http://yann.lecun.com/exdb/mnist/
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TABLE II: Information of benchmark datasets
Datasets # Samples # Views # Clusters

Plant 940 69 4
Flower17 1360 7 17

Caltech101 1530 25 102
Mfeat 2000 12 10

Flower102 8189 4 102
MNIST 60000 3 10

Experimental setting. In our experiments, the implementation
of all the compared algorithms is downloaded from the authors
websites. The hyper-parameters are set according to the sug-
gestions of the corresponding literature. As to our proposed
method, the regularization parameter and the number of anchor
points are chosen in the range of [2−15, 2−13, . . . , 215] and
[k,max(2k, 50),max(4k, 100)], respectively. Here, max(·, ·)
outputs the larger value of the two inputs. K-means clustering
is adopted on the final representation S to assign an appro-
priate label for each sample. In the experiment, we repeat
the clustering process for 50 times with random initialization
and report the result with the smallest k-means distortion. We
adopt the widely used clustering accuracy (ACC), normalized
mutual information (NMI) and purity to evaluate the clustering
performance. Specifically, the definition of the ACC is as
follows,

ACC =

∑n
i=1 δ(yi,map(ci))

n
, (15)

where ci and yi represent the obtained cluster label and the
provided ground-truth label of xi(1 ≤ i ≤ n), n is the number
of samples, δ(u, v) is the delta function that equals to one
if u = v and equals zero otherwise, and map(ci) is the
permutation mapping function that maps each cluster label cito
the equivalent label from data. The best mapping can be found
by using the Kuhn-Munkres algorithm [48]. Similarly, NMI is
defined as follows. Let y and c denote the set of clusters
obtained from the ground truth and a clustering algorithm,
respectively. Their mutual information metric MI(y, c) is
defined as follows:

MI(y, c) =
∑

yi∈y,cj∈c
p(yi, cj)log2

p(yi, cj)

p(yi)p(cj)
, (16)

where p(yi) and p(cj) are the probabilities that a sample
arbitrarily selected from data belongs to the clusters yi and
cj , respectively, and p(yi, cj) is the joint probability that the
arbitrarily selected samples belongs to the clusters yi and cj
at the same time. The normalized mutual information (NMI)
is then defined as follows:

NMI(y, c) =
MI(y, c)

max(H(y), H(c))
, (17)

where H(y) and H(c) are the entropies of y and c, respec-
tively.

In the following parts, we conduct comprehensive experi-
ments to study the properties of CSA-MKC from five aspects:
the advantage of joint sampling and multi-view information
fusion, clustering performance, running time, parameter sen-
sitivity and convergence. All our experiments are conducted
on a desktop computer with a 3.6GHz Intel Core i7 CPU and

64GB RAM. The GPU version of our code is tested on a Titan
XP GPU, with CUDA 10.0.130.

TABLE III: Ablation study. Clustering performance and time cost of
the four designed algorithms are reported. Ablation1 is the algorithm
which isolates sampling from MKC and uses a distinct sampling
matrix for each view. Ablation2 is the algorithm which combines
sampling with MKC and uses a distinct sampling matrix for each
view. Ablation3 is the algorithm without a sampling operation. Our
proposed algorithm is listed in the last column, it is an algorithm
that integrates sampling with MKC while using a common sampling
matrix for all views. In the computational time, the time consumption
of the CPU version of all the algorithms are reported.

Datasets Ablation1 Ablation2 Ablation3 Ablation4
ACC (%)

Flower17 62.28 63.75 69.78 66.76
Plant 68.19 68.19 67.34 70.43

Flower102 37.06 40.47 42.76 49.09
CCV 26.46 31.85 31.45 32.59
Mfeat 96.70 86.60 96.85 97.30

NMI(%)
Flower17 61.71 60.27 68.02 63.37

Plant 36.84 39.68 37.61 39.69
Flower102 52.48 54.67 59.84 61.82

CCV 21.25 26.46 26.04 27.61
Mfeat 92.47 87.54 93.04 93.63

Purity (%)
Flower17 62.72 64.78 71.32 68.75

Plant 71.49 71.81 67.34 70.43
Flower102 42.31 47.20 48.60 54.81

CCV 29.59 34.86 33.35 35.39
Mfeat 96.70 87.50 96.85 97.30

Computational time (s)
Flower17 3.46 5.48 15.52 4.20

Plant 20.70 33.80 48.25 17.48
Flower102 56.34 141.64 1027.1 170.85

CCV 8.53 40.46 866.52 60.10
Mfeat 7.48 21.17 68.07 13.79

B. Ablation Study

In our experiments, to illustrate the effectiveness of combin-
ing sampling with multiple kernel clustering, we design four
algorithms and compare their performance. The first algorithm,
denoted as Ablation1, is the version that isolates the process
of sampling, and uses a distinct sampling matrix for each
view. The second algorithm, denoted as Ablation2, is the
version that combines sampling with MKC, but uses a distinct
sampling matrix for each view. The third algorithm, denoted
as Ablation3, is the version which has no sampling process,
i.e., P = In. The fourth algorithm is our proposed algorithm
which combines sampling with MKC and uses a consensus
sampling matrix for all views.

