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Abstract—Many real-world problems deal with collections of data with missing values, e.g., RNA sequential analytics, image
completion, video processing, etc. Usually, such missing data is a serious impediment to a good learning achievement. Existing
methods tend to use a universal model for all incomplete data, resulting in a suboptimal model for each missingness pattern. In this
paper, we present a general model for learning with incomplete data. The proposed model can be appropriately adjusted with different
missingness patterns, alleviating competitions between data. Our model is based on observable features only, so it does not incur
errors from data imputation. We further introduce a low-rank constraint to promote the generalization ability of our model. Analysis of
the generalization error justifies our idea theoretically. In additional, a subgradient method is proposed to optimize our model with a
proven convergence rate. Experiments on different types of data show that our method compares favorably with typical imputation
strategies and other state-of-the-art models for incomplete data. More importantly, our method can be seamlessly incorporated into the
neural networks with the best results achieved.

Index Terms—Missing patterns, adaptive learning, incomplete data

F

1 INTRODUCTION

1 L EARNING from incomplete data is of great practical2

and theoretical interest. Commonly, we are faced with3

incomplete data in many real-world applications, e.g., in4

condition-based monitoring, failure of a sensor will cause5

the absence of some records for a set of equipment [1]; in6

medical analysis, measurements on some subjects may be7

lost due to the lack of patient’s compliance or unaffordable8

examination fees [2]; in urban computing problems, some9

areas or segments of traffic network may contain no data10

collectors [3], [4]; and also there are inevitable dropouts in11

single-cell RNA sequencing data [5], [6].12

Currently, a typical strategy is to fill the missing at-13

tributes in advance and then feed the data into traditional14

machine learning models. Such missing attributes are com-15

monly filled with zeros or means. K-nearest-neighbor-based16

method is also utilized to estimate the missing values for17

incomplete instances [7]. Probabilistic generative models18

such as Gaussian mixture model (GMM) [8] use expectation19

maximization (EM) algorithm to find the most probable20

completion. Multivariate imputation by chained equations21

(MICE) [9] is an iterative method of dealing with missing22

data under the assumption of missing at random (MAR). A23

limitation of the above imputation methods is that errors24

of imputation may propagate to the following machine25

learning processes. Another intuitive way is to delete in-26

complete instances in training and make some assumptions27
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on missingness patterns [10], or tune the decision function 28

for incomplete test data [11]. However, this limits the appli- 29

cation of such models when all instances are incomplete. 30

Some methods process the missing data in a task-specific 31

way. [12] proposed to use the EM algorithm to learn from 32

incomplete data for a classifier. Similarly, [13] proposed a 33

classification model that dealt with missing data by per- 34

forming analytic integration with an estimated conditional 35

density function. [14] avoided the imputation procedure 36

by introducing instance-specific margins for large margin 37

classifiers. [15] connected the matrix completion task with 38

classification task in a transductive way, whereas [16] ar- 39

gued that completion was neither necessary nor sufficient 40

for classification. They proposed a kernel method for incom- 41

plete data based on observed features. [17] used multiple 42

imputations adaptively to improve the classification results. 43

Apart from the methods mentioned above, many other 44

works fall into this category [18], [19]. 45

In addition to the above-mentioned methods, many neu- 46

ral networks can be utilized to process data with missing at- 47

tributes [20]–[24]. However, they require complete instances 48

in the learning phase. Only recently, [25] proposed a model 49

that can be trained without complete data. They replaced 50

the typical neuron’s response in the first hidden layer by 51

its expected value when data were incomplete. The missing 52

data density was depicted by a Gaussian mixture model and 53

trained together with the neural network. 54

The main shortage of previous methods is that they 55

tend to use a universal model for all data, and thus ignore 56

the inherent differences between data with different miss- 57

ingness patterns. Commonly, we use missingness patterns 58

to indicate the locations of the missing entries. Samples 59

may have varying subsets of observable features due to the 60

inherent properties of the instances. Sometimes, a part of 61

the features may not even be defined for some instances. 62
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(a) Features (x, y, z) are complete.

X

Y

(b) Feature z is missing.

Fig. 1: When all features (x, y, z) are observable, we have
an optimal separating plane in (a). When only (x, y) are
observable, the best separating line is the solid line in (b).
The projection of optimal separating plane in (b) is the
dashed line. If we train one model for both cases, we will
probably end with a compromise of them and get an inferior
result.

Accordingly, using the same model for these heterogeneous63

data limits the performance of the model, and imputation64

may lead to severe deviation. More importantly, the model65

could suffer from competition between data with different66

missingness patterns. We illustrate such a phenomenon in67

Fig. 1. For two sets of data labeled as ”.” and ”+”, when68

we have complete features of an instance, the best decision69

plane for classification is shown in Fig. 1. However, if we70

use the available features (x, y) to classify a point when71

feature z is missing, then use the coefficients of the decision72

plane in Fig. 1 (a) regarding (x, y) is not optimal (shown73

as the dashed line in Fig. 1 (b)). The best separating line,74

in this case, is the solid line as shown in Fig. 1 (b). These75

two patterns would compete against each other when train-76

ing with incomplete data, leading to a suboptimal model77

for both cases. A straightforward way to minimize such78

influence is to learn different decision functions for each79

missingness pattern. However, for some missingness pat-80

terns, data can be insufficient for the training of the model,81

which causes difficulties in generalization. Motivated by the82

above discussions, we propose an adaptive learning model83

based on various missingness patterns for incomplete data.84

We summarize the main contributions and innovations of85

this paper as follows:86

• To the best of our knowledge, the proposed method87

is the first attempt to provide an adaptive model88

that can apply associated decision functions to data89

with corresponding missingness patterns and does90

not require the imputation of missing data.91

• We devise different models for data with various92

missingness patterns, while improving the gener-93

alization ability by a low-rank constraint. We also94

provide an efficient training approach for the non-95

convex optimization.96

• We theoretically prove the generalization error97

bound and convergence property of our model,98

demonstrating the low-rank constraint can be helpful99

to reduce the error.100

• Our method can be seamlessly incorporated into101

various neural networks with minimal modification102

of network architectures. We conduct extensive ex-103

periments on several real datasets with internally 104

missing attributes, algorithm implemented in both 105

linear and non-linear (neural networks) models show 106

its superiority compared with other methods. 107

The remainder of this paper is organized as follows: 108

Section 2 includes a literature review. Section 3 proposes 109

our method. The theoretical analysis is given in Section 4. 110

We also provide an efficient training procedure in Section 111

5. All experimental results are shown in Section 6. Finally, 112

conclusions and future work are drawn in Section 7. 113

2 RELATED WORK 114

In this section, we review the current studies with incom- 115

plete data. Generally, there are two categories in this field: 116

learning after imputation and learning with incomplete 117

data. 118

2.1 Learning After Imputation 119

A prevailing strategy is to fill the missing attributes in ad- 120

vance, and then the filled data can be fed into downstream 121

tasks with traditional machine learning methods. In many 122

real-world applications, missing attributes are commonly 123

imputed by zeros or mean-values. An improved method is 124

try to use K-nearest-neighbours of the incomplete instances 125

to estimate the missing values [7]. 126

Tensor decomposition is a widely used method to deal 127

with the incomplete data problem [26] and has been ap- 128

plied into many applications [27]–[29]. For example, [30] 129

leveraged Tucker decomposition for traffic prediction. They 130

can achieve a comparatively accurate result even when the 131

missing ratio of data is quite high. Liu et al. [31] proposed 132

an model to impute missing data in tensors of visual data. 133

There were three models proposed in the paper, they use a 134

relaxation method to separate relationships and utilize the 135

block coordinate descent (BCD) to find a globally optimal 136

solution. 137

Multi-view learning usually need to face incomplete data 138

problem [32]. Gong et al. [33] developed a spatially related 139

multi-view learning model with adaptive weight technique 140

to address the incomplete data problem in Urban Statistical 141

Data. Liu et al. [34] proposed an efficient and effective 142

method LF-IMVC for the incomplete multi-view clustering 143

problem. The proposed algorithm learns a consensus clus- 144

tering matrix jointly, filling each missing values in the base 145

matrix instead of completing kernel matrices, and optimizes 146

the corresponding permutation matrices. Similar idea can 147

be found in their following studies [35], [36]. The algorithm 148

designed in [35] does not require that there be at least 149

one complete base kernel matrix over all the samples, and 150

different with traditional imputation process that complete 151

the incomplete kernel matrices first. [36] developed a model 152

named EE-IMVC focusing on imputing incomplete base 153

matrices generated by incomplete views. 154

Other strategies such as Gaussian mixture model (GMM) 155

utilizes expectation maximisation (EM) algorithm to find 156

the most probable completion; adversarial joint-learning 157

recurrent neural network is proposed for incomplete time 158

series classification [37], where the adversarial network is 159

used to encourage the network to complete missing data 160
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TABLE 1: Symbol description.

Symbols Descriptions
x, y feature vectors and labels
x0 zero-filling for x
m missingness pattern indicator
m̄ augmented vector generated from m

d ; d′ the numbers of dimensions x and m

H
A dictionary for generating

missingness-pattern specific functions
U, V low-rank latent matrices decomposed from H

ξi the slack variable for the margin
η1, η2 regularization parameters
k rank of U and V

P1, P2, ..., Pn; l n different real polynomials in l real variables

αs; Ts
the step-size and number of iterations in stage s

of the Restarted SubGradient method
e the Euler number

by distinguishing real and imputed values; Multivariate161

imputation by chained equations (MICE) [9] is an iterative162

method of dealing with missing data under the assumption163

of missing at random (MAR); and Kachuee et al. develop a164

generative approach to impute missing data and to measure165

class uncertainties arising from the distribution of missing166

values [38].167

The main disadvantage of the above imputation meth-168

ods is that errors of imputation may propagate to the169

following machine learning models.170

e is .171

2.2 Learning with Incomplete Data172

Methods learning with incomplete data can build a task-173

specific machine learning model to handle such incomplete174

information. An intuitive way is to delete incomplete in-175

stances in training, and make some assumptions for miss-176

ingness in training [10], or tune the decision function for177

incomplete test data [11]. This limits the application of such178

models when most of instances are incomplete.179

Ghahramani and Jordan [12] proposed to use EM ap-180

proach to learn from incomplete data for classifier. Similarly,181

Williams et al. [13] proposed a classification model which182

dealt with missing data by performing analytic integration183

with an estimated conditional density function. Elhamifar184

et al. [39] cast the clustering of data with missing entries185

as clustering of complete data. Chen et al. [40] proposed186

a framework that can characterize both global and local187

consistencies in large-scale time series data. The developed188

graphical methods can perform probabilistic predictions189

and estimate uncertainty values without imputing those190

missing entries. Liu et al. [41] devised three algorithms to191

handle the situation where some channels of samples are192

missing. They can only classify each sample based on all193

observed channels, without imputation process involved.194

Pelckmans et al. [42] defined a loss considering the195

uncertainty of predicted outputs. Under the assumption196

of missing completely at random, their method did not197

involve the imputation procedure. Chechik et al. [14]198

also avoided the imputation procedure by introducing an199

instance-specific margin for large margin classifier. Gold- 200

berg et al. [15] connected the matrix completion task with 201

classification task in a transductive way, whereas Hazan 202

et al. [16] argued that completion is neither necessary nor 203

sufficient for classification. They proposed a kernel method 204

for incomplete data based on observed features. Liu et al. 205

[17] used multiple imputation adaptively to improve the 206

classification results. Apart from above-mentioned methods, 207

many other works fall into this category [18], [19]. 208

The main shortage of previous method is that they all 209

use same model for different missingness patterns, and 210

thus ignore the inherent differences carried by missingness 211

patterns. Bullins et al. [43] analysed the limitation of such 212

model under linear case with hinge loss. They gave a limit 213

on the precision attainable when the learning algorithm was 214

allowed to access only a limited number of attributes per 215

example. A straightforward way to improve the lower error 216

bound is to learn different decision functions for different 217

missingness patterns, so for every decision function, the 218

training data is relatively complete. However, for some 219

missingness patterns, the data can be deficient for training 220

a good model, and we may not see all possible missingness 221

patterns in a training set. 222

3 MISSINGNESS-PATTERN ADAPTIVE MODEL 223

We formulate our idea for binary classification, but it can 224

also be extended to multi-class and regression tasks with 225

associated objective functions. The main symbols used in 226

this paper are summarized in Table 1, and Fig. 2 shows the 227

flowchart of our method. 228

3.1 Linear Model 229

Given a data instance (x,m, y) with feature vector x ∈ Rd, 230

label y ∈ {−1,+1} and m ∈ Rd
′

an indicator vector repre- 231

sents its missingness pattern. Without any prior knowledge, 232

m will be a d-dimensional binary vector. Each bit of m 233

indicates the missingness of the corresponding bit in x. 234

The bit in m is set to 1 if the corresponding feature in x 235

is observed; otherwise, the bit is set to 0. In some settings 236

such as incomplete multi-view learning, features are missing 237

group-wise, so m can serve as a group-wise indicator thus 238

making d′ much smaller than d. 239

In order to treat missingness patterns adaptively, the 240

linear decision function can be formulated as: 241

f(x) = g(m)xo, (1)