1) Statistical Comparison: The clustering accuracy, NMI,
purity and running time of the four compared algorithms are
reported in Table III. From the table we have the following
observations:
• The performance of Ablation2 and the proposed al-

gorithm (Ablation4) is consistently better than that of
Ablation1. It indicates that integrating sampling with
MKC does improve the performance of clustering.
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(a) Ablation1 (b) Ablation2 (c) Proposed

Fig. 1: Illustration of clustering results and sampling points on Flower102. In these figures, the colored dots represent the cluster structure
of each algorithm generated by the t-SNE [49] algorithm, while the red crosses indicate the locations of the sampled points. Specifically,
Figure (a), (b), and (c) are the representative results of Ablation1, Ablation2, and the proposed algorithm, respectively.

• As the Ablation4 further surpasses the Ablation2 for a
consistent gap in terms of clustering performance, it is
clear that learning a consensus sampling matrix which
has fused information from different views is better
for clustering performance improvement than generating
sampling matrices independently.

• The sampling operation does improve the multi-view
clustering speed. Specifically, conducting sampling and
MVC separately (Ablation1), i.e., sample the anchor
points first and then do clustering with the fixed anchor
points, can speed up the classic MKC algorithm for
more than 20 times on average (Ablation3). Conducting
sampling and MVC simultaneously (Ablation2 and Abla-
tion4) is slower than doing the two processes separately,
however, they still improves the learning speed for more
than 7 times against the classic algorithm.

• The sampling operation not only improves the multi-
view clustering speed but also improve the clustering
performance against the classic algorithm to some extent.
Specially, comparing to the algorithm that adopt the
whole dataset for sample reconstruction (Ablation3), the
proposed algorithm achieves performance enhancement
on four of the five datasets and improves the clustering
ACC for 1.6% on average. The reason behind is similar
to the mechanism of feature selection, i.e., selecting the
discriminative and representative samples among datasets
can to some extent get rid of the adverse effects of the
redundant information and outliers.

2) Clustering Results and Anchor Points Illustration: To
reveal the affect of merging the sampling and multi-view
clustering processes, we first illustrate the clustering results
of three compared algorithms, i.e., Ablation1, Ablation2 and
our proposed algorithm (Ablation4) with t-SNE [49] algorithm
and then marked the representative anchor points of these
algorithms. In Fig.1, the colored dots represent the revealed
distribution of sample points of the Flower102 dataset. Each
different color indicates a different cluster. The red crosses
indicate the learned anchor points. In Fig. 1, sub-figure (a)
represents the result of conducting the sampling process in-

dependently with the MKC process. Sub-figure (b) represents
the result of conducting the two processes simultaneously but
using a specific sampling matrix for each view. Sub-figure
(c) represents the results of conducting and two processes
simultaneously and using a consensus sampling matrix for all
views.

From the figures we have the observation that learning the
sampling process together with the MKC tends to achieve
better clustering performance. The preserved distribution of
the proposed algorithm better suit the intrinsic cluster structure
of data. Also, learning a consensus sampling matrix by inte-
grating information from each view helps make the sampled
anchor points to be more suitable for the revealing of the
underlining overall geometric structure. The illustration in this
part, shed light on the mechanism of the effectiveness of the
proposed algorithm.

C. Comparison with State-of-the-art Algorithms

In this part we further compare our algorithm with seven
state-of-the-art MKC algorithms to verify its effectiveness. The
information of the compared algorithms are listed as follows.
• Average multiple kernel k-means (A-MKKM) Average

multiple kernel k-means (A-MKKM) uniformly combines
each kernel and uses the average kernel for clustering.

• Single best kernel k-means (SB-KKM) Single best
kernel k-means algorithm conducts kernel k-means on
each single kernel and reports the best result.

• Multiple kernel k-means with matrix-induced regu-
larization (MKKM-MR) Multiple kernel k-means with
matrix-induced regularization [3] introduces a diversity
induction term to better merge multi-source information
in MKC.

• Multiple kernel clustering with local kernel alignment
maximization (MKC-LKA) Multiple kernel clustering
with local kernel alignment maximization [4] try to better
preserve the intrinsic local geometric structure among
data by maximizing the local kernel alignment.