where xo ∈ Rd denotes the x after zero out the miss- 242

ing values. In this way, it is possible to apply different 243

weight coefficients generated by g(m) for data of different 244

missingness patterns. g can be selected from a wide range 245

of function classes. In this paper, we adopt a simple yet 246

efficient form of g(m) given by: 247

g(m) = (Hm̄)>, (2)

where H ∈ Rd×2d′ serves as a dictionary for generat- 248

ing missingness-pattern-specific functions. m̄ = [m>, (1 − 249

m)>]> is an augmented vector generated by concatenating 250

m and its element-wise logic NOT operation. The example 251

of sample vector x, corresponding m and m̄ is illustrated in 252

Page 3 of 13 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, AUGUST 2019 4

Dictionary H 

for all missingness patterns

Various 

missingness

 patterns

Low-rank 

constraint

Theoretical 

analysis

Low-rank leads to 

non-convex optimization

Applied in both linear and 

non-linear models

A subgradient method is proposed 

with an efficient convergence rate

Rank k of H can be helpful to 

reduce the error

(Section 5) (Section 4)

×

×

×

×

×

       

×

×

×

×

×

       

(Section 3)

 =    

(Section 6)

Adaptive model with 

low-rank constraint

Fig. 2: The flowchart of our proposed method. In the learning process, given a set of samples with different missingness
patterns, we provide a dictionary H for generating missingness pattern-specific functions. We then restrict H with a
low-rank constraint that introduces correlations between models for different missingness patterns. After a rigorous
generalization error bound analysis, we apply our method into both linear and non-linear models with efficient training
process.

0.3 × 0.1 0.7 ×

   =5

1 0 1 1 0

1 00 1 1 0 0 1 0 0 1

2d

  

 
 

  

d
× missing features

Fig. 3: examples for x, m and m̄.

Fig. 3. In doing this, for every distinct missingness pattern253

m, we have a corresponding weight vector generated by254

Hm̄. Notice that we use m̄ instead of m to ensure that255

for every missingness pattern we select a fixed number of256

elements from H . Bias terms could also be incorporated into257

Eq.(1) by appending a constant feature to xo and extend258

m and H accordingly. Thus the bias terms can also be259

adaptively fitted to missingness patterns. For notational260

simplicity, we omit them in our formulas.261

In the spirit of large margin classifier, we can define262

a modified learning objective which is specialized for in-263

complete data with the margins varying over different264

missingness patterns. Given a set of n labeled observations265

{(xi,mi, yi)}ni=1, the learning objective is:266

min
H

1

n
‖M � (HM̄)‖2F + η1‖H‖2F +

η2

n

n∑
i=1

ξi,

s.t. yi(m̄
>
i H
>xoi ) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, · · · , n,

rank(H) ≤ k,M = [m1, · · · ,mn],

M̄ = [m̄1, · · · , m̄n],

(3)

where ‖ · ‖F and � denotes the Frobenius norm and the 267

Hadamard product respectively; ξi is the slack variable 268

similar to that in Support Vector Machines; η1, η2 and k are 269

hyper-parameters; H ∈ Rd×2d′ , M ∈ Rd×n, M̄ ∈ R2d′×n. 270

Because each instance has its own observable part, we 271

should optimize the margin regarding observable part only. 272

Unlike in the complete data setting, where the margin op- 273

timization is associated with a regularization on the weight 274

vector, we need vary the regularisation in incomplete data 275

setting because the weight vectors vary over samples with 276

different missingness patterns. This leads to the first term in 277

Eq. (3), which is the approximate denominator for instance- 278

based margins. We borrow this idea from [14] to ensure a fair 279

optimization of margins. This is achieved through a mask 280

matrix M to zero out the weights in HM̄ corresponding 281

to missing features. We also introduce η1 to constraint the 282

Frobenius norm of H and fix it to be a small constant. 283

Eq.(3) allows us to define a decision function for every 284

missingness pattern while connecting them through a low- 285

rank matrix H . The low-rank constraint introduces corre- 286

lations between models for different missingness patterns, 287

so that facilitates the learning of models related to some 288

rare missingness patterns. In detail, we decompose H by 289

U>V to restrict the rank of H ≤ k, where U ∈ Rk×d and 290

V ∈ Rk×2d′ , then Eq.(3) can be converted as: 291

min
U,V

1

n
‖M � (U>V M̄)‖2F + η1‖U>V ‖2F +

η2

n

n∑
i=1

ξi,

s.t. yi(m̄
>
i V
>Uxoi ) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, · · · , n,

M = [m1, · · · ,mn], M̄ = [m̄1, · · · , m̄n],

(4)

This learning objective is non-convex. The non-convexity 292

naturally arise from the rank constraint in H . One may 293

consider add more constraints on U or V (e.g., UU> = 294
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I) to make the learning problem convex globally, but that295

will inevitably add the computation complexity and is in-296

deed unnecessary, i.e., for the non-convex low-rank matrix297

problems, all local minima are also globally optimal [44].298

Such constraints will not benefit to the performance of the299

proposed model. Nevertheless, we will show the learning300

objectives regarding U or V are convex respectively. We also301

present an efficient training algorithm in Section 5.302

3.2 Generalize to Non-linear Model303

Our idea can also be readily applied to many existing neural304

networks with some minimal modifications. Assume the305

output of a neural network with complete data can be306

expressed as:307

ŷ = f(x; θ) (5)

where θ denote parameters of the network with any non-308

linear activation functions. We can adjust the weight of309

observed features by missingness pattern, which gives the310

output:311

ŷ = f((Hm̄)� xo; θ). (6)

Considering the low-rank constraint, we decompose H312

by U>V . Then, the learning objective can be formulated as313

follows:314

min
U,V,θ

n∑
i=1

L
(
yi, f((U>Vmi)� xoi ; θ)

)
, (7)

where L is the loss function.315

We incorporate the rank constrain by decomposing H316

into product of U> and V with U ∈ Rk×d and V ∈ Rk×2d′ .317

U and V would be learned together with the network’s318

parameters θ in an end-to-end manner. The motivation319

behind the formula is clear and effective: we can adjust the320

importance of observed features when some other features321

are missing.322

4 GENERALIZATION ERROR BOUND ANALYSIS323

In this section, we theoretically analyze the generalization324

error of our linear model. We give a rather general bound on325

the generalization error based on the growth function. This326

bound also supports the low-rank constraint in our model.327

We firstly introduce some common settings in this328

section. A labeled training set is given by D =329

{(xi,mi, yi)}ni=1, where xi ∈ X ; X is a subset of Rd,330

yi ∈ {−1,+1} and mi ∈ {0, 1}d
′

represents the missingness331

indicator vector. We assume that training data are drawn332

independently and identically distributed (i.i.d.) according333

to some unknown distribution D and denote D ∼ D.334

The derived bound will be quite general since we do not335

assume the underlying missingness mechanism a prior. Let336

the hypothesis set F be a family of functions mapping X to337

{−1,+1} defined by:338

F = {x 7→ (Hm̄)>xo : rank(H) ≤ k}. (8)

The empirical error of a hypothesis f ∈ F over the339

training set D is defined as:340

R̂D(f) =
1

n

n∑
i=1

1f(xi) 6=yi , (9)

where 1f(xi) 6=yi = 1 if f(xi) 6= yi and 0 otherwise. The 341

generalization error of f is defined by: 342

RD(f) = E
(x,y)∼D

[
1f(x)6=y

]
. (10)

We start with a bound on the generalization error RD(f) 343

given by [45, Corollary 3.9]. For any δ > 0, with probability 344

at least 1− δ, for any f ∈ F , we have: 345

RD(f) ≤ R̂D(f) +

√
2 log ΠF (n)

n
+

√
log 1

δ

2n
, (11)

where ΠF (n) is the growth function for the hypothesis 346

set F with n samples. The growth function ΠF (n) is the 347

maximum number of distinct sign-patterns on n samples 348

that can be produced with functions in F . As a result, 349

the generalisation error bound mainly relies on the growth 350

function ΠF (n). Next, we will give the bound for ΠF (n)and 351

formal definition on ΠF (n). 352

We restate the following Lemma [46, Lemma 17] for 353

bounding the growth function: 354

Lemma 4.1. Let P1, P2, ..., Pn be n real polynomials in l real 355

variables, and suppose the degree of each Pi does not 356

exceed t. If n ≥ l then s(P1, P2, ..., Pn) ≤ 2(2e · n · t/l)l 357

with s(P1, P2, ..., Pn) denotes the total number of sign- 358

patterns of the polynomials P1, P2, ..., Pn; and e is the 359

Euler number. 360

Lemma 4.1 provides a bound for sign patterns of poly- 361

nomials. This bound assumes Pi 6= 0. This coincides with 362

most of the practical cases. If we would like to consider 363

a more complete setting that allows Pi = 0, we can set 364

sign(0) = 1 and follow the results in [47, Proposition 5.5] 365

to obtain s(P1, P2, ..., Pn) ≤ (8e · n · t/l)l. 366

We then give the definition of the growth function ΠF (n) 367

and its bound altogether in following theorem. Proof of this 368

theorem will be based on Lemma 4.1. 369

Theorem 4.2. The growth function ΠF (n) of hypothesis set 370

F on n samples is defined and bounded by: 371

ΠF (n) =

max
{x1,...,xn}⊆X

∣∣ {(sign(f(x1)), ..., sign(f(x1))
)

: f ∈ F
} ∣∣

≤ 2(
2e · n · t

l
)l,

(12)

where t = 2 and l = k(d+ 2d′). 372

Proof: Consider f(x1), ..., f(xn) to be n real polyno- 373

mials. Because rank(H) ≤ k, H can be decomposed into 374

product of U> and V with U ∈ Rk×d and V ∈ Rk×2d′ . 375

Treat elements of U and V as variables, so that the degree 376

of each polynomial f(xi) is 2 and we have k(d + 2d′) 377

variables. Apply Lemma 4.1 and we complete the proof. 378

379
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Corollary 4.2.1. For any f ∈ F and δ > 0, following380

generalization error bound holds with probability at381

least 1− δ:382

RD(f) ≤ R̂D(f) +

√
2k(d+ 2d′) log 4e·n

k(d+2d′) + log 4

n

+

√
log 1

δ

2n
.

(13)

The rank k of H , the feature dimension d, the dimension383

d′ of missingness indicator vector m and the sample size n384

jointly represent the upper bound of generalization error in385

above corollary. Clearly this bound decreases when sample386

size n increases. A low-dimensional feature vector x and387

a low-dimensional missingness pattern indicator vector m388

are both beneficial to the model generalization. It also shows389

that appropriately constrain the rank k of H can be helpful390

to reduce the error.391

5 EFFICIENT TRAINING PROCEDURE392

The optimisation of Eq.(7) is based on stochastic gradient393

descent with PyTorch [48] implementation. We discuss the394

learning problem with regard to Eq.(4) in this section. It395

is non-convex due to the rank constraint. Notice that H396

can be decomposed as H = U>V with U ∈ Rk×d and397

V ∈ Rk×2d′ . Then the loss function associated with Eq.(4)398

is convex regarding U with fixed V and vice versa. We can399

optimize them alternatively until convergence. A straight-400

forward way to minimize the loss function is through the401

subgradient method. We fix some subgradient oracles for U402

and V as:403

gU =
2

n
V M̄

(
M> �

(
M̄>V >U

))
+ 2η1V V

>U − η2

n

∑
i∈Isv

yiV m̄ix
o
i
>,

(14)

gV =
2

n
U
(
M �

(
U>V M̄

))
M̄>

+ 2η1UU
>V − η2

n

∑
i∈Isv

yiUxoi m̄
>
i ,

(15)

where Isv denotes indices of support vectors, i.e. samples404

with positive slack variables. Given the subgradients, we405

can optimize U with fixed V and optimize V with fixed406

U iteratively until convergence. The key factor that influ-407

ences the overall convergence is the convergence rate of408

subroutines to optimize U and V , so we now discuss the409

convergence rate of optimization regarding U given V . For410

V , a similar result holds, and we omit the details here.411

Algorithm 1 presents the procedure for optimizing U .412

Our loss function is non-Lipschitz and can not be guar-413

anteed to be strongly-convex regarding U , as can be verified414

from its gradient given above. These are often required415

for deriving a convergence rate for subgradient methods.416

Inspired by [49] and [50], together with the Restarted Sub-417

Gradient (RSG) method [51], we can give a ε approximate418

solution in O( 1
ε ) iterations with our optimization strategy419

regarding U .420

Algorithm 1: Subroutine for optimizing U

Input: U1
1 , V , the number of stages S.