• Multi-view clustering via late fusion alignment maxi-
mization (MVC-LFA) In MVC via late fusion alignment
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TABLE IV: Clustering performance comparison between the state-of-the-art algorithms. In this table, ACC, NMI, purity of different clustering
algorithms on six popular datasets are reported. The red boldface indicates the best performance among all the compared algorithms.

Datasets A-MKKM SB-KKM CRSC MKC-LKA MKKM-MR MVC-LFA LMVSC proposed[16] [4] [3] [36] [34]
ACC (%)

Flower17 51.03 42.06 51.76 60.69 59.69 61.16 62.28 66.76
Plant 61.70 51.60 61.91 52.34 62.87 61.81 68.19 70.43

Flower102 27.29 33.13 38.00 40.84 40.24 42.16 37.06 49.09
CCV 19.74 20.08 18.01 23.49 22.47 27.56 26.46 32.59
Mfeat 95.20 86.00 83.30 96.25 94.65 95.30 96.70 97.30

MNIST 77.33 77.89 - - - 78.58 82.85 87.17
NMI(%)

Flower17 50.19 45.14 53.19 57.27 57.11 60.79 61.71 63.37
Plant 26.82 17.18 25.83 21.35 28.29 26.87 36.84 39.69

Flower102 46.32 48.99 54.95 57.60 57.27 60.48 52.48 61.82
CCV 17.16 17.73 18.89 17.11 18.62 20.59 21.25 27.66
Mfeat 89.83 75.79 76.48 91.90 89.04 90.02 92.74 93.63

MNIST 74.28 76.50 - - - 75.47 69.87 77.44
Purity (%)

Flower17 51.99 44.63 53.68 61.79 60.03 62.32 62.72 68.75
Plant 61.70 56.38 62.45 58.19 62.87 61.81 69.49 70.43

Flower102 32.28 38.74 45.04 48.21 46.39 50.44 42.31 54.81
CCV 23.98 23.48 26.80 22.93 25.69 30.71 29.59 35.39
Mfeat 95.20 86.00 83.30 96.25 94.65 95.30 96.70 97.30

MNIST 81.53 82.63 - - - 82.65 82.86 87.19

TABLE V: Clustering speed comparison between the state-of-the-art algorithms. In this table, the average CPU clustering time consumption
of different clustering algorithms on six popular datasets are reported.

Datasets A-MKKM SB-KKM CRSC MKC-LKA MKKM-MR MVC-LFA LMVSC proposed[16] [4] [3] [36] [34]
Computational time (s)

Flower17 0.74 4.58 10.04 8.15 5.47 2.88 20.02 4.20
Plant 0.16 8.15 129.20 31.95 5.69 2.33 122.91 17.48

Flower102 27.51 120.50 426.60 427.40 382.13 97.59 233.06 170.85
CCV 6.98 17.84 283.96 281.92 161.20 30.08 47.55 60.10
Mfeat 0.91 10.70 147.65 13.93 5.95 4.57 48.72 13.79

MNIST 26.19 95.72 - - - 281.01 433.50 1142.05
Average 7.26 51.49 199.49 152.67 112.09 27.49 94.45 53.28

maximization (MVC-LFA) [36], the authors maximally
align the consensus partition with the weighted base
partitions for efficient clustering.

• Large-scale multi-view subspace clustering (LMVSC)
In large-scale multi-view subspace clustering, Kang et.al
[34] take a sampling strategy for efficient multi-view
subspace clustering.

• Compressed subspace alignment-based multiple ker-
nel clustering (CSA-MKC) Compressed subspace
alignment-based multiple kernel clustering is our pro-
posed algorithm which integrate sampling with MKC to
have the sampling process better serve the multi-view
clustering process.

1) Clustering Performance Comparison: The clustering
results of the compared state-of-the-art algorithms are reported
in Table IV. In this table, since the MNIST dataset with 60,000
samples is too large for the memory inefficient early fusion
multiple kernel clustering algorithms and the corresponding
algorithms run out of memory on that dataset, we omit the
results on the MNIST dataset of these algorithms. From the
results in Table IV, we have the following observations. First,

average kernel and single best kernel methods are strong
competitors against other multiple kernel clustering algorithms
that they perform well on most of the compared datasets.
Second, the recently proposed MKC algorithms are effective in
improving the clustering performance that they surpass the A-
MKKM and SB-KKM algorithm in most of the circumstances.
Third, our algorithm achieves the best performance on all
six datasets, and improves the second best algorithm for
more than 5% on the criteria of ACC on the flower102 and
CCV datasets. Specifically, the two algorithms enhanced with
sampling strategies (i.e., LMVSC and the proposed algorithm)
keep achieve at least comparable performance with the com-
pared algorithms which adopt the whole dataset for learning,
indicating that with careful design, the sampling operation
can speed up the learning process and in the mean time
achieve good clustering performance. Moreover, our algorithm
outperforms the LMVSC with a considerable gap, validating
the effectiveness of our simultaneous sampling and learning
mechanism.