Output: U1
S+1.

1 Initialization: ε0 = F (U1
1 ). Calculate C, γ, LΦ, Lh,

α1, T1.
2 for s = 1 to S do
3 αs = ( 1

2 )s−1α1; Ts = 2s−1T1;
4 for t = 1 to Ts do
5 Calculate U t+1

s by Eq.(18);

6 U1
s+1 = arg minU∈U1

s ,...,U
Ts+1
s

F (U);

Our loss function has the form of F (U) = Φ(U) + h(U) 421

with: 422

Φ(U) =
1

n
‖M � (U>V M̄)‖2F + η1‖U>V ‖2F , (16)

h(U) =
η2

n

n∑
i=1

`(yi, m̄
>
i V
>Uxoi ), (17)

where the hinge loss `(y, ŷ) = max(0, 1−yŷ). One can easily 423

verify that Φ(U) has LΦ-Lipschitz gradient and h(U) is an 424

Lh-Lipschitz function. Let αs and Ts be the step-size and 425

number of iterations in stage s. In each stage, we adopt the 426

following update rule: 427

U t+1
s = U ts − αs

gUt
s∥∥gUt

s

∥∥
F

, t = 1, · · · , Ts, (18)

and we choose U1
s+1 = arg minU∈U1

s ,...,U
Ts+1
s

F (U) for next 428

stage. Let ε0 = F (U1
1 ) and F ∗ be the minima of F (U). We 429

have following theorem. 430

Theorem 5.1. With γ = max(
√

8LΦ, 8Lh), C = 1
η1σ2

min(V )+
431

where σmin(V )+ is the smallest non-zero singular 432

value of V . In order to get U that satisfies F (U) − 433

F ∗ ≤ ε, Algorithm 1 requires S = dlog2( ε0ε )e stages 434

and O
(√η2Cγ

ε max(
√

8
9LΦη2, 8Lh)

)
iteration complexity 435

where dae denotes the smallest integer not less than a. 436

For s = 1, 2, · · · , S, the step-size αs and number of 437

iterations Ts are given by: 438

αs =
1

2s−1
· ε0
γ
√
η2
,

Ts = 2s−1 · d 1

ε0
max(

√
8LΦ

9
η2Cγ, 8Lh

√
η2Cγ)e.

(19)

Notice that Eq.(19) is applied when η2 ≥ 1. For η2 ≤ 1, 439

we can simply set η2 in Eq.(19) to 1 and share same con- 440

vergence rate. Theorem 5.1 shows that our optimization 441

strategy has sublinear convergence rate. Calculating the 442

subgradient requires linear time regarding n, d, d′ and 443

square time regarding the rank k. 444

We give following lemma to prove theorem 5.1. 445

Lemma 5.2. Denote by U∗ the optimal set contains all 446

minimizers of F . Let U∗ denote the element in U∗ which 447

is closest to U. The following holds: 448

‖U − U∗‖2F ≤ C(F (U)− F ∗), (20)
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where a constant C = 1
η1σ2

min(V )+
and F ∗ is the minimal449

value of F .450

Proof: Our loss function regarding H has the form of:451

K(H) =
1

n
‖M � (HM̄)‖2F + η1‖H‖2F

+
η2

n

n∑
i=1

`(yi, m̄
>
i H
>xoi ).

(21)

Clearly K(H) is a ρ-strongly convex function with ρ ≥452

2η1. Following proof of [52, Theorem 8], the set of optimal453

solutions regarding minimizing F (U) is:454

U∗ = {U : U>V = Ω∗}. (22)

Given V and U , by definition of U∗ we have:455

U∗ = min
U ′∈U∗

‖U ′ − U‖2F . (23)

From KKT conditions of Eq.(23) we know:456

u∗i − ui + V βi = 0, (24)

where u∗i , ui and βi denote i-th column vectors of U∗, U457

and related Lagrange multipliers respectively. This implies458

u∗i − ui ∈ Im(V ). From Courant-Fischer theorem we know:459

‖V >ui − V >u∗i ‖2 ≥ σmin(V )+‖ui − u∗i ‖2. (25)

Apply Eq.(25) to every column of U we get:460

‖V >U − V >U∗‖2F ≥ σ2
min(V )+‖U − U∗‖2F . (26)

By definition of strongly-convex function:461

K(H1) ≥ K(H2)+〈k(H2), H1 −H2〉+
ρ

2
‖H1−H2‖2F , (27)

where k(H2) ∈ ∂K(H2) is any subgradient of K at H2. Let462

H1 = U>V and H2 = (U∗)>V , and notice that K(U>V ) =463

F (U). We have:464

F (U) ≥ F ∗ +
〈
V k((U∗)>V )>, U − U∗

〉
+
ρσ2

min(V )+

2
‖U − U∗‖2F ,

(28)

because V ∂K((U∗)>V )> = ∂F (U∗). According to opti-465

mality conditions of subgradient method, we can choose466

V k((U∗)>V )> = 0 ∈ ∂F (U∗). Thus,467

ρσ2
min(V )+

2
‖U − U∗‖2F ≤ F (U)− F ∗. (29)

Because ρ ≥ 2η1,468

‖U − U∗‖2F ≤
1

η1σ2
min(V )+

(F (U)− F ∗), (30)

which completes the proof.469

We adopt following update rule in stage s:470

U t+1
s = U ts − αs

gUt
s∥∥gUt

s

∥∥
F

, t = 1, · · · , Ts. (31)

Notice that our loss function has the form of:471

F (U) = Φ(U) + h(U), (32)

where Φ(U) has LΦ-Lipschitz gradient and h(U) is an Lh- 472

Lipschitz function. Then another useful Lemma is: 473

Lemma 5.3. With the update rule of Eq.(31), we have 474

min
t=1...Ts

{F (U ts)− F ∗}

≤ LΦ

2

(∥∥U1
s − U∗

∥∥2

F

2Tsαs
+
αs
2

)2

+ 2Lh

(∥∥U1
s − U∗

∥∥2

F

2Tsαs
+
αs
2

) (33)

Lemma 5.3 is proved in [50] by firstly applying [50, 475

Lemma 2.3] to our loss function F (U) and then applying 476

[50, Theorem 1.2]. 477

We can use Lemma 5.2 and Lemma 5.3 to complete the 478

proof of Theorem 5.1. Combine Lemma 5.2 and Lemma 5.3, 479

we get: 480

min
t=1...Ts

{F (U ts)− F ∗}

≤ LΦ

2

(
CF (U1

s )

2Tsαs
+
αs
2

)2

+ 2Lh

(
CF (U1

s )

2Tsαs
+
αs
2

) (34)

We assume that F (U1
s ) ≤ η2. This could be easily 481

guaranteed by knowing that F (0) ≤ η2, and set U = 0 at 482

initialization. When η2 ≥ 1, set the step size αs and number 483

of iteration Ts as: 484

αs =
F (U1

s )

γ
√
η

2

(35)

Ts = d 1

F (U1
s )

max(

√
8LΦ

9
η2Cγ, 8Lh

√
η2Cγ)e. (36)

We can obtain: 485

min
t=1,...,Ts+1

{F (U ts)− F ∗} ≤
F (U1

s )

2
. (37)

We choose the best U in stage s as the initial values in 486

stage s+ 1 following: 487

U1
s+1 = arg min

U∈U1
s ,...,U

Ts+1
s

F (U), (38)

therefore we can get: 488

‖U1
s+1 − U∗‖2F ≤ C(F (U1

s+1)− F ∗) ≤ CF (U1
s )

2
. (39)

Applying the inequality recursively, we obtain αs+1 = 489
αs

2 , Ts+1 = 2Ts, and 490

min
t=1,...,TS+1

{F (U tS)− F ∗} ≤ F (U1
1 )

2S
. (40)

In order to get U that satisfies F (U)−F ∗ ≤ ε, Algorithm 491

1 in our paper requires S = dlog2( ε0ε )e stages with ε0 = 492

F (U1
1 ). Summing up the iterations for all stages and noticing 493

that it is a geometric series, gives the iteration complexity 494

O
(√η2Cγ

ε max(
√

8
9LΦη2, 8Lh)

)
. 495
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TABLE 2: Summary of datasets

Dataset Instances Features % of Internally Missing

bands 539 19 5.38%
hepatitis 155 19 5.67%

horse 368 22 23.80%
mammographic 961 5 3.37%

pima 768 8 12.24%
MIC 1700 111 35.8%

Drive Diagnosis 58509 49 0%
MNIST 70000 784 0%
Avila 20867 10 0%

When η2 < 1, the iteration complexity becomes496

O
(Cγ
ε max(

√
8
9LΦ, 8Lh)

)
to satisfy F (U)−F ∗ ≤ ε. This can497

be verified by setting η2 = 1 in Eq.(35), Eq.(36) and applying498

them recursively with Eq.(34). Thus we complete the proof499

of Theorem 5.1.500

Computational Complexity. We discuss the time com-501

plexity of our proposed model here. The time complexity502

is mainly affected by our subgradient training methods, as503

shown in Eq.(14)-(15). It is apparent that the time complexity504

is governed by matrix multiplication operations and deci-505

sion function complexity in each iteration. Calculating the506

subgradient incurs O(nk(d + 2d′) + (d + 2d′)k2) computa-507

tional complexity, which is quadratic regarding the rank k508

and linear regarding n, d, d′, so it can be easily calculate509

even for large number of samples and feature dimension.510

Notice that Eq.(14)-(15) require indices of the support vec-511

tors, which can be obtain through the decision function with512

O(nk(d+ 2d′)) complexity.513

6 EXPERIMENTS514

In this section, we present experiments on some real datasets515

with internally missing attributes as well as artificially miss-516

ing entries. Table 2 summarizes the datasets.517

6.1 Linear model518

We apply our method learned through Eq.(4) on six real519

datasets retrieved from UCI repository [53] with internally520

missing attributes, those are the top six datasets in Table521

2 (MIC indicates the Myocardial Infarction Complications522

dataset and we choose to predict Chronic Heart Failure).523

We randomly split those datasets into 70% for training524

and 30% for testing. First, we conduct experiments on the525

original dataset. Second, to consider a more general case,526

we randomly removed 30% of the values in the training sets527

and test sets. In this case, the missing rate would be higher528

than 30% for all datasets and the missingness mechanisms529

are more complex than the original datasets.530

We considered methods with publicly available codes.531

We compared our method with the following baselines:532

• Flag: This method added additional binary features533

to indicate whether a feature was missing for a given534

instance. The missing values were set to zero.535

• Zero: This method sets missing values to zero.536

• Mean: This method sets missing features to averages537

of corresponding features from other instances that538

were not missing.539

• KNN: Missing features of an instance were filled 540

with means of those features calculated from the 541

K-nearest neighbors of this instance. The neighbor- 542

hood was measured using Euclidean distance with 543

observed features. The K was chosen from {3, 4, 5}. 544

• GMM: Missing values in the training set were filled 545

in an iterative way between two steps: (1) learn- 546

ing a GMM with the filled data and (2) re-filling 547

missing values using components’ means, weighted 548

by the posterior probabilities of related components 549

generated the sample. For the test set, we used the 550

learned GMM to iteratively fill the missing values 551

until convergence according to step (2). We chose the 552

number of the mixture components from {3, 4, 5}. 553

This idea is similar to that in [8], [12], [14]. 554

• MICE: MICE iteratively imputed one missing feature 555

by regression based on other features [54]. We chose 556

the linear regression to fit the models. 557

• geom: This method was proposed by [14]. It consid- 558

ers sample-specific margins. We used the iterative 559

algorithm as suggested there with 5 iterations. The 560

parameter C were selected from {10−5,...,105}. 561

• karma: This algorithm was presented in [16]. It 562

trained a classifier under the low-rank assumption 563

of data. The parameters γ and C were selected from 564

{1, 2, 3, 4} and {10−5,...,105}. 565

We combined the Flag, Zero, Mean, KNN, GMM and 566

MICE with Support Vector Machines (SVM) and chose the 567

parameter C for SVM from {10−5,...,105}. Data were nor- 568

malized to zero mean and unit covariance after imputation 569

for imputation-based methods and normalized based on 570

observed features for geom, karma and our method. We 571

fixed η1 = 10−6 for our method. η2 and k were chosen 572

from {10−5,...,105} and {2, 4, ..., d} where d is the feature 573

dimension of related dataset. All the hyper-parameters are 574

selected based on 5-fold cross-validation on training sets. 575

We present experiments with the original datasets here 576

in Table 3. The original datasets contains internally ab- 577

sent attributes. Our model consistently outperforms other 578

baselines except on pima dataset. The performance gaps 579

between all models are relatively small due to the low 580

missing percentages. 581

Experiment results in the general case (with additionally 582

30% data removed) are presented in Table 4. We repeated 583

the experiments 5 times to report the classification accuracy 584

Our method achieved the best accuracy on all 5 datasets. 585

In general, our method is better than imputation methods, 586

because inaccurate imputation could deteriorate the down- 587

stream classification task. Our method also outperforms 588

Flag, which indicates that simply adding the missingness 589

pattern as additional features is not as good as our strategy. 590

These datasets contains inherent missing features, and we 591

also removed some values randomly. These factors make 592

the missingness mechanism complicated and it is hard to 593

learn a universal model that fits all these heterogeneous 594

missingness patterns. Our method tries to adaptively apply 595

the classifiers specialized to different missingness patterns, 596

which makes it capable of learning some finer classifiers. 597

This makes our model outperforms other baselines. 598
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TABLE 3: Classification accuracy (mean±std) with original datasets. The best results are bold and the second best are
underlined.