2) Computational Time Comparison: We also report the
computational cost of the compared state-of-the-art algorithms
in Figure 3. In this table, as the CRSC, MKC-LKA and
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(a) Flower102: α (b) Flower102: m (c) Flower102: convergence

(d) CCV: α (e) CCV: m (f) CCV: convergence

Fig. 2: Parameter sensitivity and convergence of the proposed algorithm on the Flower102 and CCV dataset. In the first and the second
columns are the parameter sensitivity of α and m, respectively. The last column is the convergence illustration of the proposed algorithm.

Fig. 3: The accelerated running time comparison. In this figure,
the four fastest compared algorithms, i.e., MKKM-MR, MVC-LFA,
LMVSC, and the proposed algorithm are further accelerated with
the GPU and multi-core techniques. The corresponding relative
computational time is illustrated. The taller a bar, is the larger the
relative computational time will be.

MKKM-MR algorithm run out of memory on the MNIST
dataset, we omit the computational time of the corresponding
algorithms on the dataset. For the ease of comparison, we also
report the average computational time of all the compared
algorithms on the first five datasets with relatively smaller
size. From the table we can find that the empirical results
are consistent with the theoretical analysis in the discussion.
Specifically, as a O(n2) complexity algorithm, our proposed
algorithm largely surpasses the O(n3) algorithms, i.e., CRSC,
MKC-LKA, and MKKM-MR. However, it is also much slower

than the linear complexity algorithm, especially on the large
scale MNIST dataset.

3) GPU and Multi-Core Accelerated Computational Time
Comparison: To further speed up the compared algorithms
and check their acceleration rates, we introduce two mod-
ifications to the implementation of the four fastest MKC
algorithms, i.e., MKKM-MR, MVC-LFA, LMVSC and our
proposed algorithm. The first modification is that we intro-
duce multi-core parallel computation to the independent for
iterations. The second modification is that we adopt the GPU
acceleration package to further speed up the optimization
procedure.

The relative computational time of the compared algorithms
are illustrated in Figure 3. Specially, for each dataset, the
relative time consumption of each dataset is calculated by
dividing the time cost with the smallest time cost on the cor-
responding dataset. From the results, we find that the compu-
tational speed of all the compared algorithms are increased to
different extent. Specifically, the acceleration rate of MKKM-
MR, MVC-LFA, LMVSC, and the proposed algorithms are
3.66, 1.23, 3.29, and 15.1, respectively. To the MVC-LFA
algorithm, as the bottleneck of the algorithm mainly lies with
eigenvalue decomposition which is hard to parallel, it achieves
the smallest acceleration rate. To the proposed algorithm, since
more than 90% of the computational cost is spent on matrix
manipulation, which is easy and suitable for parallelization,
it achieves the largest acceleration rate. Moreover, the results
in Figure 3 also shows that, although the proposed algorithm
is with a larger computational complexity compared with the
linear algorithms, it can achieve comparable efficiency with the
help of multi-core and GPU acceleration. This setting further
improves the scalability of the proposed algorithm.
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D. Parameter Sensitivity and Convergence

Parameter Sensitivity. The proposed algorithm introduces
two hyper-parameters, i.e., the number of anchor points m
and the balancing coefficient α. To test the sensitivity of
the proposed algorithm against these two parameters, we
fix one parameter and tune the other in a large range. The
comparison between the proposed algorithm with the second
best algorithm on two representative datasets, i.e., Flower102
and CCV are illustrated in Fig.2(a,b,d,e). From these figures,
we observe that: i) tuning both m and α are effective in
improving the algorithm performance; ii) the algorithm is
stable against the two parameters and good performance can
be achieved with only a small number of anchor points; iii)
the performance of our algorithm significantly surpasses the
second best algorithm in most of the circumstances.
Algorithm Convergence. The objective value variation of
our method on the Flower102 and CCV datasets are shown
in Fig.2(c). As observed from this figure, the convergence
curve decreases monotonically and quickly converges to a
local minimal.

V. CONCLUSION

This paper proposes multiple kernel clustering with com-
pressed subspace alignment (MKC-CSA) to improve both the
clustering efficiency and accuracy in multiple kernel learning
scenario. In our method, by modeling the sampling process
with a linear compressing matrix, we merge sampling and
MKC together in a unified framework and optimize the
two tasks iteratively. As a consequence, the computational
efficiency is largely improved and the clustering performance
is considerably enhanced. In the future, we plan to extend our
algorithm to a more general framework and use it as a platform
to revisit existing multi-view clustering algorithms.
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