Dataset

Method bands hepatitis horse mammographic pima MIC

Flag 0.617±0.000 0.872±0.000 0.864±0.000 0.778±0.000 0.783±0.000 0.771±0.003
Zero 0.606±0.002 0.851±0.000 0.838±0.000 0.796±0.000 0.801±0.000 0.763±0.005
Mean 0.611±0.002 0.872±0.000 0.847±0.000 0.796±0.000 0.792±0.000 0.765±0.004
MICE 0.617±0.000 0.809±0.000 0.856±0.000 0.785±0.000 0.775±0.000 0.763±0.001
GMM 0.594±0.013 0.872±0.021 0.841±0.011 0.779±0.010 0.787±0.023 0.752±0.003
KNN 0.593±0.010 0.847±0.009 0.847±0.000 0.775±0.002 0.805±0.000 0.773±0.003
geom 0.605±0.000 0.872±0.000 0.865±0.000 0.789±0.000 0.792±0.000 0.758±0.005
karma 0.611±0.040 0.809±0.000 0.838±0.000 0.798±0.000 0.797±0.005 0.767±0.002

Ours 0.678±0.005 0.872±0.000 0.876±0.007 0.799±0.001 0.791± 0.002 0.778± 0.000

TABLE 4: Classification accuracy (mean±std) on datasets with additional missing values. The best results are bold and the
second best are underlined.

Dataset

Method bands hepatitis horse mammographic pima MIC

Flag 0.583±0.006 0.845±0.016 0.825±0.007 0.764±0.006 0.737±0.022 0.773±0.004
Zero 0.597±0.022 0.842±0.017 0.816±0.015 0.761±0.018 0.736±0.010 0.759±0.003
Mean 0.586±0.008 0.843±0.017 0.822±0.013 0.774±0.009 0.740±0.002 0.761±0.003
MICE 0.575±0.027 0.774±0.044 0.712±0.041 0.772±0.016 0.738±0.023 0.764±0.002
GMM 0.572±0.021 0.825±0.037 0.805±0.013 0.768±0.012 0.742±0.021 0.764±0.005
KNN 0.592±0.016 0.812± 0.037 0.836±0.026 0.762±0.006 0.747±0.009 0.771±0.005
geom 0.575±0.023 0.834±0.025 0.819±0.022 0.762±0.009 0.742±0.006 0.764±0.002
karma 0.551±0.040 0.817±0.032 0.759±0.022 0.759±0.014 0.740±0.009 0.751±0.008

Ours 0.648±0.021 0.868±0.009 0.840±0.011 0.776±0.010 0.756±0.006 0.780±0.004
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(a) Results on dataset Sensorless Drive Diagno-
sis .
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(b) Results on dataset MNIST.

10% 30% 50% 70% 90%

Missing ratio

0.5

0.6

0.7

C
la

s
s
if
ic

a
ti
o
n
  
a
c
c
u
ra

c
y

Ours

Zero

Mean

GMM

KNN

(c) Results on dataset Avila.

Fig. 4: The average accuracy.

TABLE 5: Classification accuracy (mean±std) on Sensorless Drive Diagnosis dataset. The best results are bold and the
second best are underlined.

Percentage of missing

Method 10% 30% 50% 70% 90%

Zero 0.908±0.001 0.852±0.011 0.769±0.005 0.618±0.005 0.317±0.002
Mean 0.947±0.004 0.907±0.001 0.816±0.003 0.650±0.005 0.329±0.003
MICE 0.717±0.001 0.422±0.009 0.483±0.010 0.322±0.007 0.197±0.007
GMM 0.938±0.002 0.890±0.005 0.805±0.007 0.601±0.007 0.327±0.003
KNN 0.936±0.004 0.847±0.003 0.725±0.003 0.398±0.004 0.215±0.005
Flag 0.970±0.001 0.925±0.001 0.834±0.002 0.677±0.003 0.345±0.004

PMNN 0.733±0.001 0.886±0.001 0.781±0.001 0.649±0.002 0.318±0.001

Ours 0.976±0.001 0.940±0.001 0.858±0.002 0.695±0.002 0.351±0.002
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TABLE 6: Classification accuracy (mean±std) on MNIST dataset. The best results are bold and the second best are
underlined.

Percentage of missing

Method 10% 30% 50% 70% 90%

Zero 0.957±0.001 0.942±0.002 0.918±0.002 0.863±0.003 0.688±0.003
Mean 0.964±0.001 0.951±0.001 0.933±0.001 0.891±0.003 0.727±0.004
GMM 0.963±0.002 0.925±0.003 0.806±0.011 0.636±0.006 0.379±0.012
KNN 0.965±0.001 0.941±0.002 0.864±0.001 0.703±0.023 0.223±0.012
Flag 0.867±0.002 0.935±0.002 0.908±0.003 0.847±0.012 0.360±0.045

PMNN 0.907±0.001 0.910±0.002 0.883±0.003 0.842±0.002 0.700±0.004

Ours 0.970±0.001 0.958±0.001 0.940±0.001 0.900±0.002 0.739±0.004

TABLE 7: Classification accuracy (mean±std) on Avila dataset. The best results are bold and the second best are underlined.

Percentage of missing

Method 10% 30% 50% 70% 90%

Zero 0.722±0.002 0.630±0.005 0.553±0.006 0.496±0.004 0.433±0.002
Mean 0.718±0.005 0.630±0.005 0.556±0.003 0.492±0.003 0.433±0.002
MICE 0.717±0.005 0.618±0.005 0.435±0.007 0.422±0.002 0.412±0.001
GMM 0.722±0.004 0.633±0.004 0.557±0.003 0.470±0.002 0.432±0.002
KNN 0.746±0.004 0.620±0.002 0.536±0.006 0.474±0.003 0.426±0.002
Flag 0.713±0.005 0.630±0.004 0.555±0.003 0.491±0.002 0.433±0.002

PMNN 0.503±0.004 0.445±0.003 0.526±0.003 0.473±0.004 0.412±0.001

Ours 0.765±0.002 0.646±0.004 0.556±0.003 0.499±0.003 0.444±0.001

6.2 Non-Linear model599

We compare our method with other baselines based on600

linear models (neural networks). The experiments were601

conducted on three real datasets.602

Sensorless Drive Diagnosis dataset is retrieved from603

UCI repository [53]. The features are extracted from electric604

current drive signals. It consists of 11 classes indicating 11605

different running conditions of the drive. There are 58509606

instances and each instance has 49 features. The datasets607

were randomly split into 50% training set and 50% test608

set. We randomly selected 25% of the training data as the609

validation set.610

MNIST [55] is a dataset for classification of handwritten611

digits. The dataset contains 784 features and has a training612

set of 60000 examples, and a test set of 10000 examples. We613

randomly selected 20% of the data in training set as the614

validation set.615

The Avila dataset was extracted from 800 images of the616

’Avila Bible’, an XII century giant Latin copy of the Bible.617

The prediction task consists in associating each pattern to a618

copyist, with the given 10 features. It consists of 12 classes619

and 20867 instances. Data have been normalized by using620

the Z-normalization method and divided into two subsets:621

a training set containing 10430 samples, and a test set622

containing 10437 samples. We randomly selected 25% of the623

training data as the validation set624

karma and geom methods cannot be applied to neural625

networks so we omit them here. MICE cannot scale to626

MNIST dataset due to the high dimensionality of feature627

vectors. We compared an additional method proposed re-628

cently in [25] and named it PMNN. The number of compo-629

nents of GMM for PMNN was chosen from {3, 4, 5}. We630

(a) Results on dataset bands. (b) Results on dataset horse.

Fig. 5: Effect of Parameters.

did not compare with other neural networks for classifi- 631

cation since they required complete instances for training. 632

We compared all the baselines based on a multilayer per- 633

ceptron (MLP) consists of 3 ReLU hidden layers with 100 634

neurons per layer. We used cross-entropy loss as the loss 635

function in training. All hyper-parameters is selected based 636

on the validation set. The range of hyper-parameters was 637

similar to the linear model except that k was chosen from 638

{21, 22, ..., 2log2 d}where d is the feature dimension. Because 639

these datasets were complete, we randomly removed 10%, 640

30%, 50%, 70%, 90% of values in them. We repeated this 641

procedure 5 times to report the classification accuracy with 642

mean and standard deviation. 643

Figure 4 presents the average results on non-linear mod- 644

els. To keep image clear, we only draw top five methods, 645

the comprehensive results are reported in Table 5 - 7. 646

The tests drawn in Figure 4 demonstrate the superiority 647
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Fig. 6: Convergence rate.

of our method with various missing ratios. Table 5 and648

Table 6 show the results of our method together with some649

baselines. The results show the advantage of our method650

over classical imputation methods and PMNN. Notice that651

PMNN produced a poor result when the missing ratio was652

low. PMNN is required to fit a GMM together with the653

neural network, but the GMM of PMNN is only trained with654

incomplete instances. Unlike GMM for imputation, where655

all data are used to fit the GMM, their model cannot be656

trained well when the percentage of missing is low. Flag657

shows good performance on Sensorless Drive Diagnosis658

dataset. However, its performance is limited on MNIST659

dataset. This indicates that the missingness patterns can be660

important in learning with incomplete data, but should be661

wisely incorporated into the model equation. Our model662

consistently outperforms other baselines, which verifies the663

effectiveness of our strategy to adjust the importance of664

present features by the missingness patterns.665

Table 7 presents the experiment results on a smaller666

dataset Avila [56]. In general, our model performs better667

than other baselines, but compared to results on MNIST668

dataset, the improvements are relatively small. Because our669

method involves more parameters, it may require more data670

for the model learning.671

6.3 Analysis of Parameters and Convergence672

This section evaluates the performances of our proposed673

model by varying the critical parameters. As illustrated674

in Section 3.1 and 6.1, we fixed η1 = 10−6 to constraint675

the Frobenius norm of H . We here show the experimental676

results with various k and η2 on datasets bands and horse,677

similar results can be gotten in other datasets. We discuss678

them jointly and pick them up by the grid search method.679

Fig. 5 (a) reveals the different accuracies with varying680

settings for k and η2 on dataset bands. In general, our model681

is insensitive to k and η2. The performance is slightly better682

when k is setting smaller. When we increase η2 from 10−4
683

to 104, the result improves at the beginning stage, and tends684

to stay stable at the range of {101, 104}. In particular, our685

model achieves the best result when k = 2 and η2 = 104,686

while it can get good performance if the k is set between 2687

and 6. This indicates that the low-rank constraint is benefit688

to the performance.689

Fig. 5 (b) reveals the effect of varying k and η2 on dataset690

horse. Our model is insensitive to k, but the smaller of k,691

the performance better. η2 = 101 yields the best results. We692

observe that the performance is stable when η2 is ranged693

between 101 and 103.694

In summary, both parameters used in our model are ben- 695

efit to the performance improvement. Moreover, our model 696

is stable and easy fine-tuning because of the insensitivity for 697

those parameters. 698

Figs. 6 (a) and (b) illustrate the convergence trends of our 699

iterative model on both the above two datasets. It represents 700

that our proposed efficient training algorithm can converge 701

into a local solution in terms of the objective value in a small 702

number of iterations. 703

7 CONCLUSION AND FUTURE WORK 704

We proposed a general method for learning with incom- 705

plete data, where data of different missingness patterns are 706

treated differently in model level. This idea can reduce the 707

competition between data of different missingness patterns 708

in training. In detail, we proposed a linear model that can 709

be adaptively applied to data with different missingness 710

patterns. And analysis of error bound justifies our method 711

in the linear case. Our experiment results verified the effec- 712

tiveness of our model empirically. 713

The dimension of missingness indicator vectors influ- 714

ences the computation complexity and generalization error, 715

our future work will focus on how to develop a lower- 716

dimension representation for them. Although we do not im- 717

pute the missing data for our model, it does not conflict with 718

imputation methods. How to combine various imputation 719

methods with our model is another interesting future work. 720
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